Equation 1: $\quad \bar{x}=\frac{\sum_{i} x_{i}}{n}$
Equation 2: $s=\sqrt{\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
Equation 3: $\mu=\overline{-} \pm \frac{t \sigma}{\sqrt{n}} \quad$ Equation 4: $Q=\frac{d}{w} \quad$ Equation 5: $\mathrm{G}=\frac{\mid \text { value }-\bar{x} \mid}{s}$ Values of Grubbs Statistic (G)

Number of Observations n	Confidence Level (\%)					
	99.9	99.5	99	97.5	95	90
3	1.155	1.155	1.155	1.155	1.153	1.148
4	1.499	1.496	1.492	1.481	1.463	1.425
5	1.780	1.764	1.749	1.715	1.672	1.602
6	2.011	1.973	1.944	1.887	1.822	1.729
7	2.201	2.139	2.097	2.020	1.938	1.828
8	2.358	2.274	2.221	2.126	2.032	1.909
9	2.492	2.387	2.323	2.215	2.110	1.977
10	2.606	2.482	2.410	2.290	2.176	2.036
11	2.705	2.564	2.485	2.355	2.234	2.088
12	2.791	2.636	2.550	2.412	2.285	2.134
13	2.867	2.699	2.607	2.462	2.331	2.175
14	2.935	2.755	2.659	2.507	2.371	2.213
15	2.997	2.806	2.705	2.549	2.409	2.247

Equation 6: $F=\frac{s_{1}^{2}}{s_{2}^{2}} \quad$ Equation 7: $t_{\text {calculated }}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}}$

Equation 8: d.f. $=\mathrm{n}_{1}+\mathrm{n}_{2}-2 \quad$ Equation 9: $t_{\text {calculated }}=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
Equation 10: d.f. $=\left(\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}+1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}+1}}\right)-2$
Equation 11: $E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{R T}{n F} \ln \frac{[\operatorname{Re} d]}{[O x]}$

Table 4-1 Ordinate and area for the normal (Gaussian) error curve,
$y=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-z^{2 / 2}}$

$\|z\|^{\boldsymbol{a}}$	\boldsymbol{y}	Area $^{\boldsymbol{b}}$	$\|z\|$	\boldsymbol{y}	Area	$\|z\|$	\boldsymbol{y}	Area
0.0	0.3989	0.0000	1.4	0.1497	0.4192	2.8	0.0079	0.4974
0.1	0.3970	0.0398	1.5	0.1295	0.4332	2.9	0.0060	0.4981
0.2	0.3910	0.0793	1.6	0.1109	0.4452	3.0	0.0044	0.498650
0.3	0.3814	0.1179	1.7	0.0941	0.4554	3.1	0.0033	0.499032
0.4	0.3683	0.1554	1.8	0.0790	0.4641	3.2	0.0024	0.499313
0.5	0.3521	0.1915	1.9	0.0656	0.4713	3.3	0.0017	0.499517
0.6	0.3332	0.2258	2.0	0.0540	0.4773	3.4	0.0012	0.499663
0.7	0.3123	0.2580	2.1	0.0440	0.4821	3.5	0.0009	0.499767
0.8	0.2897	0.2881	2.2	0.0355	0.4861	3.6	0.0006	0.499841
0.9	0.2661	0.3159	2.3	0.0283	0.4893	3.7	0.0004	0.499904
1.0	0.2420	0.3413	2.4	0.0224	0.4918	3.8	0.0003	0.499928
1.1	0.2179	0.3643	2.5	0.0175	0.4938	3.9	0.0002	0.499952
1.2	0.1942	0.3849	2.6	0.0136	0.4953	4.0	0.0001	0.499968
1.3	0.1714	0.4032	2.7	0.0104	0.4965			

Table 4-6 Values of Q for
rejection of data

\boldsymbol{Q} $(90 \%$ confidence $)^{a}$	Number of observations
0.76	4
0.64	5
0.56	6
0.51	7
0.47	8
0.44	9
0.41	10

Table 4-2 Values of Student's t

	Confidence level (\%)						
Degrees of freedom	$\mathbf{5 0}$	$\mathbf{9 0}$	95	$\mathbf{9 8}$	$\mathbf{9 9}$	$\mathbf{9 9 . 5}$	$\mathbf{9 9 . 9}$
1	1.000	6.314	12.706	31.821	63.657	127.32	636.619
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373
∞	0.674	1.645	1.960	2.326	2.576	2.807	3.291

Table 4-5 Critical values of $F=s_{1}^{2} / s_{2}^{2}$ at 95% confidence level

Degrees of freedom for s_{2}	Degrees of freedom for $s_{\mathbf{1}}$													
	2	3	4	5	6	7	8	9	10	12	15	20	30	∞
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.84	8.81	8.79	8.74	8.70	8.66	8.62	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.58	3.51	3.44	3.38	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.84	2.77	2.70	2.54
11	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	3.88	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30
13	3.81	3.41	3.18	3.02	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.38	2.21
14	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.31	2.13
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.25	2.07
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.15	1.96
18	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.04	1.84
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
∞	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00

Exam 1 * Chem 454 * February 9, 2018
Name \qquad

1] The linear range of a glass pH electrode is $\mathrm{pH}=$ \qquad to $\mathrm{pH}=$ \qquad .1

2] The potential of the $\mathrm{Ag} / \mathrm{AgCl}$ electrode is 0.0 .257 volts vs. S .H.E in the cell below.

Given the standard reduction potential: $\quad \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-} \quad \mathrm{E}^{0}=0.222 \mathrm{~V}$
Calculate the concentration of KCl in this electrode. ${ }^{2}$
3) Sketch the configuration of a modern commercial $\mathrm{pH} /$ reference electrode configuration. ${ }^{3}$

4] Which of the equations on the formula sheet would best describe precision? ${ }^{4}$

5] The Pb content of a clay was determined. The following results are reported in ppm .
19.94119 .81219 .82919 .82819 .742
19.79719 .93719 .84719 .88519 .804

The mean is 19.842 ppm with $\mathrm{s}=0.0627 \mathrm{ppm}$.
Report the 95% confidence interval for that mean. ${ }^{5}$

6] Which of the following samples would be suitable for analysis by a calibration curve technique using a potentiometric device? Which would require a standard addition type of analysis in all likelihood? ${ }^{6}$
a) Ca^{2+} in milk
b) Cu^{2+} in distilled water
c) Cl^{-}in blood
d) F^{-}in tooth paste

7] The response of a Cl^{-}ISE electrode was a -455 mV in a solution of $4.33 \mathrm{e}-3 \mathrm{M} \mathrm{KCl}$. An unknown solution gave a potential -474 mV . What is [$\left.\mathrm{Cl}^{-}\right]$of this unknown? ${ }^{7}$

8] Fluoride concentration was determined with an ISE. A $5.00-\mathrm{mL}$ aliquot of sample was diluted to $10.00-\mathrm{mL}$ with doubly distilled water. The F^{-}ISE response was measured as -255 mV . To another $5.00-\mathrm{mL}$ aliquot of sample was added $5.00-\mathrm{mL}$ of $1.66 \mathrm{e}-3 \mathrm{M} \mathrm{NaF}$ solution. Its ISE response was measured as -301 mV . What is the concentration of F^{-}in the sample? ${ }^{8}$

9] Sketch the Gaussian curves that describe the limits of detection. Be sure to include enough information that makes clear the concept of LOD. What is the simple formula that allows you to calculate the LOD? ${ }^{9}$

Answers

${ }^{4}$ Standard deviation, Equation 2
${ }^{5} \mu=x^{-} \pm \frac{t \sigma}{\sqrt{n}} \quad \mathrm{u}=19.842 \pm 2.262(0.0627 / \sqrt{ } 10)=19.842 \pm 0.0448$
There is a 95% chance that true mean lies between 19.797 and 19.887
${ }^{6}$ There can be several ways of answering this question. I will evaluate each based on what you write in your essay. Most likely a), c) and possibly d) will require standard addition type analyses. There is little likelihood of obtaining zero-concentration analyte samples of a) and c). It might be possible to obtain zero-concentration F - in toothpaste but difficult. Calibration curve is possible with b) and d).
$7 \quad \mathrm{E}=$ const $-0.0592 \log \left[\mathrm{Cl}^{-}\right]$
$-0.455 \mathrm{~V}=$ const $-0.0592 \log [4.33 \mathrm{e}-3]$
Const $=-0.595$
$-0.474=-0.595-0.0592 \log \left[\mathrm{Cl}^{-}\right]$
$\left[\mathrm{Cl}^{-}\right]=9.04 \mathrm{e}-3 \mathrm{M}$
${ }^{8} \mathrm{E}=$ const $-0.0592 \log \left[\mathrm{~F}^{-}\right]$
Let $\mathrm{x}=$ conc of F - in sample
Conc of F- after dilution $=(5.00 / 10.00) * 1.66 \mathrm{e}-3=8.30 \mathrm{e}-4 \mathrm{M}$
First response: $\quad-0.255=$ const $-0.0592 \log (x)$
Second: $\quad-0.301=$ const $-0.0592 \log (x+8.30 e-4)$
Subtract the 2 equations:

$$
\begin{aligned}
& -0.255=\text { const }-0.0592 \log (x) \\
& -(-0.301=\text { const }-0.0592 \log (x+8.30 e-4))
\end{aligned}
$$

$0.0460=0.0592 \log (x+8.30 e-4) / x$

$$
\mathrm{x}=6.97 \mathrm{e}-5 \mathrm{M} \quad \text { sample }=2 \mathrm{x}=3.33 \mathrm{e}-4 \mathrm{M}
$$

The LOD is where we are 99% confident that the signal we are measuring for a low concentration analyte (sample in the figure) is not the blank. This requires the mean signal values for the blank and the low concentration measurement is 3.1 standard deviations apart.

LOD $=3 \mathrm{~s} / \mathrm{m}$

