Exam 2 * Chem 454 * March 6, 2019

Name_

70 total points. Each question is worth 10 points. Ignore question 2.

- 1. A pH electrode was found to have a potential of 0.439 V in a pH 4.01 (0.050 M KHP) solution. A sample solution gave a potential of 0.344 V. What is the pH of that sample?
- A Cl⁻ ISE responds to an unknown KCl solution with a potential of 667.7 mV. The volume of that solution is 10.00 mL. A spike of 0.100 mL of 2.52e-3 M KCl to that solution gave a response of 558.2 mV. What is the concentration of Cl⁻ in that unknown solution?
- 3. Sketch the configuration of a modern pH electrode.
- 4. Explain the 3 electrodes needed for cyclic voltammetry. State the purpose of each electrode and why 3 electrodes are necessary.

5

- 5. In the figure below label the following:
 - a. $Ox + e \rightarrow Red$
 - b. Capacitive Current.
 - c. i_{p,c}
 - d. i_{p,a}
 - e. Red \rightarrow Ox + e-
 - f. E^0 and $E_{1/2}$

6. Explain why this cyclic voltammogram appears different than the one in question 5. $_{6}$

An anodic stripping voltammetric analysis was conducted for the analysis of Pb in soil extracts. The following standard addition analysis was conducted with a spike concentration of 100.0 ppb Pb²⁺(aq)

10.00 mL Aqueous Sample	100.1 µA
10.00 mL Aqueous Sample + 1.00 mL Spike	150.3 µA

8. Using the blank diagram below, illustrate the processes of absorption, vibrational relaxation, fluorescence, phosphorescence and internal conversion.

s_o

Answers

Sample Solution with unknown pH Glass Membrane Bulb – Very Fragile!

⁴ Working electrode - This is where the reduction or oxidation electrochemical processes being investigated are taking place.

Reference electrode – This electrode provides a stable potential (e.g. Ag/AgCl) based on a chemical equilibrium that allows the working electrode to be compared to and controlled. As the potential is being measured no current is allowed to pass through the working electrode – reference electrode circuit.

Counter electrode – provides for the charge balance when the working electrode undergoes an oxidation or reduction. The current flow is the same but in a different direction relative to the working electrode, e.g. when the working electrode is undergoing a reduction, the counter electrode is undergoing an oxidation process. Current passes through the working – counter electrode circuit.

5

⁶ This is an example of EC mechanism:

⁷ Spike = 100.0 ppb $Pb^{2+}(aq)$

10.00 mL Aqueous Sample	100.1 µA
10.00 mL Aqueous Sample + 1.00 mL Spike	150.3 μA

Spike concentration = 100.0 ppb (1.00/11.00) = 9.09 ppb

Slope = (150.3 - 100.1)/9.09 = 5.52 uA/ppm y-int = 100.1 Line is y = 5.52 (x) + 100.1 solve for x-int. 0 = 5.52 (x) + 100.1 x = 18.1 ppm

