LOW VOLUME ROADS - BALANCING LIMITED FUNDING WITH PAVEMENT REHABILITATION NEEDS

David Jones, PhD University of California Pavement Research Center, Davis, California

> 61st Annual Idaho Asphalt Conference Moscow ID, October 28, 2021

Overview

- Introduction
- Road investigation
- Improvement strategies
- Conclusions

3

Introduction

- Defining "low-volume"
- The US road network (2019 FHWA Highway Stats, excluding privately owned):
 - 4.125 million miles
 - 3.407 million miles categorized as minor arterial, minor collector, or local
 - i.e., lower volume roads
 - I.219 million miles are unpaved
 - Unpaved road network is growing due to "unpaving", both intentional and passive

Introduction

- Problems with managing low volume roads
 - Money, money, money
 - Spending priorities based on traffic, not on all the strategic values (food, raw materials, energy)
 - Expertise, skills, and risk of innovation
 - Understanding evolution of the road
 - Inappropriate strategy choices
 - Lack of maintenance (worst-first funding model)
 - Inappropriate specifications and poor enforcement of them
- This all equals more miles than money to maintain them
- So what can we do?

Introduction

- Start with answering the following:
 - 1. What have we got?
 - Site investigation
 - Budget
 - 2. What do we want?
 - Expectations
 - 3. What can we afford?
 - Reality
 - 4. How can we innovate to stretch budgets?
- Choose a strategy that balances rehabilitation/ reconstruction with preservation/maintenance
 - Keep good roads good, invest savings in new improvements
 - Worst-first approach is not a good strategy!

Introduction

10 Steps to Making a Good LVR Decision

- 1. Investigate
- 2. Analyze
- 3. Identify sustainable options
- 4. Ask others
- 5. Narrow the choices
- 6. Review pros and cons of each
- 7. Choose an option
- 8. Prepare to defend the choice
- 9. Do it
- 10. Preserve/maintain it

Overview

- Introduction
- Road investigation
- Improvement strategies
- Conclusions

9

Investigation

- Key part of the process. Don't skip it!
- Provides information on the existing pavement structure and why it looks like it does
- Findings are used to determine an appropriate strategy
- Costs are negligible
- It's not rocket science, just rocks, a bit of science, and lot's of common sense!

Investigation Steps

- Separate training presentation module!
- Desktop study
 - Review all available information
- Walk the road
 - Cause of distresses, drainage, safety issues
- DCP testing
 - Existing structure and subgrade conditions
- Material sampling
 - What can be reused, what is needed
- Laboratory testing
 - Gradation and plasticity
- Develop options based on results

11

Overview

- Introduction
- Road investigation
- Improvement strategies
- Conclusions

Improvement Strategies

 Suggestions focus on constrained budgets for severely distressed roads

Paved roads

- Conventional overlay (often too late)
- In-place recycling with no additive
- In-place recycling with additive
- Convert to engineered unpaved
- Unpaved roads
 - Upgrade to engineered unpaved
 - Weatherproof with surface treatment (chip seal, etc.)

13

Strategies for Low-Volume Paved Roads

- Limited age-related distresses
 - Preservation/maintenance treatment (microsurfacing, chip seal, rubberized chip seal, cape seal, overlay, geosynthetic + surface treatment, etc.)
 - Fix causes of problems (often water)
- AADT < 150 with severe distresses
 - Consider converting/upgrading to an engineered unpaved road
 - Performance spec plus chemical treatment (balanced mix design)
 - Can be surfaced when funds permit
 - Guidance available

Performance Spec (Balanced Mix Design)

Performance Spec (Balanced Mix Design)

Performance Spec (Balanced Mix Design)

www.ucprc.ucdavis.edu/dustcontrol

Lakes Highway District, ID

- 2012 FHWA Scan Tour
- Systematic upgrade of network over a period of years
 - Preserve existing, use savings to upgrade next on the list
- Costs (2012)
 - Untreated average maintenance cost
 - Annual \$12,500/mile
 - Treated average maintenance cost
 - Year 1 \$6,400/mile
 - Subsequent years \$4,650/mile
 - Rate of gravel loss reduced by >50%

Strategies for Low-Volume Paved Roads

- AADT > 150 with severe distresses, limited trucks (<100k ESALs)
 - Usually too late for overlay, and reconstruction cost is prohibitive
 - Consider full-depth, in-place recycling (FDR) with no additive
 - Select recycle depth to achieve blend of existing materials to achieve good gradation
 - Add supplemental RAP if needed
 - Cover with appropriate surface treatment
 - Guidance is available

FDR-N (pulverization)

21

FDR-N (pulverization)

Strategies for Low-Volume Paved Roads

- AADT > 150 with severe distresses, trucks (>100k ESALs)
 - Consider full-depth, in-place recycling with appropriate additive
 - Select recycle depth to achieve blend of existing materials to achieve good gradation (10 to 12 in.)
 - Add supplemental RAP if needed to increase structural capacity and/or improve drainage
 - Select additive based on material properties
 - Engineered materials (RAP and AB): emulsified or foamed asphalt
 - Marginal materials: cementitious
 - Cover with appropriate surface treatment or thin overlay

23

FDR-FA

Key Recycling Construction Steps

- Use an experienced contractor with agency oversight
- Know what you are recycling
 - LVRs are inherently variable
- Monitor all activities including recycled material
- Compact to refusal density (breakover)
- Clear/improve drains
- Fog seal prior to trafficking
- Surface as soon as feasible, with a tack coat
- Enforce QC/QA of surface placement
 - For every 1% air-voids above spec = 1 year less fatigue cracking life
- Preserve/maintain

Do Recycled Pavements Last?

- FDR-FA constructed in 2002
 - 10 in. FDR-FA with 2.5 in. overlay
 - 6,000 AADT, 20% trucks
- Designed as 5-yr maintenance intervention
- RHMA-O in 2014
- No distress in 2020
- So yes!

Do Recycled Pavements Last?

- FDR-FA tests
 - 10 in. FDR-FA with 2 in. overlay
 - Trafficked with HVS 24/7
 - Controlled temperature and water addition
- 34 million ESALs, 50% applied at 2.5x legal axle load limit
- No cracks, 0.25 in. rut
- So, yes!

Overview

- Introduction
- Road investigation
- Improvement strategies
- Conclusions

Conclusions

- Low-volume roads are managed with very constrained budgets
- There are many proven innovative ways to do a good job with less funds
- What ever you think of, someone has probably tried it already. Find out
- Preserve/maintain what you have; use savings to rehabilitate next priority
 Worst-first is not an effective use of funds
 - Worst-first is not an effective use of funds
- Recycling existing materials in-place is often the most cost-effective and sustainable option

29

Why Recycle?

- ✓ Proven technology backed up by research
- More sustainable if designed & built correctly
- Uses all existing, paid for materials
- Requires limited new materials
- Minimizes trucking operations
- ✓ Shorter construction time, less traffic disruption
- ✓ Cost effective / lower life-cycle cost
- Removes distresses instead of covering them
- ✓ Strategies available for most pavement problems
- ✓ Selected strategies enhance structural capacity
- ✓ Extended pavement life
- ✓ Recycled roads can be recycled again
- ✓ Specifications are in place in most states
- Experienced contractors in most states

djjones@ucdavis.edu

