$$\bar{x} = \frac{\sum_{i} x_{i}}{n} \qquad s = \sqrt{\frac{\sum_{i} \left(x_{i} - \bar{x}\right)^{2}}{n-1}} \qquad \mu = \bar{x} \pm \frac{t\sigma}{\sqrt{n}} \qquad G = \frac{|value - \bar{x}|}{s}$$

Values of Grubbs Statistic (G)										
	Confidence Level (%)									
Number of Observations n	99.9	99.5	99	97.5	95	90				
3	1.155	1.155	1.155	1.155	1.153	1.148				
4	1.499	1.496	1.492	1.481	1.463	1.425				
5	1.780	1.764	1.749	1.715	1.672	1.602				
6	2.011	1.973	1.944	1.887	1.822	1.729				
7	2.201	2.139	2.097	2.020	1.938	1.828				
8	2.358	2.274	2.221	2.126	2.032	1.909				
9	2.492	2.387	2.323	2.215	2.110	1.977				
10	2.606	2.482	2.410	2.290	2.176	2.036				
11	2.705	2.564	2.485	2.355	2.234	2.088				
12	2.791	2.636	2.550	2.412	2.285	2.134				
13	2.867	2.699	2.607	2.462	2.331	2.175				
14	2.935	2.755	2.659	2.507	2.371	2.213				
15	2.997	2.806	2.705	2.549	2.409	2.247				

$$F = \frac{s_1^2}{s_2^2}$$

 $t_{calculated} = \frac{\left|\overline{x}_{1} - \overline{x}_{2}\right|}{s_{pooled}} \sqrt{\frac{n_{1}n_{2}}{n_{1} + n_{2}}} \quad s_{pooled} = \sqrt{\frac{s_{1}^{2}(n_{1}-1) + s_{2}^{2}(n_{2}-1)}{n_{1} + n_{2} - 2}} \quad \text{d.f.} = n_{1} + n_{2} - 2$ $\left(\left(s_{1}^{2} + s_{2}^{2} \right)^{2} \right) \right)$

$$t_{calculated} = \frac{\left|\overline{x}_{1} - \overline{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} \qquad \text{d.f.} = \left(\frac{\left(\frac{1}{n_{1}} + \frac{2}{n_{2}}\right)}{\left(\frac{s_{1}^{2}/n_{1}\right)^{2}}{n_{1} + 1} + \frac{\left(s_{2}^{2}/n_{2}\right)^{2}}{n_{2} + 1}}\right) - 2$$

$$E_{cell} = E_{cell}^{0} - \frac{RI}{nF} \ln \frac{[\text{Re}\,d]}{[Ox]} \qquad E = E^{0} - (0.0592/\text{n}) \log [\text{red}]/[\text{ox}]$$

Table 4-1 Ordinate and area for the normal (Gaussian) error curve, $y = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$

$ z ^a$	у	Area ^b	z	у	Area	z	у	Area
0.0	0.398 9	0.000 0	1.4	0.149 7	0.419 2	2.8	0.007 9	0.497 4
0.1	0.397 0	0.039 8	1.5	0.129 5	0.433 2	2.9	0.006 0	0.498 1
0.2	0.391 0	0.079 3	1.6	0.110 9	0.445 2	3.0	0.004 4	0.498 650
0.3	0.381 4	0.117 9	1.7	0.094 1	0.455 4	3.1	0.003 3	0.499 032
0.4	0.368 3	0.155 4	1.8	0.079 0	0.464 1	3.2	0.002 4	0.499 313
0.5	0.352 1	0.191 5	1.9	0.065 6	0.471 3	3.3	0.001 7	0.499 517
0.6	0.333 2	0.225 8	2.0	0.054 0	0.477 3	3.4	0.001 2	0.499 663
0.7	0.312 3	0.258 0	2.1	0.044 0	0.482 1	3.5	0.000 9	0.499 767
0.8	0.2897	0.288 1	2.2	0.035 5	0.486 1	3.6	0.000 6	0.499 841
0.9	0.266 1	0.315 9	2.3	0.028 3	0.489 3	3.7	0.000 4	0.499 904
1.0	0.242 0	0.341 3	2.4	0.022 4	0.491 8	3.8	0.000 3	0.499 928
1.1	0.217 9	0.364 3	2.5	0.017 5	0.493 8	3.9	0.000 2	0.499 952
1.2	0.194 2	0.384 9	2.6	0.013 6	0.495 3	4.0	0.000 1	0.499 968
1.3	0.171 4	0.403 2	2.7	0.010 4	0.496 5			

Table 4-6Values of Q forrejection of data					
<i>Q</i> (90% confidence) ^{<i>a</i>}	Number of observations				
0.76	4				
0.64	5				
0.56	6				
0.51	7				
0.47	8				
0.44	9				
0.41	10				

 Table 4-2
 Values of Student's t

Confidence level (%)

Degrees of freedom	50	90	95	98	99	99.5	99.9
1	1.000	6.314	12.706	31.821	63.657	127.32	636.619
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373
∞	0.674	1.645	1.960	2.326	2.576	2.807	3.291

Table 4-5 Critical values of $F = s_1^2/s_2^2$ at 95% confidence level

Degrees of Degrees of freedom for s₁

freedom									1					r
for s ₂	2	3	4	5	6	7	8	9	10	12	15	20	30	œ
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.84	8.81	8.79	8.74	8.70	8.66	8.62	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.58	3.51	3.44	3.38	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.84	2.77	2.70	2.54
11	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	3.88	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30
13	3.81	3.41	3.18	3.02	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.38	2.21
14	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.31	2.13
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.25	2.07
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.15	1.96
18	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.04	1.84
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
00	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00

Exam 1 * Chem 454 * February 6, 2019

Name

80 points total -10 points each.

 A LOD was measured for a lead analysis method. Below left are nine measurements for a blank and low Pb concentration signals. Their averages and standard deviations are show in each respective column. A calibration curve is on the right with a least squares best fit line shown. What is the LOD for this method?¹

2

3

- 2) Sketch and label a diagram that illustrates the concepts of
 - a) linear range
 - b) sensitivity
 - c) dynamic range
 - d) background

3) What is the 95% confidence limit for the following set of data?

Sample	Signal
1	21.56 mA
2	27.25 mA
3	25.53 mA
4	24.99 mA
5	<u>24.43 mA</u>
Average	24.75 mA
S	2.07

4) Which if any of the following measurements can be excluded with 95% confidence? 4

0.5980, 0.5993, 0.5995, 0.5997, 0.6010, 0.6400 Average = 0.6062 s = 0.0166

5) Arsenic in blood was measured by atomic absorption spectroscopy (AAS) and an electrochemical sensor (ES). The results are reported below with the standard deviations.

AAS ES As $0.069\pm0.005 \text{ ppb} (n = 7)$ $0.063\pm0.008 \text{ ppb} (n = 5)$

Are the standard deviations significantly different at the 95% confidence interval? Show your work.

6) For $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ $E^0 = -0.441 \text{ V}$

What is the single electrode potential if $[Fe^{3+}] = 0.0013$ M and $[Fe^{2+}] = 0.015$ M?

- 7) What is E^{0}_{cell} for the reaction below? $Hg_2SO_4(s) + 2e = 2Hg(1) + SO_4^{2-}$ Given: $Hg_2^{2+} + 2e^{-} = 2Hg(1)$ $Hg_2SO_4(s) = Hg_2^{2+} + SO_4^{2-}$ 8) In the following series which is the a. Strongest reducing agent?
 - b. Strongest oxidizing agent?_____
 - c. Is NAD⁺ a strong reducing agent than NADH? _____

Reaction	$E^{\circ}(\mathbf{V})$	$E^{\circ \prime}$ (V)
$\overline{O_2 + 4H^+ + 4e^-} \rightleftharpoons 2H_2O$	+1.229	+0.816
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771	+0.771
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.535	+0.535
\tilde{C} ytochrome a (Fe ³⁺) + e ⁻ \Rightarrow cytochrome a (Fe ²⁺)	+0.290	+0.290
$O_2(g) + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+0.695	+0.281
Cytochrome c (Fe ³⁺) + $e^{-} \rightleftharpoons$ cytochrome c (Fe ²⁺)		+0.254
2,6-Dichlorophenolindophenol + $2H^+$ + $2e^- \rightleftharpoons$ reduced		
2,6-dichlorophenolindophenol	—	+0.22
Dehydroascorbate + $2H^+$ + $2e^- \rightleftharpoons$ ascorbate + H_2O	+0.390	+0.058
Fumarate + $2H^+$ + $2e^- \rightleftharpoons$ succinate	+0.433	+0.031
Methylene blue + $2H^+$ + $2e^- \rightleftharpoons$ reduced product	+0.532	+0.011
Glyoxylate + $2H^+$ + $2e^- \Rightarrow$ glycolate	<u> 1910 - 191</u>	-0.090
Oxaloacetate + $2H^+$ + $2e^- \rightleftharpoons$ malate	+0.330	-0.102
Pyruvate + $2H^+$ + $2e^- \rightleftharpoons$ lactate	+0.224	-0.190
Riboflavin + $2H^+$ + $2e^- \rightleftharpoons$ reduced riboflavin		-0.208
$FAD + 2H^+ + 2e^- \rightleftharpoons FADH_2$	1000	-0.219
$(\text{Glutathione-S})_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons 2 \text{ glutathione-SH}$	10000	-0.23
Safranine T + $2e^- \rightleftharpoons$ leucosafranine T	-0.235	-0.289
$(C_6H_5S)_2 + 2H^+ + 2e^- \rightleftharpoons 2C_6H_5SH$		-0.30
$NAD^+ + H^+ + 2e^- \rightleftharpoons NADH$	-0.105	-0.320
$NADP^+ + H^+ + 2e^- \rightleftharpoons NADPH$	_	-0.324
Cystine + $2H^+$ + $2e^- \rightleftharpoons 2$ cysteine		-0.340
Acetoacetate + $2H^+$ + $2e^- \rightleftharpoons L-\beta$ -hydroxybutyrate		-0.346
Xanthine + $2H^+$ + $2e^- \rightleftharpoons$ hypoxanthine + H_2O	—	-0.371
$2\mathrm{H}^+ + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2$	0.000	-0.414
Gluconate + $2H^+$ + $2e^- \rightleftharpoons glucose$ + H_2O	_	-0.44
$SO_4^{2-} + 2e^- + 2H^+ \rightleftharpoons SO_3^{2-} + H_2O$	_	-0.454
$2\mathrm{SO}_3^{2-} + 2\mathrm{e}^- + 4\mathrm{H}^+ \rightleftharpoons \mathrm{S}_2\mathrm{O}_4^{2-} + 2\mathrm{H}_2\mathrm{O}$	_	-0.527

Table 14-2 Reduction potentials of biological interest

Answers

 1 LOD = 3s/m = 3*0.000701/7.24e-2 = 0.029 ppm

³
$$\mu$$
 = x-bar ± (ts/ \sqrt{n}) C.L. = ±(2.776)*(2.07/ $\sqrt{5}$) = 2.56

There's a 95% chance that the true mean lies in the interval 24.75 ± 2.56

⁴ Use Grubbs Test for this,	G-calc = (0.6400 – 0.6062) / 0.0166 = 2.04
Locate G-Table for n = 6	G-table = 0.1822
G-calc > G-table	we may discard 0.6400 with 95% confidence

⁵ Use F-test for this question.

 $F-calc = (0.008/0.005)^2 = 2.6$ F-table = 4.53 4 d.f. & 6 d.f. F-calc < F-table

The s are not significantly different.

⁶ Use the Nernst Equation: $E = E^0 - (0.0592/n) \log \text{ [red]/[ox]}$

$$\begin{split} E &= -0.441 \ \text{-}0.0592 \log \ [0.015]/[0.0013] = -0.504 \ V \\ ^7 \ E &= 0.796 - 0.0592/2 \ \log 1/[\text{Hg}2^{2+}] \\ K_{sp} &= 7.4\text{e-}7 = [\text{Hg}2^{2+}][\text{SO}4^{2-}] \end{split}$$

 $[Hg_2^{2+}] = 7.4e-7/[SO_4^{2-}]$ E = 0.796 - 0.0592/2 log [SO₄²⁻]/7.4e-7 = **0.615 V**

a. Strongest reducing agent? _____S₂O₄²⁻_____
b. Strongest oxidizing agent? _____O₂____

8

c. Is NAD⁺ a strong reducing agent than NADH? ____No_____ NADH is the reducing agent.