Exam 1 * Chem 454 * February 12, 2020

$$\bar{x} = \frac{\sum_{i} x_{i}}{n} \qquad s = \sqrt{\frac{\sum_{i} \left(x_{i} - \bar{x}\right)^{2}}{n-1}} \qquad \mu = \bar{x} \pm \frac{t\sigma}{\sqrt{n}} \qquad G = \frac{|value - \bar{x}|}{s}$$

Values of Grubbs Statistic (G)

			Confidence	e Level (%)		
Number of Observations n	99.9	99.5	99	97.5	95	90
3	1.155	1.155	1.155	1.155	1.153	1.148
4	1.499	1.496	1.492	1.481	1.463	1.425
5	1.780	1.764	1.749	1.715	1.672	1.602
6	2.011	1.973	1.944	1.887	1.822	1.729
7	2.201	2.139	2.097	2.020	1.938	1.828
8	2.358	2.274	2.221	2.126	2.032	1.909
9	2.492	2.387	2.323	2.215	2.110	1.977
10	2.606	2.482	2.410	2.290	2.176	2.036
11	2.705	2.564	2.485	2.355	2.234	2.088
12	2.791	2.636	2.550	2.412	2.285	2.134
13	2.867	2.699	2.607	2.462	2.331	2.175
14	2.935	2.755	2.659	2.507	2.371	2.213
15	2.997	2.806	2.705	2.549	2.409	2.247

$$F = \frac{s_1^2}{s_2^2}$$

$$t_{calculated} = \frac{\left|\bar{x}_{1} - \bar{x}_{2}\right|}{s_{pooled}} \sqrt{\frac{n_{1}n_{2}}{n_{1} + n_{2}}} \qquad S_{pooled} = \sqrt{\frac{s_{1}^{2}(n_{1} - 1) + s_{2}^{2}(n_{2} - 1)}{n_{1} + n_{2} - 2}} \quad d.f. = n_{1} + n_{2} - 2$$

$$t_{calculated} = \frac{\left|\bar{x}_{1} - \bar{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}} \qquad d.f. = \frac{\left[\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right]^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2} + \frac{s_{2}^{2}}{n_{2} - 1}}$$

Table 4-1	Ordinate and	area for the norm	al (Gaussian)	error curve,
-----------	--------------	-------------------	---------------	--------------

$ z ^a$	у	Area ^b	z	у	Area	z	у	Area
0.0	0.398 9	0.000 0	1.4	0.149 7	0.419 2	2.8	0.007 9	0.497 4
0.1	0.397 0	0.039 8	1.5	0.129 5	0.433 2	2.9	0.006 0	0.498 1
0.2	0.391 0	0.079 3	1.6	0.110 9	0.445 2	3.0	0.004 4	0.498 650
0.3	0.381 4	0.1179	1.7	0.094 1	0.455 4	3.1	0.003 3	0.499 032
0.4	0.368 3	0.155 4	1.8	0.079 0	0.464 1	3.2	0.002 4	0.499 313
0.5	0.352 1	0.191 5	1.9	0.065 6	0.471 3	3.3	0.001 7	0.499 517
0.6	0.333 2	0.225 8	2.0	0.054 0	0.477 3	3.4	0.001 2	0.499 663
0.7	0.312 3	0.258 0	2.1	0.044 0	0.482 1	3.5	0.000 9	0.499 767
0.8	0.2897	0.288 1	2.2	0.035 5	0.486 1	3.6	0.000 6	0.499 841
0.9	0.266 1	0.315 9	2.3	0.028 3	0.489 3	3.7	0.000 4	0.499 904
1.0	0.242 0	0.341 3	2.4	0.022 4	0.491 8	3.8	0.000 3	0.499 928
1.1	0.217 9	0.364 3	2.5	0.017 5	0.493 8	3.9	0.000 2	0.499 952
1.2	0.194 2	0.384 9	2.6	0.013 6	0.495 3	4.0	0.000 1	0.499 968
1.3	0.171 4	0.403 2	2.7	0.010 4	0.496 5			

 Table 4-2
 Values of Student's t

Confidence level (%)

Degrees of freedom	50	90	95	98	99	99.5	99.9		
1	1.000	6.314	12.706	31.821	63.657	127.32	636.619		
2	0.816	2.920	4.303	6.965	9.925	14.089	31.598		
3	0.765	2.353	3.182	4.541	5.841	7.453	12.924		
4	0.741	2.132	2.776	3.747	4.604	5.598	8.610		
5	0.727	2.015	2.571	3.365	4.032	4.773	6.869		
6	0.718	1.943	2.447	3.143	3.707	4.317	5.959		
7	0.711	1.895	2.365	2.998	3.500	4.029	5.408		
8	0.706	1.860	2.306	2.896	3.355	3.832	5.041		
9	0.703	1.833	2.262	2.821	3.250	3.690	4.781		
10	0.700	1.812	2.228	2.764	3.169	3.581	4.587		
15	0.691	1.753	2.131	2.602	2.947	3.252	4.073		
20	0.687	1.725	2.086	2.528	2.845	3.153	3.850		
25	0.684	1.708	2.060	2.485	2.787	3.078	3.725		
30	0.683	1.697	2.042	2.457	2.750	3.030	3.646		
40	0.681	1.684	2.021	2.423	2.704	2.971	3.551		
60	0.679	1.671	2.000	2.390	2.660	2.915	3.460		
120	0.677	1.658	1.980	2.358	2.617	2.860	3.373		
œ	0.674	1.645	1.960	2.326	2.576	2.807	3.291		

Table 4-5Critical values of $F = s_1^2/s_2^2$ at 95% confidence levelDegrees ofDegrees of

Degrees of freedom for s₁

Degrees of	Degrees of freedom for s ₁													
freedom for s ₂	2	3	4	5	6	7	8	9	10	12	15	20	30	æ
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.84	8.81	8.79	8.74	8.70	8.66	8.62	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.58	3.51	3.44	3.38	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.84	2.77	2.70	2.54
11	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	3.88	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30
13	3.81	3.41	3.18	3.02	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.38	2.21
14	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.31	2.13
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.25	2.07
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.15	1.96
18	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.04	1.84
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
00	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00

Exam 1 * Chem 454 * February 12, 2020

Name: _____

80 points total, 8 questions at 10 points each.

Estimate the limit of detection for the measurement of an analyte below. Assume the concentration unites are in mM and the best fit line is

y = 0.525x + 0.22

		Low	
		Conc.	
		Signal	Blank
	1	0.55	0.27
	2	0.51	0.35
	3	0.60	0.26
	4	0.49	0.31
	5	0.55	0.24
	6	0.57	0.29
	7	0.52	0.32
s.d.		0.04	0.04
avg		0.54	0.29

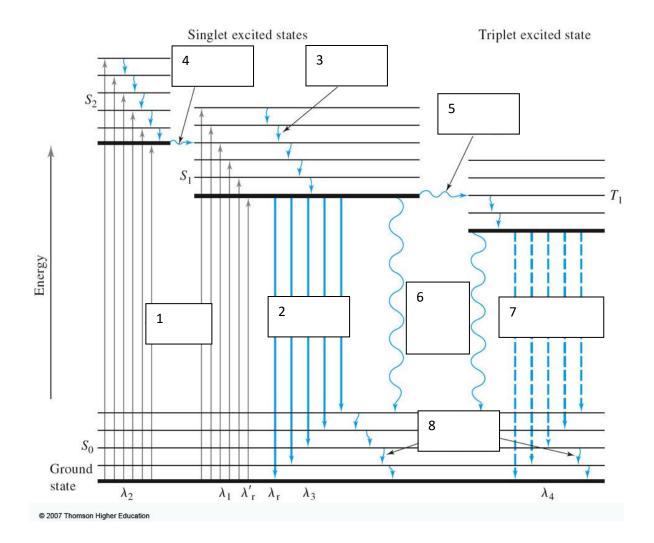
2. Can any of the following values be discarded with 95% confidence?

192 216 202 195 204

Mean = 201.8 S.D. = 9.34

Two sets of data are compared for their scatter. Based on the following are the two standard deviations statistically different from each other?

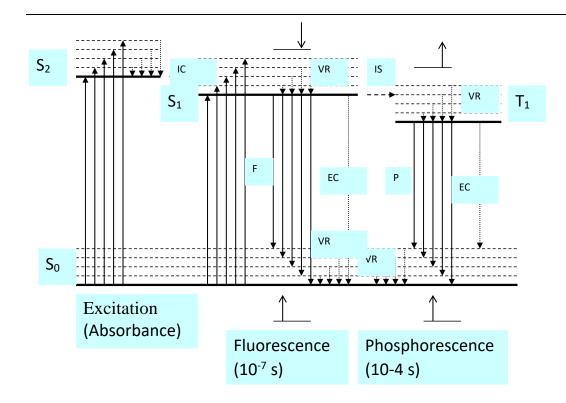
2


 $\sigma_1 = 0.0122$ n = 6 $\sigma_2 = 0.0057$ n = 7

4. Calculate the 95% confidence level for the following data set. ⁴

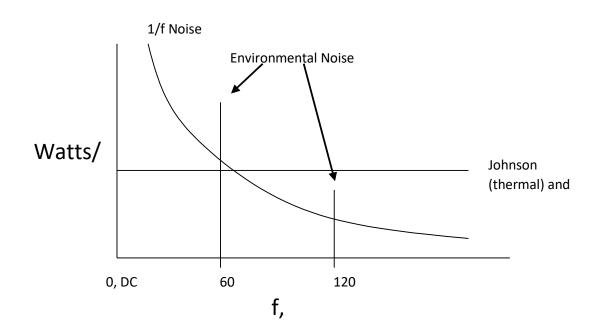
6

117.1 122.7 121.1 119.4 120.9


- 5. Illustrate a block diagram of a single beam spectrophotometer include P and P_0 in that diagram $_{\scriptscriptstyle 5}$
- 6. Fill in the blanks below.

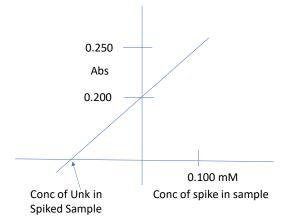
- What are flicker, 60 Hz, and shot noises, how does appear in a power density vs. frequency spectrum.
- A Beer's law measurement was made at 425 nm on a 5.00 mL sample with analyte X. After dilution to 10.00-mL its absorbance A was found to be 0.200. A spike of 1.0 mL of 1.00 mM compound X was made on that sample and after dilution its A was found to be 0.250. What is the concentration of X in the sample?

Answers


¹ LOD = 3s/m = 3(0.04)/0.525 = 0.23 mM
² Use the Grubbs test.
$$G = \frac{|value - \bar{x}|}{s}$$

G-calc = 216 - 201.8/9.34 = 1.52 G-table is 1.672, The value should be retained.
³ F-calc = 0.0122²/0.0057² = 1.49e-4/3.25e-5 = 4.58
Locate F-table with DF = 5 and 6 F-table = 4.39
F-calc > F-table the two s.d. are different from each other.
⁴ First calculate mean: 120.2 the calculate s.d. = 2.1 use $\mu = \bar{x} \pm \frac{t\sigma}{\sqrt{n}}$
 $\mu = 120.2 \pm 2.776^{*2.1}/\sqrt{5} = 120.2 \pm 2.6$
There's a 85% chance that the true mean lies between 122.8 and 117.6
⁵
Light \rightarrow Wavelength $\rightarrow P_0 \rightarrow Sample$ $\rightarrow P \rightarrow$ Detector
Source (Cuvette) $\rightarrow P \rightarrow$ Detector
(Monochromator)
⁶

⁷ Flicker – Is low frequency noise whose origins are not clearly understood.


Shot Noise - Arises from the statistical flucuations across electrical junctions, e.g N-P juction of a transistor. It occurs at all frequencies.

60 Hz – Is a form of environmental noise that comes from AC wiring.

⁸ First calculate conc of spike in diluted sample.

C_s = 1.00 mM (1.00/10.00) = 0.100 mM next plot response against absorbance

Next find slope of line, m = (0.250-0.200) / 0.100 mM = 0.50

Now find x-int, we know that y-int or b = 0.200

Y = mx + b or $0 = 0.50^*x + 0.200$

x = 0.400 mM but this is the conc of the unkn after dilution.

Conc of unkn before dilution = 0.400 (10.00/5.00) = 0.800 mM

Also you could set up proportions.

 $A_1 = ebc = 0.200$ where c = unkn conc

 $A_2 = ebc + eb*0.1 \text{ mM} = 0.250$

0.200/0.250 = c / c + 0.1

c = 0.4 mM and Conc of unkn before dilution = 0.400 (10.00/5.00) = 0.800 mM