Synthesis and Electrochemical Properties of GUITAR: A Breakthrough Material for Energy Storage. IAS Meeting, Moscow ID March 21, 2014

I. Francis (Frank) Cheng, Isaiah Gyan, Haoyu Zhu

Department of Chemistry University of Idaho Moscow, ID 83844-2343 <u>ifcheng@uidaho.edu</u> 208-885-6387

University of Idaho

Outline

Discovery

- Thermolyzed Asphalt Reaction (TAR)

- Graphene from UI-TAR (GUITAR)
- Comparison of GUITAR with Literature

University of Idaho

- What is it?
- Not Graphene nor Ordinary Graphite
- Electrochemical Characteristics
 - Energy storage applications

University of Idaho <u>Thermolyzed</u> <u>Asphalt</u> <u>Reaction</u>

Figure 2.0.1 (Left) Pyrolysis of roofing tar, (Middle) schematic of the process, (Right) finished product.

College of Science

3/21/14

Figure 2.0.2 GUITAR graphene, \mathbf{A} – a photograph of a flake approximately 25 mm in diameter. \mathbf{B} – an optical micrograph (400x) in water. \mathbf{C} – graphene layers (400x). \mathbf{D} – 9.45K x SEM of microtomed layers on Si. \mathbf{E} – 23.08K x SEM showing layered characteristics. \mathbf{F} – A TEM showing layered characteristics on the nanometer scale.

College of Science 3/21/14

UITAR-University of Idaho Thermolyzed Asphalt Reaction

University of Idaho

- Successful Reagents
 - Shale Oil
 - Crude Oil
 - Roofing Tar (Ace Hardware)
 - Taco Chips
 - Some Candy Bars

Failed

- Motor Oil, 5W-20
- Paraffin
- Pyrene

Mechanism of Formation

• First Hunch - Sulfur is Involved

cyclohexanol cyclohexanol only and Sulfur

Thermogravimetric analysis

Raman indicates an intermediate at 1450 cm⁻¹

➢ Minimum temperature 600⁰C

>O₂ not affect graphene

formation

College of Science

3/21/14 Y. Xie, I.F. Cheng, et al. Submitted

> Graphene forms under N₂

≻1450 cm⁻¹ intermediate at 400°C

Summary of Formation

TGA and Raman Evidence

- Intermediates formed with S between 120 450 $^{\circ}C$
- Graphene/Graphite formation at 600 °C

Reagents

- Organic BP MP 100-250 °C
- Elemental Sulfur, Organic Sulfur

Conformal Coatings

- Unique to TAR
- Deposition onto silica nanostructures

University of Idaho

CARBON 49 (2011) 2852-2861

Synthesis of graphene paper from pyrolyzed asphalt

I. Francis Cheng ^{a,*}, Yuqun Xie ^a, R. Allen Gonzales ^a, Przemysław R. Brejna ^a, Jency Pricilla Sundararajan ^b, B.A. Fouetio Kengne ^b, D. Eric Aston ^c, David N. McIlroy ^b, Jeremy D. Foutch ^a, Peter R. Griffiths ^a

^a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA

^b Department of Physics, University of Idaho, Moscow, ID 83844-0903, USA

^c Department of Chemical & Materials Engineering, University of Idaho, Moscow, ID 83844-1021, USA

Journal of Materials Chemistry

Cite this: J. Mater. Chem., 2012, 22, 5723

www.rsc.org/materials

PAPER

view Online / Journal Homepage / Laure of Contents for this issue

Dynamic Article Links 🔼

Sulfur as an important co-factor in the formation of multilayer graphene in the thermolyzed asphalt reaction

Yuqun Xie,^{*a*} Simon D. McAllister,^{*a*} Seth A. Hyde,^{*a*} Jency Pricilla Sundararajan,^{*b*} B. A. FouetioKengne,^{*b*} David N. McIlroy^{*b*} and I. Francis Cheng^{**a*}

Received 17th November 2011, Accepted 12th January 2012 DOI: 10.1039/c2jm15934a

College of Science 3/21/14

What is that Material?

- Graphene (l) vs. GUITAR (r)
 - Graphene is a monolayer
 - GUITAR is multilayer

Graphene Paper and Highly Oriented Pyrolytic Graphite

- Is it multilayer-graphene?
 - Graphene Paper (GP) Left
 - Highly Oriented Pyrolytic Graphite (HOPG)? Right

http://users.monash.edu.au/~lidan/

http://www.hggraphene.com/NaturalGraphiteRates.ph

College of Science 3/21/14

GUITAR

Graphene Paper (GP)

Geim, Science, 2009, 324, 1530-4

College of Science 3/21/14

GUITAR

University of Idaho

14

Morphological Differences GP - GUITAR

UI Material is Nearly Atomically Flat

HOPG and UI Carbon

GUITAR

HOPG

http://www.theodoregray.com/periodictable/El ements/006/index.s14.html#sample31

College of Science 3/21/14

University of Idaho

17

Physical Characterization

Material	XPS	Raman (cm ⁻¹)	
GUITAR	Nearly Pure sp ² Carbon	G-band 1593 D-band 1350	Defective graphene structure
HOPG	Same	G-band only	Nearly Defect Free
Graphene Papers	Same	G-band (obs) D-band (obs)	Defective graphene structure

IR - 861 and 1576 cm⁻¹ peaks intralayer graphene stretches No other surface functionalities

UI Carbon

SEM and AFM

- Flat, layered morphology Resembles Highly Ordered Pyrolytic Graphite (HOPG)
- Does Not Appear to be literature GP or r-GO paper

Raman Studies

 Grain Size 5.3 nm (Raman) with GP/r-GO parameters 3-6 nm

University of Idaho

19

Closer to GP than HOPG

Neither HOPG or GP -- just graphite?

UI Carbon - Structure

GUITAR Electrochemistry

- Electrochemical Characterization
 - Indicates that GUITAR is a unique graphitic material.

University of Idaho

- Graphene and HOPG are terrible electrodes
- GUITAR is an excellent electrode
- Excellent corrosion stability
- High H₂ overpotential
- Proposed Applications

RSC Advances

Cite this: RSC Advances, 2011, 1, 978-988

www.rsc.org/advances

Dynamic Article Links 🜔

University of Idaho

22

PAPER

Electrochemistry of graphene: not such a beneficial electrode material?†

Dale A. C. Brownson, Lindsey J. Munro, Dimitrios K. Kampouris and Craig E. Banks*

Received 30th June 2011, Accepted 22nd July 2011 DOI: 10.1039/c1ra00393c

GUITAR electrode fabrication

Deposit GUITAR onto silicon wafer

Transfer the GUITAR flakes onto mica by vacuum

grease or 3M double sided conductive tape

University of Idaho

23

Cyclic Voltammetry Indicates that GUITAR has excellent e- transfer rates with dissolved redox couples.

1 cm², 0.1 M KCl(aq) at 0.1 V/s.

		k^0	
Ox +	e^-	\rightarrow	Red

	$Fe(CN)_{6}^{3-/4-}$	$Ru(NH_3)_6^{3+/2+}$
	k ⁰ (cm/s)	k ⁰ (cm/s)
GUITAR	1 x 10 ⁻²	2 x 10 ⁻²
Graphene (Basal Plane)	3 x 10 ⁻¹⁰	5 x 10 ⁻³
HOPG (Basal Plane)	10-6	10-3
HOPG (edge plane)	10-1	
Glassy Carbon	1 x 10 ⁻²	2 x 10 ⁻²

e- Transfer at Graphitic Electrodes Edge vs. Basal Planes

- Electron transfer rates on HOPG/Graphenes
 - Edge >> Basal Plane
- GUITAR electrodes have only Basal Planes exposed
- GUITAR Basal Planes has fast etransfer

College of Science

Jan. 13, 2014

More like disordered systems

Electron Transfer Rate Trends

• Fastest Left \rightarrow Right

GUITAR ≈ Glassy Carbon ≈ Graphite (edges)

- > Boron Doped Diamond ≈ DLC
- > HOPG (basal Plane) ≈ Graphene (basal plane)

University of Idaho

27

GUITAR Electrodes

- Higher DOS along Structural Defects?
- Structural Defects
 - Sites for fast e- transfer?
 - Nano-crystals 5 nm

29

e-

e-

More Evidence that GUITAR is not a just another graphite - Anodic Limits

- Potential "Window"
- Anodic Limits
 - Water breakdown
 - $-2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
 - Corrosion
 - $-C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^- E^-$
- E⁰ = 1.23 volts

 $E^0 = 0.00$ volts

 $E^0 = 0.207 V$

- Cathodic Limit

 Water breakdown
 - $4H^+ + 4e^- \rightarrow 2H_2$

College of Science

Jan. 13, 2014

Cyclic voltammograms of a GUITAR electrode 1M H_2SO_4 v = 50 mV/s, under Ar.

The anodic limit at 200 μ A/cm² is 2.1 volts.

College of Science

3/21/14

Figure 2.6.2 Cyclic voltammograms of a 1 cm² GUITAR electrode in various electrolytes at 50 mV/s. All the solutions were purged with Ar.

University of Idaho

33

GUITAR has a much larger potential window than literature Graphite and HOPG

Material	Anodic Limit (V)	Cathodic Limit (V)	Total window (V)	reference
GUITAR	2.10 ± 0.03 (15)	-0.90 ± 0.08 (n = 15)	3.00	
Pyrolytic Graphite	1.88 ± 0.03 (12)	-0.44 ± 0.08 (12)	2.32	This work
Graphite Foil	1.45 ± 0.01 (10)	-0.51 ± 0.05 (10)	1.96	
HOPG	1.67	-0.41	2.08	Literature
HOPG	1.60	-0.40	2.00	Literature
Exfoliated Graphite	1.71	-0.50	2.21	Literature

Potentials are referenced to the standard hydrogen electrode (SHE).

College of Science

Anodic limits comparison of the GUITAR anode to boron doped diamond and HOPG in various electrolytes.

Electrode	Electrolyte	Anodic Limits vs. SHE (V)	AnodicCurrentLimitsdensitySHE (V)(µA/cm²)	
GUITAR		2.1	200	This
	1 M H ₂ SO ₄			work
BDD		1.9 - 2.5	200	1,2,3
HOPG		1.7	200*	4
N-Doped	0.5 M	2.6 V	200	7
Diamond- Like Carbon	H_2SO_4			36

**Current density estimated from an average of* 0.1 cm^2 .

Reference 4 reports electrodes varied from 0.05 to 0.2 cm² College of Science

3/21/14

Anodic Limits of GUITAR and other Dimensionally Stable Anodes.

	Anodic Limit	Conditions	Reference
Material	(V) vs. SHE		
GUITAR	2.1	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	This work
Graphite	1.7	$0.5 \text{ M H}_2 \text{SO}_4$	1,2,3
Ruthenium Oxide	1.47	0.5 M H ₂ SO ₄	4,5,6
Iridium Oxide	1.52	$0.5 \text{ M H}_2 \text{SO}_4$	
Platinum	1.6	$0.5 \text{ M H}_2 \text{SO}_4$	7,8,9
Tin Dioxide	1.9	$0.05 \text{ M H}_2\text{SO}_4$	10,11,12
Lead Dioxide	1.9	$1 \text{ M H}_2 \text{SO}_4$	13,14,15

College of Science

University of Idaho

37

3/21/14

Anodic Stability Trends

BDD ≈ DLC > GUITAR > HOPG = Graphite = Glassy Carbon ≈ Metal Oxides > Pt > Metals

University of Idaho

38

GUITAR vs. HOPG Anodic Limits

• HOPG limit = +1.7 V

Murray et al, Anal. Chem. 1995, 67, 2201
Can't do methylene blue degradation @ 2.0 V

- GUITAR limit = 2.1 V
- Anodic Limit

 GUITAR > HOPG
 Cheng et al, RSC Advances 2013, 3, 2379
- Why?

College of Science 3/21/14

Defects HOPG vs. GUITAR

- Highly Ordered Pyrolytic Graphite (HOPG)
 - Grain Defects with Holes, Crevasses
 - Nearly Flawless Structure
 - Raman G-Band only
- GUITAR
 - Structural Defects with No Holes
 - Raman D/G band
 - No Electrolyte Intercalation Cyclic Voltammetry

University of Idaho

Δ1

Cyclic voltammograms of a 1 cm² GUITAR electrode in various electrolytes at 50 mV/s. All the solutions were purged with Ar.

College of Science 3/21/14

Current Model

GUITAR Has the Highest Measured H₂ Overpotential of Graphitic Materials

University of Idaho

46

- Aqueous Media $- 2H^+ + 2e^- \rightarrow H_2$ $E^0 = 0.00 V$
- Overpotentials
 - Metal electrodes 0.1 to 0.5 V
 - Carbon electrodes 0.2 to 0.6 V
 - GUITAR 1 V

Figure 3. Cyclic voltammograms at GUITAR at 50mV/s in the indicated electrolytes (1M). Starting potential was zero and scan direction was towards more negative potentials. Counter and reference electrodes were graphite rod and Ag/AgCl respectively. Potentials for hydrogen evolution were extrapolated at 200µA/cm² from these voltammograms.

College of Science

GUITAR electrodes have a

- 3 V potential window in 1 M H₂SO₄ and
- Excellent electron transfer kinetics

1 M H ₂ SO ₄	GUITAR potential Limits (V)		(n = 15)	
	Anodic ± σ	Cathodic $\pm \sigma$	ΔEp 1mM Fe(CN) ₆ ^{4-/3-} , 1 M KCl	
	2.10 V ± 0.03	-0.90 V ± 0.11	73 mV ± 5	

University of Idaho

48

College of Science

3/21/14

GUITAR electrodes have the largest reported aqueous potential windows

material	condition	cathodic	anodic	Total window	Ref.
GUITAR		-0.9	2.1	3.0 V	This
Platinum	$1101 H_2 SO_4$, ± 0.2MA/Cm ⁻ , SHE	-0.1	1.4	1.5	WORK
HOPG		-0.4	1.7	2.1	
GC	$0.1M H_2SO_4$, ± 0.2mA/cm ² , SHE	-0.5	1.5	2.0	1
BDD		-0.5	2.1	2.5	
DLC		-0.9	2.0	3.0	

- HOPG and graphene are not good electrodes
- Fe(CN)₆^{4-/3-} ΔEp > 500 mV

Ultracapacitors & Energy Storage

University of Idaho

50

- $E = \frac{1}{2} CV^2$
- Energy Storage
 - Increased Capacitance
 - Increase Cell Voltage, V
 - Aqueous Systems Preferred
 - H₂SO₄(aq)

Capacitance Studies

- GUITAR has much higher capacitance than other materials DOS ?
- Capacitors Applications Require Zero Faradaic current - Narrower potential window than 200 μ A/cm² limits
- Cyclic voltammetric measurements

$$C = \frac{i}{dV/dt}$$

University of Idaho

51

Capacitance of Glassy Carbon electrode in 1M H_2SO_4 , dV/dt = 50mV/s

Capacitance of pyrolytic graphite electrode in $1M H_2SO_4$, dV/dt = 50mV/s

Material	Cathodic Limit (Volts)	Anodic Limit (Volts)	Capacitive Window (Volts)	Capacitance (μF/cm ²) @ 0.1 V
GUITAR	-0.8	1.2	2	640
Glassy Carbon (Bioanalytical Systems)	-0.6	0.7	1.3	50
Pyrolytic Graphite	-0.1	0.65	0.75	7

- GUITAR has more capacitance per unit than other carbon electrodes
- GUITAR has a wider capacitive window than other carbon electrodes

University of Idaho

College of Science

GUITAR vs. Activated Carbon (AC)

University of Idaho

56

- AC -- the predominate material in UC's. Low Cost & High Surface Area
- Potential Window, & Capacitance,
 - $C = 10 \,\mu F/cm^2$
 - V = 0.8 V
- Expected Performance:
- AC) Energy = $\frac{1}{2}$ CV² = 3 μ J/cm²
- GUITAR) Energy = $1300 \,\mu J/cm^2$

GUITAR vs. Activated Carbon (AC)

- AC surface area $\simeq 1000 \text{ m}^2/\text{g}$ - Specific Energy = 30 J/g
- GUITAR produces conformal coatings
 - On McIlroy Nanosprings, surface area = $200 \text{ m}^2/\text{g}$

University of Idaho

57

- Specific Energy = 2600 J/g
- Excluding nanospring mass

A - Bare silica McIlroy nanosprings. B - D Silica nanosprings coated with G-UI-TAR.

College of Science 3/21/14

University of Idaho

58

High Surface Area GUITAR Electrodes

– Water Purification

- Wide potential and excellent electrode
- Hydrophobic surface adsorption
- Ultra-capacitors
 - Aqueous Ucaps limited to 1.5 volts
 - GUITAR Ucaps > 2.0 V
 - Higher capacitance based on DOS?
- V Redox Flow Batteries
 - Requires high H₂ overpotential and, e- transfer kinetics

- Enhancing Lead-Acid Battery

 Requires corrosion resistance, high O₂ and H₂ overpotential, conformal coatings on microporous materials, and electrochemical conductivity.

University of Idaho

59

- CNT Replacement in Fuel Cells

GUITAR on nanosprings

Summary - GUITAR

- A new material
 - Not HOPG, Graphene Paper
 - Sulfur a key component to formation
 - Low T (800 °C), economical
 - Atomically Smooth with nano-size grains
- Fast Electron Transfer
 - High DOS?
- Large Aqueous Potential Window
 - 3 Volts in 1 M $\rm H_2SO_4$ exceeds almost all other electrode materials.

University of Idaho

60

• Ability to create conformal coatings

Future

- 1450 cm⁻¹ intermediate
- Electrical and Thermal Conductivities
- Hypotheses for
 - Anodic Limit
 - Cathodic limit (hydrophobicity)
- Pursue Applications

College of Science 3/21/14

Conformal coatings on high surface area substrates. Nanosprings Halloysite nanotubes Diatomites Porous hollow glass microspheres

University of Idaho

62

<u>Acknowledgements</u> Yuqun Xie Isaiah Gyan Haoyu Zhu Dr. Nolan Nicholas Jeremy Foutch **Prof. David Mcllroy UI-Physics** Prof. Peter Griffiths UI-Chemistry Prof. Eric Aston UI-Chem. E.

University of Idaho

63

