Fabrication of Porous Hollow Glass Microspheres as additives for Lead Acid Battery

Yuqun Xie

University of Idaho Department of Chemistry

Outline

- Why Lead Acid Battery (LAB)
- □What limits the performance of Lead Acid Battery
- **Why Porous Hollow Glass Microspheres (PHGMS)**
- How to fabricate PHGMS
- Preliminary Results
- Potential applications of PHGMS
- **Future work**
- Acknowledgment

Why lead acid battery?

Plug in Hybrid Electric Vehicles (PHEV)

reduce energy consumption in transportation.

	LAB	NIMH	Li-lon	
Specific power	70-100 W/kg	120-150 W/kg	150-250 W/kg	
Cost	181 \$/kWh	>725 \$/kWh	>725 \$/kWh	(
Specific energy	25-35 Wh/kg	65-75 Wh/kg	100-150 Wh/kg	1

http://www.google.com/imgres?imgurl=http://earth911.com/wp-content/uploads/2009/04/plug-in hybrid electric vehicle J. Garche, Physical Chemistry Chemical Physics, **3** (2001) 356-367.

- Advantages * Safe Low cost High power density Wide operating temperature range Environmentally friendly (Recyclable) No memory effects
- Disadvantages
 - Low specific energy
 - Shorter life time when deep discharged

Lead Acid Battery chemical reaction

 $PbSO_{4 (s)} + H^{+} + 2e^{-} \rightarrow Pb_{(s)} + HSO_{4 (aq)} = -0.355V$

Full cell potential is around 2 V depending on the concentration of electrolyte

What limits the specific energy of the LAB?

Problems

S.D. McAllister, R. Ponraj, I.F. Cheng, D.B. Edwards, J. Power Sources, 173 (2007) 882-886.

Solutions – Additives

- Improve the porosity of the battery paste
- Increase the ratio of active materials/H₂SO₄
- Decrease the weight of battery

Requirements for positive plate additives

- Stable
- Cheap
- Light
- Good adhesion to battery paste

Literature review on positive plate additives

Additives	Loading Wt. %	Increasing in utilization % (high rate discharge)	Stability
Carboxymethyl cellulose	0.2	9.9	No
Carbon Black	0.1	3.3	No
Silica gel	0.2	10	Yes
Diatomaceous earth particles	3	12.7	Yes

Wang Qing, J. of Wuhan University of Technology--Materials Science Edition, **22** (2007) 174 H.Dietz, J.Garche, K.Weisner, J. Power Sources, **14** (1985) 305 Simon D. McAllister, Rubha Ponraj, I. Francis Cheng and Dean B. Edwards, J. of Power Sources **173**, 2 (2007)

Hollow Glass Microspheres used as an additive in LAB positive paste

Plate type		Pore volume (cm ³)	Porosity (%)	Paste weight (g)	Figure of merit (%)	Pore utiliz. (%)	Measured utiliz.ª (%)
Production pl	ate	7.325	30.52	84.61	11.25	9.86	11.64
Hand pasted, microspheres	0% glass loading	5.4127	22.72	80.2	8.72	7.65	5.02
Hand pasted, microspheres	1.1% glass loading	6.087	25.84	64.1	12.34	10.81	24.57
Hand pasted, microspheres	2.2% glass loading	6.102	26.89	58.4	13.58	11.9	30.32
Hand pasted, microspheres	4.4% glass loading	5.918	26.41	35.21	16.8	14.73	33.12
Hand pasted, microspheres	6.6% glass loading	6.5476	28.85	35.13	24.22	24.22	19.94

Figure of merit and utilization (0.1 A g^{-1})

D.B. Edwards, V.S.Srikanth, J. Power Sources, **34** (1991) 217

Porous Hollow Glass Microspheres

Troy C. Dayton, Dean B. Edwards, J. Power Sources, 85 (2000) 137-144

Fabrication of PHGMS

Starting materials: Hollow Glass Microspheres(HGMS) From 3M

K25

S38

Mag = 345 X

10 mm Signal A = SE2 EHT = 2.00 kV WD = 6 mm

Signal A = SE2 EHT = 2.00 kV

Products	Average Size (μm)	Isostatic Crush steength (psi)	Density (g/cm ³)	Wall thickness (µm)
К 25	55	750	0.25	1
S 38	40	4000	0.38	1

Mag = 162 X

нÌ.

Chemical etching

Easy process

- 1% HF
- Shaking on the bench top shaker for 20 min
- Separation of PHGMS and HGMS
 - Floaters---HGMS
 - O Sinkers--- PHGMS
- Yields 40%

K25 PHGMS

After etching SEM pictures •Micro-pores coverage on the surface •Pores size 1-2 μm •Low Breakage

S38 PHGMS

After etching SEM pictures •Meso-pores surface •Pores size around 200nm •Low Breakage

Spongy wall cross section

Crush strength Of k25phgms

V. O. Ikem, A. Menner, A. Bismarck. Langmuir 2010, 26(11), 8836-8841

Performance Enhancement of K25 PHGMS as Additives in LAB Positive Plates

Pb st	rip Paste inside teflon ring	2 Counter Electrode Working Electrode Reference Electrode			
Plate	Additives	Loading V/V %	Increase in 66 mA/g Utilization (%)	Increase in 112 mA/g Utilization (%)	Increase in 179 mA/g Utilization (%)
HGMS	K25	20	22	3.3	4.2
PHGMS	Porous K25	15	4.7	2.4	10

Potential applications of the PHGMS

Drug delivery
Nanocatalysis
Hydrogen storage for fuel cells
Gases filtration
MRI contrast agents

Future work

- Diffusion test
- Load S38 PHGMS in the positive plates
- Determine if the Porous Hollow Glass Microspheres survive in the batteries

Acknowledgment

- Dr. I. Francis Cheng
- Dr. Dean B. Edwards
- Dr. Sofie P. Pasilis
- MRC Institute Battery research group
- University of Idaho Department of Chemistry: faculty, staff and students.
- Dr. and Mrs. Renfrew summer scholarship