

An Introduction to Asphalt Mixture Volumetrics

Idaho Asphalt Conference October 28, 2021 Dave Johnson, P.E. Senior Regional Engineer Asphalt Institute

asphalt institute

Presentation is Based on MS-2

2 2

3

Obtaining the Right Balance

Achieved through

- Volumetric Analysis of the Mixture
- Future Performance testing

asphalt institute

Intent of Laboratory Compaction?

To simulate the in-place density of HMA after it has endured several years of traffic

Superpave Gyratory compactor

5 5

6 6

SGC better than Marshall or Hveem

Materials Selection

asphalt institute

- <u>Aggregate</u>
- Makes up 93 to 96% of the mixture weight
- Acts as the skeleton of the pavement mixture
 - Skid resistance
 - Stability
 - Workability

<u>Asphalt Binder</u>

- Makes up 4 to 7% of the mixture weight
- Acts as the "glue" or "muscle" of the mix
 - Flexibility
 - Durability

8

Volumetrics

- All matter has mass and occupies space
- Volumetrics are the relationships between mass and volume
- Marshall and Superpave mix design based on aggregate and mixture volumetrics

。 9

Volumetric Analysis Definition

The measurement or calculation of the relative masses and volumes occupied by the aggregate, asphalt binder, and air voids in a <u>compacted</u> asphalt mixture

History of Mix Design

11

Nomenclature for Specific Gravity

- G_{xy} Where G equals specific gravity; unit-less
 - x Designates material
 - y Designates type of specific gravity
- For (x):
 - s Aggregate
 - m- Mixture
 - b Binder
- For (y):
 - m- Maximum
 - a Apparent
 - b Bulk
 - e Effective

13

Aggregate Specific Gravities

Aggregate Properties

- G_{sb} largest volume, lowest value
- G_{se} in-between volume, middle value
- G_{sa} smallest volume, highest value

asphalt institute

Figure 5.2 Representation of Microscopic View of Aggregate, Asphalt, and Air Mixture

Coarse Aggregate Specific Gravity

• AASHTO T 85

- Apparent
- \circ SSD
- Bulk

15 15

¹⁶

• Absorption

Fine Agg. Specific Gravity (Cone Test)

• AASHTO T 84

Determine Aggregate Specific Gravities

What is Specific Gravity?

• It is the ratio between the density of <u>anything</u> compared to the density of water at a standard temperature

$$G = \frac{\frac{M_{\chi}}{V_{\chi}}}{\frac{M_{H_2O}}{V_{H_2O}}} = 1.000 \text{ gram / cm}^3$$

asphalt institute

17 17

Specific Gravity is the Bridge Between Volume and Mass

Volume $G = \frac{M}{V}$ Mass $M = V \times G$ In the metric system...

the magnitudes of specific gravity (no units) and unit weight (g/cc) are always the same because water weighs 1 g/cc

asphalt institute

Specific Gravity

19

Specific Gravity

• Relates Volume to Mass

Specific Gravities

- The specific gravity of three different materials are obtained and used in volumetric analysis
 - Aggregate (G_{sb}) furnished by designer or producer
 - $^{\rm o}$ Asphalt (G_b) furnished by the supplier
 - Mixture (G_{mb}) cannot be determined until mixture testing is completed

Aggregate Specific Gravity

- Mineral aggregate is porous.
- The amounts of water and asphalt absorption differ • asphalt absorption is typically 30 – 80% of water absorption
- Three different specific gravities are needed to account for these variations.
 - G_{sa} = Apparent Specific Gravity
 - G_{se} = Effective Specific Gravity
 - G_{sb} = Bulk Specific Gravity

asphalt institute

3 Different Aggregate Specific Gravities

- Apparent (G_{sa}) Volume
 excludes absorbed water volume
- Effective (G_{se}) Volume
 - excludes absorbed asphalt volume
 - Must use mixture testing to determine G_{sa} Volume. (G_{mm})
- Bulk (G_{sb}) Volume

MS-2 Pg. 47 – 5.2.2

Different Volumes

23

Aggregate Bulk Specific Gravity

asphalt institute

Aggregate Effective Specific Gravity

25

Aggregate Apparent Specific Gravity

Combined G_{sb} & G_{sa} for Each Stockpile

- Laboratory testing is performed individually on the coarse and fine fractions of the stockpile.
- These values must be combined into one value for each stockpile.

27 27

HMA Volumetric Terms

- Air voids of mix, P_a
- Voids in mineral aggregate, VMA
- Bulk specific gravity of mix, G_{mb}
- Maximum specific gravity of mix, G_{mm}
- Voids filled with asphalt, VFA
- Bulk specific gravity of aggregate, G_{sb}
- Effective specific gravity of aggregate, G_{se}
- Dust Proportion, DP

Importance of Air Voids

- Field performance has shown that typical mixtures designed with low air voids (maybe < 2%) are susceptible to rutting and shoving
- Mixtures designed over about 5% air voids are susceptible to raveling, oxidation and a general lack of durability
- 4% air void design is an empirically derived target that allows for thermal expansion of the binder along with a cushion for future compaction

29

29

Air Voids

VMA: Voids in Mineral Aggregate

Definition

VMA Equation

- Volume of inter-granular void space in a compacted mix
- % by volume total mix
- Does not include volume of absorbed asphalt

$$VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$$

Where: VMA = Voids in the Mineral Aggregate G_{mb} = bulk specific gravity of the mix P_s = Percent aggregate in the specimen G_{sb} = bulk specific gravity of the aggregate blend

32

32

31 31

Pg. 54 – 5.6

- VMA is the volume of the voids in a compacted aggregate sample to accommodate effective asphalt and air.
 - Assure sufficient binder coating
 - Maintain 4% Air voids

33 33

VMA and %AC

34

SMA and OGFC are specialty mixes that are designed with very high VMA and are engineered to minimize drain down

35 35

Voids Filled with Asphalt (VFA)

Definition

High VMA Mixes

- Percentage of VMA filled with asphalt
- Similar to degree of saturation in soils
- Limits excessive VMA

$$VFA = 100 \times \frac{(VMA - P_a)}{VMA}$$

Where:

VFA = Percent volume of VMA filled with asphalt VMA = Percent Voids in the Mineral Aggregate P_a= Percent Air Voids of the Total mix volume

37

37

Dust Proportion

- Dust = % Passing the .075mm sieve
- Previously referred to as the Dust / Asphalt ratio
- A parameter that measures the mixture "mastic"

Dust Proportion

- Originally established using the total asphalt content
- P_{be} is now recommended
- Usage of P_b or P_{be} varies in different regions Check the specifications.
- Recommended Criteria

0.8 – 1.6 for extra coarse mixtures

$$DP = \frac{P_{0.075}}{P_{be}}$$

³⁹ 39

Importance of Volumetric Properties

asphalt institute

asphalt institute

41 41

Many Elements Affect Volumetric Properties

- Binder quantity & binder properties
 - $^{\circ} \, \text{Stiffness}$
 - Modification
 - Temperature

- Aggregate characteristics
 - Gradation
 - Particle shape
 - Surface texture
 - Hardness
 - Absorption

Every mixture can be different!

Final Thoughts on Mix Design

- Key Points to Keep in Mind
 - 1. "Use What Works"
 - 2. "Eliminate What Doesn't"
 - 3. "Be as Simple as Possible, Be Practical, and Be Correct"

"Good doesn't have to be complicated and complicated isn't always good!"

Oldenst

43

Questions?

