High Energy Density Ultracapacitors Based on GUITAR-Nanospring Composites

I. Francis Cheng, Isaiah Gyan, Haoyu Zhu, David N. McIlroy, Herbert Hess*

Departments of Chemistry, Physics and Electrical Engineering University of Idaho

*Presenter

GUITAR

- <u>Graphene from the University of Idaho Thermolyzed</u> <u>Asphalt Reaction</u>
- Excellent Electrochemical Characteristics
 - 10¹ to 10⁸ faster than graphene for heterogeneous electron transfer
 - Wide aqueous potential window, 2 3 volts vs. 1 volt for Activated Carbon
 - High capacitance, 1000 vs. 10 μ F/cm² for Activated Carbon

GUITAR is not Graphite or Graphene

- GUITAR Electrodes
- 1. Fast Heterogeneous Electron Transfer.
- 2. High Corrosion Stability
- 3. High Hydrogen Overpotential
- 4. Resistant to O₂ oxidation
- 5. High Capacitance, up to 1000 μ F/cm²

- Graphite and Graphene
- 1. Slower Heterogeneous Electron Transfer, up to 10⁻¹⁰
- 2. Corrosion, 0.5 volts lower
- 3. H₂ over potential 0.5 lower
- 4. Much more susceptible
- 5. Capacitance 10 μ F/cm²

GUITAR Morphology and Characterization

- Metallic Appearance
- Optical Microscopy, SEM, AFM and TEM
 - Indicate Flat and Layered resembles an ordered graphitic system
- Raman Spectroscopy
 - Indicates Nano-crystalline grains of 5 nm
 - Disordered System
- IR Spectroscopy
 - 861 and 1576 cm⁻¹ peaks intralayer graphene stretches
 - No other surface functionalities
- sp² hybridized carbon
 - X-ray Photoelectron Spectroscopy

Figure. GUITAR graphene, A - a photograph of a flake approximately 25 mm in diameter. B - an optical micrograph (400x) in water. C - graphene layers (400x). D - 9.45K x SEM of microtomed layers on Si. E - 23.08K x SEM showing layered characteristics. F - A TEM showing layered scale.

Synthesis of GUITAR

- Controlled combustion at 900 °C
 - Organics MP BP between 100 to 250 °C
 - Elemental or Organic Sulfur

• Successful Reagents (contains S)

- -Shale Oil
- -Crude Oil
- Roofing Tar (Ace Hardware)
- Taco Chips
- -Some Candy Bars

•Failed (S free)

—Motor Oil, 5W-20 —Paraffin —Pyrene

Mechanism of Formation

• Hunch - Sulfur is Involved

cyclohexanol and Sulfur

cyclohexanol cyclohexanol only

Hypothesized TAR Mechanism

Cheng et al, *J. Mater. Chem*. 2012, **22**, 5723

Based on
Cyclohexanol + Sulfur

What is GUITAR?

- Not Graphene or Highly Oriented Pyrolytic Graphite (HOPG)
 GUITAR is too disordered
- Not "Graphene Paper"
 - GP has Wavy and Mottled Surface
 - GUITAR appears flat (SEM)
- Is GUITAR just graphite?
 - Electrochemical Characteristics indicate GUITAR is not just graphite

University of Idaho

9

Electrochemical Investigations

- Graphene and HOPG are not good electrodes
 - Both have a barrier to electron transfer
 - Subject to effects of air oxidation
 - Costs
- GUITAR is an excellent electrode
 - Fast heterogeneous electron transfer rates
 - Wide electrochemical aqueous window 2 3 volts
 - Inexpensive

GUITAR electrode fabrication

- Vapor deposit GUITAR onto silicon wafer @ 900 °C
- Transfer the GUITAR flakes onto mica by vacuum grease or 3M double sided conductive tape

Cyclic Voltammetry Indicates that GUITAR has excellent e- transfer rates with dissolved redox couples. 1 cm², 0.1 M KCl(aq) at 50 mV/s. $Fe^{II}(CN)_6^{4-} \leftarrow Fe^{III}(CN)_6^{3-} + e^{-1}$ $\operatorname{Ru}^{II}(\operatorname{NH}_3)_6^{2+} \leftarrow \operatorname{Ru}^{III}(\operatorname{NH}_3)_6^{3+} + e^{-1}$ 450 280 µA/cm² $\Delta E_{n} = 73 \pm 5 \text{ mV}$ $\Delta E_{\rm p} = 69 \pm 1 \,\mathrm{mV}$ 50 40 n = 3 n = 3 -200 -350 0.2 0.4 0 -0.45 -0.25 -0.05 $Fe^{III}(CN)_6^{3-} + e^{-} \rightarrow Fe^{II}(CN)_6^{4-}$ $Ru^{III}(NH_3)_6^{3+} + e^- \rightarrow Ru^{II}(NH_3)_6^{2+}$ E (V) vs Ag/AgCl Ferricyanide **Ruthenium Hexamine** University of Idaho 12

Graphene and HOPG are poor electrodes

• Calculated Standard Rate Constant (k⁰) for GUITAR Ox + ne- \rightleftharpoons Red k⁰ (cm/s)

	Fe(CN) ₆ ^{3-/4-}	Ru(NH ₃) ₆ ^{3+/2+}		
GUITAR	1.2 × 10 ⁻²	1.7 × 10 ⁻²	This Work	
HOPG	10 ⁻⁹ to 10 ⁻⁶	10 ⁻⁵ to 10 ⁻³	Literature	
Graphene	10 ⁻¹⁰ to 10 ⁻⁹	2.5×10 ⁻³ to 5×10 ⁻³		
University of Idaho				
			13	

Why is GUITAR a superior electrode?

- Density of Electronic States (DOS)
- Low DOS near Fermi Level for crystalline graphites
 - HOPG
 - Graphene
- Next Slide

From McCreery Table 5		Free e- density (cm ⁻³)	DOS at Fermi Level states/atom/eV	
	Au	6 × 10 ²²	0.28	
	HOPG	5×10^{18}	2.2 x 10 ⁻³	
			University	<i>f</i> Idaho

GUITAR Electrodes

- Higher DOS along Structural Defects?
- Structural Defects
 - Sites for fast e- transfer?
 - Nano-crystals 5 nm

e-

Aqueous Potential Window

- Positive (anodic) Limit
 - Corrosion, for carbon electrodes:
 - $C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^ E^0 = 0.207 V$
 - Water: $2H_2O \rightarrow O_2 + 4H^+ + 4e^ E^0 = 1.23$ volts
- Negative (cathodic) Limit: – Water: $4H^+ + 4e^- \rightarrow 2H_2$ $E^0 = 0.00$ volts

Potential Windows in 1 M H₂SO₄

GUITAR Window 3 Volts

Summary of Potential Windows in 1

Material	Cathodic limits (V)	Anodic limits (V)	Total Windows (V)	Current Limits (µA/cm²)	Reference
GUITAR	-0.9	2.1	3.0	200	This work
Graphites ⁺	-0.4 – -0.5	1.4 – 1.9	1.9 – 2.3	200	This work & Literature
Synthetic Diamonds [‡]	-0.4 – -1.25	1.7 – 2.4	2.3 – 3.5	200 – 300	Literature

+ Graphite includes; HOPG, pyrolytic graphite, glassy carbon and exfoliated graphite

+ Synthetic Diamonds include; boron doped diamond, low and high sp² diamond and diamond-like-carbor

GUITAR Aqueous Potential Window

University of Idaho

21

- 3 V in other Electrolytes, e.g. H₃PO₄, KNO₃, HClO₄, Na₂SO₄
- 3 V is Competitive with Synthetic Diamond Electrodes
- Surpasses the 2 V Windows of other Graphitic Materials
 - Glassy Carbon
 - Graphite
 - HOPG
 - Graphene

Why Does GUITAR Have a Large Potential Window? • Cathodic Limits - Hypotheses are being developed

- Anodic Limits GUITAR Does Not Have the Electrolyte Intercalation characteristics of other graphites.
- Described by Murray et al, Analytical Chemistry, 1993, 65, 1378 & 1995, 67, 2201

Blister formation on graphitic anodes

- Forward voltammetric scan
 - 2 gas evolution reactions:
 - $2H_2O \rightarrow O_2(g) + 4H^+ + 4e^-$
 - $C + 2H_2O = CO_2 + 4H^+ + 4e^-$
 - Electrolyte intercalation:
 - $[C_x] + [HSO_4^-] + y H_2O = [C_x^+ HSO_4^-]y(H_2O) + e^-$
- Reverse scan
 - Electrolyte de-intercalation
 - $[C_x^+ HSO_4^-]y(H_2O) + e^- = [C_x] + [HSO_4^-] + y H_2O$

Murray et al, Analytical Chemistry, 1995, 67, 2201-2206

 $CO_{2}(g) + O_{2}(g)$

Jan. 13, 2014

Gas Evolution, Blister and Pit Formation

University of Idaho

Current Model

Ultracapacitors & Energy Storage

- $E = \frac{1}{2} CV^2$
- Energy Storage
 - Increased Capacitance
 - Increase Cell Voltage, V
 - Potential window
 - Aqueous Systems Preferred
 - $H_2SO_4(aq)$
- Requires Zero Faradaic Current
 - Charging or Capacitive only

Capacitance Studies

- GUITAR has much higher capacitance than other materials DOS ?
- Capacitors Applications Require Zero Faradaic current

- Narrower potential window than 200 μ A/cm² limits

Cyclic voltammetric measurements

$$C = \frac{l}{dV/dt}$$

University of Idaho

29

Material	Cathodic Limit (Volts)	Anodic Limit (Volts)	Capacitive Window (Volts)	Capacitance (μF/cm ²) @ 0.1 V
GUITAR	-0.8	1.2	2	640
Glassy Carbon (Bioanalytical Systems)	-0.6	0.7	1.3	50
Pyrolytic Graphite	-0.1	0.65	0.75	7
Activated Carbon (literature)			0.8 V	10

- GUITAR has more capacitance per unit than other carbon electrodes
- GUITAR has a wider capacitive window than other carbon electrodes.

GUITAR vs. Activated Carbon (AC)

- AC -- the predominate material in UC's. Low Cost & High Surface Area
- Potential Window, & Capacitance,
 - $C = 10 \,\mu F/cm^2$
 - V = 0.8 V
- Expected Performance:
- AC) Energy = $\frac{1}{2}$ CV² = 3 μ J/cm²
- GUITAR) Energy = $1300 \,\mu J/cm^2$

3/21/14

GUITAR vs. Activated Carbon (AC)

- AC surface area \cong 1000 m²/g
 - Specific Energy = 30 J/g
- GUITAR produces conformal coatings
 - On McIlroy Nanosprings, surface area = $200 \text{ m}^2/\text{g}$
 - Specific Energy = 2600 J/g
 - Excluding nanospring mass

A - Bare silica McIlroy nanosprings. B - D Silica nanosprings coated with G-UI-TAR.

3/21/14

FA

Proposed Applications for High Surface Area GUITAR Electrodes

- Ultra-capacitors
 - Aqueous Ucaps limited to 1.5 volts
 - GUITAR Ucaps > 2.0 V
 - Higher capacitance based on DOS?
- Water Purification
 - Wide potential and excellent electrode
 - Hydrophobic surface adsorption
- V Redox Flow Batteries
 - Requires high H₂ overpotential and, e- transfer kinetics
- Enhancing Lead-Acid Battery
 - Requires corrosion resistance, high O₂ and H₂ overpotential, conformal coatings on microporous materials, and electrochemical conductivity.
- CNT Replacement in Fuel Cells
 - GUITAR on nanosprings

3/21/14

END OF PRESENTATION

University of Idaho

36

SCRATCH SLIDES

Edge plane of GUITAR sealed with paraffin wax Basal Plane (BP)

GUITAR

As-grown GUITAR revealing 'basal' and 'edge' planes 39

University of Idaho

43