High Energy Density Ultracapacitors Based on GUITAR-Nanospring Composites

I. Francis Cheng, Isaiah Gyan, Haoyu Zhu, David N. McIlroy, Herbert Hess*

Departments of Chemistry, Physics and Electrical Engineering
University of Idaho

*Presenter
GUITAR

• Graphene from the University of Idaho Thermolyzed Asphalt Reaction

• Excellent Electrochemical Characteristics
 – 10^1 to 10^8 faster than graphene for heterogeneous electron transfer
 – Wide aqueous potential window, 2 - 3 volts vs. 1 volt for Activated Carbon
 – High capacitance, 1000 vs. 10 μF/cm² for Activated Carbon
GUITAR is not Graphite or Graphene

- **GUITAR Electrodes**
 1. Fast Heterogeneous Electron Transfer.
 2. High Corrosion Stability
 3. High Hydrogen Overpotential
 4. Resistant to O_2 oxidation
 5. High Capacitance, up to 1000 μF/cm2

- **Graphite and Graphene**
 1. Slower Heterogeneous Electron Transfer, up to 10^{-10}
 2. Corrosion, 0.5 volts lower
 3. H_2 over potential 0.5 lower
 4. Much more susceptible
 5. Capacitance 10 μF/cm2
GUITAR Morphology and Characterization

• Metallic Appearance
 – Optical Microscopy, SEM, AFM and TEM
 – Indicate Flat and Layered - resembles an ordered graphitic system

• Raman Spectroscopy
 – Indicates Nano-crystalline grains of 5 nm
 – Disordered System

• IR Spectroscopy
 – 861 and 1576 cm\(^{-1}\) peaks intralayer graphene stretches
 – No other surface functionalities

• \(sp^2\) hybridized carbon
 – X-ray Photoelectron Spectroscopy
Figure. GUITAR graphene, A – a photograph of a flake approximately 25 mm in diameter. B – an optical micrograph (400x) in water. C – graphene layers (400x). D – 9.45K x SEM of microtomed layers on Si. E – 23.08K x SEM showing layered characteristics. F – A TEM showing layered characteristics on the nanometer scale.
Synthesis of GUITAR

• **Controlled combustion at 900 °C**
 – Organics MP - BP between 100 to 250 °C
 – Elemental or Organic Sulfur

• **Successful Reagents (contains S)**
 – Shale Oil
 – Crude Oil
 – Roofing Tar (Ace Hardware)
 – Taco Chips
 – Some Candy Bars

• **Failed (S free)**
 – Motor Oil, 5W-20
 – Paraffin
 – Pyrene
Mechanism of Formation

• Hunch - Sulfur is Involved

cyclohexanol and Sulfur
cyclohexanol only
Hypothesized TAR Mechanism

- Based on Cyclohexanol + Sulfur
What is GUITAR?

• Not Graphene or Highly Oriented Pyrolytic Graphite (HOPG)
 – GUITAR is too disordered

• Not “Graphene Paper”
 – GP has Wavy and Mottled Surface
 – GUITAR appears flat (SEM)

• Is GUITAR just graphite?
 – Electrochemical Characteristics indicate GUITAR is not just graphite
Electrochemical Investigations

• Graphene and HOPG are not good electrodes
 – Both have a barrier to electron transfer
 – Subject to effects of air oxidation
 – Costs

• GUITAR is an excellent electrode
 – Fast heterogeneous electron transfer rates
 – Wide electrochemical aqueous window 2 - 3 volts
 – Inexpensive
GUITAR electrode fabrication

- Vapor deposit GUITAR onto silicon wafer @ 900 °C
- Transfer the GUITAR flakes onto mica by vacuum grease or 3M double sided conductive tape

Basal Plane (BP) GUITAR

Edge plane of GUITAR sealed with paraffin wax

As-grown GUITAR revealing ‘basal’ and ‘edge’ planes
Cyclic Voltammetry Indicates that GUITAR has excellent e-transfer rates with dissolved redox couples.

$\Delta E_p = 73 \pm 5 \text{ mV}$

$n = 3$

$\Delta E_p = 69 \pm 1 \text{ mV}$

$n = 3$

1 cm2, 0.1 M KCl(aq) at 50 mV/s.

$\text{Fe}^{\text{II}}(\text{CN})_6^{4-} \rightleftharpoons \text{Fe}^{\text{III}}(\text{CN})_6^{3-} + \text{e}^-$

$\text{Fe}^{\text{III}}(\text{CN})_6^{3-} + \text{e}^- \rightarrow \text{Fe}^{\text{II}}(\text{CN})_6^{4-}$

$\text{Ru}^{\text{II}}(\text{NH}_3)_6^{2+} \rightleftharpoons \text{Ru}^{\text{III}}(\text{NH}_3)_6^{3+} + \text{e}^-$

$\text{Ru}^{\text{III}}(\text{NH}_3)_6^{3+} + \text{e}^- \rightarrow \text{Ru}^{\text{II}}(\text{NH}_3)_6^{2+}$
Graphene and HOPG are poor electrodes

- Calculated Standard Rate Constant (k^0) for GUITAR Ox + ne- \rightleftharpoons Red k^0 (cm/s)

<table>
<thead>
<tr>
<th></th>
<th>Fe(CN)$_6^{3-/4-}$</th>
<th>Ru(NH$_3$)$_6^{3+/2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUITAR</td>
<td>1.2×10^{-2}</td>
<td>1.7×10^{-2}</td>
</tr>
<tr>
<td>HOPG</td>
<td>10^{-9} to 10^{-6}</td>
<td>10^{-5} to 10^{-3}</td>
</tr>
<tr>
<td>Graphene</td>
<td>10^{-10} to 10^{-9}</td>
<td>2.5×10^{-3} to 5×10^{-3}</td>
</tr>
</tbody>
</table>
Why is GUITAR a superior electrode?

• Density of Electronic States (DOS)

• Low DOS near Fermi Level for crystalline graphites
 – HOPG
 – Graphene

• Next Slide

From McCreery Table 5

<table>
<thead>
<tr>
<th></th>
<th>Free e- density (cm$^{-3}$)</th>
<th>DOS at Fermi Level states/atom/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>6×10^{22}</td>
<td>0.28</td>
</tr>
<tr>
<td>HOPG</td>
<td>5×10^{18}</td>
<td>2.2×10^{-3}</td>
</tr>
</tbody>
</table>
GUITAR Electrodes

• Higher DOS along Structural Defects?
• Structural Defects
 – Sites for fast e- transfer?
 – Nano-crystals 5 nm
Aqueous Potential Window

• Positive (anodic) Limit
 – Corrosion, for carbon electrodes:
 \[C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^- \quad E^0 = 0.207 \text{ V} \]
 – Water: \[2H_2O \rightarrow O_2 + 4H^+ + 4e^- \quad E^0 = 1.23 \text{ volts} \]

• Negative (cathodic) Limit:
 – Water: \[4H^+ + 4e^- \rightarrow 2H_2 \quad E^0 = 0.00 \text{ volts} \]
Aqueous Potential Window - Voltammetric Characteristics

- Important for
 - Electrochemical Detectors
 - Water Purifiers
 - Batteries
 - Fuel Cells
 - Ultracapacitors

Diagram:
- Hydrogen overpotential: $4H^+ + 4e^- \rightarrow 2H_2$
- Oxygen overpotential: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- Current
- E, potential (Volts)
- 1.23 V
Potential Windows in 1 M H$_2$SO$_4$
<table>
<thead>
<tr>
<th>Material</th>
<th>Cathodic limits (V)</th>
<th>Anodic limits (V)</th>
<th>Total Windows (V)</th>
<th>Current Limits (µA/cm²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUITAR</td>
<td>-0.9</td>
<td>2.1</td>
<td>3.0</td>
<td>200</td>
<td>This work</td>
</tr>
<tr>
<td>Graphites†</td>
<td>-0.4 – -0.5</td>
<td>1.4 – 1.9</td>
<td>1.9 – 2.3</td>
<td>200</td>
<td>This work & Literature</td>
</tr>
<tr>
<td>Synthetic Diamonds‡</td>
<td>-0.4 – -1.25</td>
<td>1.7 – 2.4</td>
<td>2.3 – 3.5</td>
<td>200 – 300</td>
<td>Literature</td>
</tr>
</tbody>
</table>

† Graphite includes; HOPG, pyrolytic graphite, glassy carbon and exfoliated graphite

‡ Synthetic Diamonds include; boron doped diamond, low and high sp² diamond and diamond-like-carbon
GUITAR Aqueous Potential Window

• 3 V in other Electrolytes, e.g. H_3PO_4, KNO_3, HClO_4, Na_2SO_4

• 3 V is Competitive with Synthetic Diamond Electrodes

• Surpasses the 2 V Windows of other Graphitic Materials
 – Glassy Carbon
 – Graphite
 – HOPG
 – Graphene
Why Does GUITAR Have a Large Potential Window?

- Cathodic Limits - Hypotheses are being developed

- Anodic Limits - GUITAR Does Not Have the Electrolyte Intercalation characteristics of other graphites.

Blister formation on graphitic anodes

- **Forward voltammetric scan**
 - 2 gas evolution reactions:
 - $2\text{H}_2\text{O} \rightarrow \text{O}_2(\text{g}) + 4\text{H}^+ + 4\text{e}^-$
 - $\text{C} + 2\text{H}_2\text{O} = \text{CO}_2 + 4\text{H}^+ + 4\text{e}^-$
 - Electrolyte intercalation:
 - $[\text{C}_x] + [\text{HSO}_4^-] + y\text{H}_2\text{O} = [\text{C}_x^+ \text{HSO}_4^-]y(\text{H}_2\text{O}) + y\text{e}^-$

- **Reverse scan**
 - Electrolyte de-intercalation
 - $[\text{C}_x^+ \text{HSO}_4^-]y(\text{H}_2\text{O}) + y\text{e}^- = [\text{C}_x] + [\text{HSO}_4^-] + y\text{H}_2\text{O}$

Jan. 13, 2014
GUITAR Lacks Voltammetric Evidence for Electrolyte Intercalation

GUITAR Electrode

Pyrolytic Graphite Electrode

Potential vs. Ag/AgCl

Zero De-intercalation current

De-intercalation current

1 M H$_2$SO$_4$

20mA/cm2
Cyclic voltammograms of a 1 cm² GUITAR electrode in various electrolytes at 50 mV/s. All the solutions were purged with Ar.

400 μA/cm²

GUITAR anodes do not exhibit electrolytic intercalation

Other electrolytic systems

Cyclic voltammograms of a 1 cm² GUITAR electrode in various electrolytes at 50 mV/s. All the solutions were purged with Ar.
Current Model

- HOPG anodic limit 1.7 V
- GUITAR anodic limit 2.1 V

Electrolytic penetration

Micron size grains
- Pin-Holes
- Fewer DOS

Nano-size Grains w/Structural Defects
- Pin-Hole Free?
- Higher DOS
Ultracapacitors & Energy Storage

- $E = \frac{1}{2} CV^2$
- **Energy Storage**
 - Increased Capacitance
 - Increase Cell Voltage, V
 - Potential window
 - Aqueous Systems Preferred
 - $\text{H}_2\text{SO}_4(\text{aq})$
- **Requires Zero Faradaic Current**
 - Charging or Capacitive only
Capacitance Studies

- GUITAR has much higher capacitance than other materials - DOS?

- Capacitors Applications Require Zero Faradaic current
 - Narrower potential window than 200 μA/cm2 limits

- Cyclic voltammetric measurements
 \[C = \frac{i}{dV/dt} \]
GUITAR proposed capacitive window -0.8V – +1.2V, 640µF/cm², @0.1V

Glassy carbon, -0.6V – +0.7V, 50µF/cm²

Pyrolytic Graphite, -0.1V – +0.65V, 7µF/cm²
<table>
<thead>
<tr>
<th>Material</th>
<th>Cathodic Limit (Volts)</th>
<th>Anodic Limit (Volts)</th>
<th>Capacitive Window (Volts)</th>
<th>Capacitance (μF/cm2) @ 0.1 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUITAR</td>
<td>-0.8</td>
<td>1.2</td>
<td>2</td>
<td>640</td>
</tr>
<tr>
<td>Glassy Carbon (Bioanalytical Systems)</td>
<td>-0.6</td>
<td>0.7</td>
<td>1.3</td>
<td>50</td>
</tr>
<tr>
<td>Pyrolytic Graphite</td>
<td>-0.1</td>
<td>0.65</td>
<td>0.75</td>
<td>7</td>
</tr>
<tr>
<td>Activated Carbon (literature)</td>
<td></td>
<td></td>
<td>0.8 V</td>
<td>10</td>
</tr>
</tbody>
</table>

- GUITAR has more capacitance per unit than other carbon electrodes.
- GUITAR has a wider capacitive window than other carbon electrodes.
GUITAR vs. Activated Carbon (AC)

- AC — the predominate material in UC’s. Low Cost & High Surface Area

- Potential Window, & Capacitance,
 - \(C = 10 \, \mu\text{F/cm}^2 \)
 - \(V = 0.8 \, \text{V} \)

- Expected Performance:

 - **AC)** \(\text{Energy} = \frac{1}{2} CV^2 = 3 \, \mu\text{J/cm}^2 \)

 - **GUITAR)** \(\text{Energy} = 1300 \, \mu\text{J/cm}^2 \)
GUITAR vs. Activated Carbon (AC)

• AC surface area $\approx 1000 \text{ m}^2/\text{g}$
 – Specific Energy = 30 J/g

• GUITAR - produces conformal coatings
 – On McIlroy Nanosprings, surface area = 200 m2/g
 – Specific Energy = 2600 J/g
 – Excluding nanospring mass
A – Bare silica McIlroy nanosprings. B – D Silica nanosprings coated with G-UI-TAR.
Proposed Applications for High Surface Area GUITAR Electrodes

- **Ultra-capacitors**
 - Aqueous Ucaps limited to 1.5 volts
 - GUITAR Ucaps > 2.0 V
 - Higher capacitance based on DOS?

- **Water Purification**
 - Wide potential and excellent electrode
 - Hydrophobic surface adsorption

- **V Redox Flow Batteries**
 - Requires high H₂ overpotential and, e- transfer kinetics

- **Enhancing Lead-Acid Battery**
 - Requires corrosion resistance, high O₂ and H₂ overpotential, conformal coatings on microporous materials, and electrochemical conductivity.

- **CNT Replacement in Fuel Cells**
 - GUITAR on nanosprings
END OF PRESENTATION
SCRATCH SLIDES
As-grown GUITAR revealing 'basal' and 'edge' planes

Scheme A

Basal Plane (BP) GUITAR

Edge plane of GUITAR sealed with paraffin wax

Scheme B

Basal plane of GUITAR sealed with paraffin wax

As-grown GUITAR revealing 'basal' and 'edge' planes

Edge Plane (EP) GUITAR

Cu clip for electrical contact

Glass substrate

GUITAR flake

Paraffin wax insulator
As-grown GUITAR revealing ‘basal’ and ‘edge’ planes

Basal Plane (BP) GUITAR

Edge plane of GUITAR sealed with paraffin wax

University of Idaho
Hydrogen overpotential

\[4H^+ + 4e^- \rightarrow 2H_2 \]

Oxygen overpotential

\[2H_2O \rightarrow O_2 + 4H^+ + 4e^- \]

No reaction

\[E, \ \text{potential (Volts)} \]

0 V

1.23 V