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Many studies have used H (a measure of unpredictability derived from information
theory) to quantify the complexity of descriptions of persons across multiple roles. In-
terpreting these studies is problematic, though, because H confounds unpredictability
across roles (which is typically the construct of interest) and unpredictability within
roles (which is simply a function of the proportion of traits endorsed). The need to
control for unpredictability within roles was highlighted by 3 demonstration studies
in which controlling for unpredictability within roles eliminated relations between
well-being and H. I also show how, controlling for unpredictability due to the number
of traits endorsed and number of roles described, H provides a unique measure of role
dependence and independence. However, H does not measure the type of role over-
laps that would predict “spillover effects” between roles; therefore, I recommend an
alternative index of role similarity for future research on spillover effects.

The H formula derived from information theory,
when used to measure the complexity of person de-
scriptions, has been frequently misused and misunder-
stood. For example, researchers have assumed H mea-
sures the distinctness of the roles in person
descriptions, when in fact it does not. Conversely, re-
searchers have not realized that the number of
descriptors endorsed can strongly influence H, when in
fact it can. This article aims to clarify what H does and
does not measure, what problems may arise when us-
ing H, and how to avoid those problems in the future.

A Review of H in the Social Cognition
Literature

During the 1950s and early 1960s, the increased in-
terest in information processing approaches to under-
standing perception, cognition, and communication
was accompanied by a search for means to quantify in-
formation. One quantitative measure of the informa-
tion in a set of symbols is H. Although H was originally
used in research on processing of nonsocial informa-
tion (Attneave, 1959; Broadbent, 1958; Garner, 1962;
Miller, 1953), over the past 2 decades H has become
popular in research on social cognition.

Although some studies have used H as a measure of
the complexity of descriptions of other people (Lin-

ville, 1982; Linville & Jones, 1980; Scott, 1969), most
social cognition research has used H as a measure of
the complexity of self-descriptions or “self-complex-
ity.” Researchers have tested relations between
self-complexity and a number of other variables, in-
cluding psychiatric problems such as narcissism
(Rhodewalt, Madrian, & Cheney, 1998; Rhodewalt &
Morf, 1995, 1998), personality traits such as self-con-
sciousness or sociotropy and autonomy (Davies, 1996;
Solomon & Haaga, 1993), and cognitive capacities
such as attentional resources (Conway & White-Dy-
sart, 1999). However, the main focus of self-complex-
ity research has been the ability of H to predict mea-
sures of physical and mental well-being.

Interest in the link between H and well-being can be
traced to two articles by Linville (1985, 1987). The ar-
ticles reported that people lower in self-complexity ex-
perienced greater changes in affect and self-appraisal
following success or failure, greater mood lability over
a 2-week period, and, following high levels of stressful
events, were more prone to depression, physical symp-
toms, and the flu and other illnesses. Linville also of-
fered a sensible model to explain these striking results.
According to the model, H measures self-complexity,
defined as “having more self-aspects and maintaining
greater distinctions among self-aspects” (Linville,
1987, p. 664). Both the number and the distinctiveness
of self-aspects help people to be “less affected by the
ups and downs of life.” With respect to number, when
something good or bad happens to one part of the self
(e.g., me-as-husband), it will influence a smaller por-
tion of the self if there are many self-aspects than if
there are only a few. With respect to distinction, the
“spillover hypothesis” states, “The more related two
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self-aspects are, the more likely thoughts and feelings
about one are to spill over to color thoughts and feel-
ings about the other” (Linville, 1987, p. 664). Con-
versely, the more distinct the self-aspects (e.g., de-
scribing me-as-husband in ways distinct from
me-as-father), the less the spillover. Given the impor-
tant implications of both the results and the model de-
scribed in these articles, it is not surprising that the So-
cial Science Citation Index showed that 195 articles
had cited Linville (1985), and 293 had cited Linville
(1987) by the end of the year 2000.

However, the subsequent research was not always
supportive. Rafaeli-Mor and Steinberg (2002) con-
ducted a meta-analysis of 70 studies from 46 different
articles published between 1985 and 2000, which
tested relations between self-complexity and well-be-
ing (i.e., some measure of mood, affect, self-esteem, or
depression). To be included in the analysis, the self-de-
scriptions had to be generated using Linville’s (1985)
procedure in which participants ascribe a fixed (experi-
menter-provided) set of traits to a variable (self-gener-
ated) set of self-aspects. The key conclusionof the
meta-analysis was that there was little evidence that H
buffers the impact of negative events. Moreover, there
was great heterogenity in the study-level effect sizes.
Different studies yielded effect sizes varying from
strongly positive to strongly negative.

One reason for the heterogeneity may be that H
does not measure what it has been purported to mea-
sure. Specifically, this article will show that H does
not measure role distinctness, is at best an indirect
and inefficient measure of role numerousness, and is
greatly impacted by the percentage of traits endorsed.
So for years H has been used to test hypotheses about
the relation between role numerousness and distinct-
ness and important variables such as affective reactiv-
ity, personality disorders, and physical and mental
well-being. However, to the extent that H does not
measure role numerousness and distinctness, those
hypotheses in fact remain untested. To clarify what H
does and does not measure, I will now examine the
mathematics of H in detail.

Deriving the H Formula

Information is the reduction of uncertainty. Imagine
you are uncertain which one of S statements is true of a
person, and you can reduce your uncertainty by asking
yes–no questions. Each question can convey a maxi-
mum of one bit of information, which occurs when the
answer eliminates half of the possibilities. If there are
initially S possibilities, and each successive question
eliminates half of the remaining possibilities, you must
ask log2S questions to determine which statement is
true. Because each answer conveys one bit of informa-

tion, the total information conveyed, H, is log2S bits. If
pi = 1/S, where pi is the probability that any particular
statement i is the true statement, then S = 1/pi. There-
fore, H = log2S = log2(1/pi) = –log2pi.

Consider a simple example. We ask Jack if he is as-
sertive. There are two possible answers: Yes (Y) or No
(N). Therefore, S = 2, and p(Y) = p(N) = .5. Whether
we compute H as log2S = log2(2) or as –log2pi =
–log2(.5), the answer is the same: 1 bit. Jack’s answer
eliminates half the possibilities. It conveys one bit of
information.

A question can yield one bit of information only if
we are completely uncertain about the answer. For ex-
ample, imagine we know that Jack says “yes” 75% of
the time when asked if a trait describes him. The ex-
pected informational value of Jack’s answer is the in-
formation if Jack says “yes” and the information if
Jack says “no,” weighted by the likelihood of each of
those events; that is, H = –{(p[Y])log2(p[Y]) +
(p[N])log2(p[N])}. In this case, p(Y) = .75 and p(N) =
.25, so H = –([.75]log2[.75] + [.25]log2[.25]) = .81.
Note that Jack’s answer conveys .19 bits less informa-
tion when p(Y) = .75 than when p(Y) = .50 because
there is less uncertainty about what Jack will say. In
other words, the response of a person who is predict-
able conveys less information than the response of a
person who is unpredictable. Indeed, if Jack always an-
swers yes, then H = log2(1/1) = 0. That is, if a response
is completely predictable its occurrence conveys no in-
formation at all.

Figure 1 graphs the relation between p(Y) and H. H
is maximized when p(Y) = p(N), because that is when
we are most uncertain about what will happen. As p(Y)
and p(N) diverge, H declines. The function is symmet-
rical because p(N) = 1 – p(Y). H approaches its mini-
mum (zero) as the probability of any particular out-
come approaches its maximum (unity).

When considering more response categories than
simply Y or N, the same logic applies: Sum the ex-
pected value of the information conveyed by each re-
sponse category weighted by the likelihood of those re-
sponses. Thus, the general equation for H is:
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Figure 1. H as a function of the probability of trait endorsement.



where C = the number of response categories.1

Note that if the response categories are simply Y or
N, then the pi are p(Y) and p(N), and Equation 1 is
equivalent to the formula given in the preceding para-
graph and displayed in Figure 1. But regardless of the
number of response categories, Equation 1 shows that
H increases as the pi become more equal and decreases
as the pi diverge.

H has been used as an index of category diversity in
a number of fields. For example, H is widely used in
ecology as a measure of ecological diversity
(Magurran, 1988). In this context, the categories are
species and the pi is the proportion of individuals found
in the ith species. The more equal the populations of
different species, the greater the H. In an interesting ex-
tension to the ecology of human communities, Kreiner
et al. (2001) used H to measure the diversity of non-
profit community-based organizational activities. The
community activities were categorized according to
their main focus (such as health, education, conserva-
tion, and so on) and the pi was the proportion of activi-
ties in each category. An example from the social cog-
nition literature is Brewer & Lui (1984), in which
participants sorted photos of members of a particular
social group into subgroups of three or more persons.
The categories were the subgroups and the pi was the
proportion of photos in each subgroup.

In the preceding examples, H was used correctly as
a measure of complexity within a particular situation:
the complexity of species within an ecosystem, activi-
ties within a community, or perceived subgroups
within a social group. However, almost all social cog-
nitive research has been concerned with complexity of
trait descriptors across different situations or roles.
When H is applied to this type of Trait × Situation or
Trait × Role matrix, problems can arise.

H Applied to a Trait × Role Matrix

To understand the problems, we first need to under-
stand how H is computed on a Trait × Role matrix.
When we asked Jack if he was assertive, there were two
response categories: Y and N. If instead we were to ask
Jack if he is assertive with his mother and if he is asser-

tive with his father, there are four response categories:
yes with both mom and dad (YY), yes with mom but
not dad (YN), no with mom but yes with dad (NY), and
no with both mom and dad (NN). If we were to ask
about assertiveness in three different roles, there would
be eight categories: YYY, YYN, YNY, YNN, NYY,
NYN, NNY, and NNN. The general rule is: If we ask
about R different roles, the number of response catego-
ries, C, is equal to 2R. Thus, if we ask about four roles,
C = 24 = 16.

If we ask Jack to use eight traits to describe how he is
with his mother and with his father, we can display his
self-description as a Trait × Role matrix of the sort
shown in Table 1. Note that the number of traits in the
matrix does not affect H. Regardless of the number of
traits, H (the expected information content of each trait)
remains −∑ p pi ilog . In Example 1, p(YY) = p(NN) =
p(YN) = p(NY) = .25. Therefore, H p pi i= −∑ log =
–{(p[YY])log2(p[YY]) + (p[YN])log2(p[YN]) +
(p[NY])log2(p[NY]) + (p[NN])log2(p[NN])} =
–{4([.25]log2[.25])} = 2. In Example 2, p(YY) = p(NN)
= .5, and p(YN) = p(NY) = .0, so H = 1. The more
equiprobable the response categories, the higher the H.
The four categories were equally probable in Example 1
but not in Example 2, so H was higher in Example 1 than
in Example 2. Now that we understand how to compute
H on a matrix, let us consider four problems that can
arise when H is used in this way and how future research
can avoid these problems.

Problem 1: H Confounds Uncertainty
Within and Between Roles

Equation 1 shows that H increases as the proportion
of traits in each category, pi, become more equal. The pi

becomes more equal not only as between-role uncer-
tainty increases but also as within-role uncertainty in-
creases. That is, as we become less certain about
whether or not a person will endorse a trait within each
role (i.e., as p[Y] and p[N] converge), we become less
certain about whether that person will show a particu-
lar pattern of endorsing that trait across roles.

To appreciate why, consider again the example of
Jack describing himself with his mother and father. If
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1In the social cognition literature, the H formula is often written

as log ( log ) / ,2 2n n n ni i− ∑ where n is the total number of traits

used, and ni is the number of traits that appear in a given category.

This equation is equivalent to the one I employ, because log2n –

( log )n ni i2∑ / n = log2n – ( log )p n p ni i2∑ / n = log2n –

p p ni ilog2∑ = log2n – p ni log2∑ – p pi ilog2∑ = – p pi ilog .2∑

Table 1. Trait × Situation Matrices Illustrating Basic
Properties of H

Trait

Situation T1 T2 T3 T4 T5 T6 T7 T8

Example 1  (H = 2)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y N N Y Y N N

Example 2  (H = 1)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y Y Y N N N N

Note: H = measure of unpredictability; Y = yes; N = no.

�

��� 2log ,
1

(1)i i

C

p p

i

H



the two role descriptions are independent, probability
theory states that the probability of a pattern of re-
sponses across roles is the product of the probabilities
of each component response. Therefore, p(YY) = p(Y)
× p(Y), p(YN) = p(Y) × p(N), p(NY) = p(N) × p(Y),
and p(NN) = p(N) × p(N). If p(Y) = .5, then p(YY) =
p(YN) = p(NY) = p(NN) = .25, and H p pi i= −∑ log
= –{4([.25]log2[.25])} = 2. Maximum uncertainty
within roles yields maximum uncertainty across roles.
As the probabilities of Y and N diverge within roles,
the probabilities of the various combinations of Y and
N across roles also diverge. For example, if p(Y) = .8,
then p(YY) = .64, p(YN) = p(NY) = .16, and p(NN) =
.04. In this case, H = –([.64]log2[.64]) + (.16)log2(.16)
+ (.16)log2(.16) + (.04)log2(.04) = 1.4. Thus, simply
knowing that Jack has an “acquiescence bias” reduces
H from 2.0 to 1.4.

Problem 2: The Proportions of Positive
and Negative Traits Endorsed
Influence Positive and Negative
Complexity

Problem 2 is just a specific instance of Problem 1
but one worth highlighting. Some researchers advise
computing an H for positive traits (Hpos) and a separate
H for negative traits (Hneg) because the relations be-
tween H and Hneg and Hpos appear at best inconsistent
(Morgan & Janoff-Bulman, 1994; Rafaeli-Mor, Gotlib,
& Revelle, 1999; Woolfolk, Novalany, Gara, Allen, &
Polino, 1995). The examples in Table 2 show why Hneg

and Hpos sometimes diverge from H. In all three exam-
ples, T1–T4 are positive traits, and T5–T8 are negative
traits, H = 2, and within each role p(Y) = .5. In Exam-
ple 1, H = Hpos = Hneg. The reason is that within every
response category, the proportion of positive traits en-
dorsed (ppos) equal the proportion of negative traits en-
dorsed (pneg). However, if ppos and pneg differ within
categories, then Hneg and Hpos may differ from H. In
Example 2, H = 2 and Hneg = Hpos = 1. The discrepancy
exists because the response categories are equally

probable when examining all traits but not when exam-
ining positive and negative traits separately. Instead,
two response categories {YY, NN} contain only posi-
tive traits, and the other two {YN, NY} contain only
negative traits. In Examples 1 and 2, p(Y) = ppos = pneg.
Hpos and Hneg become more likely to diverge from H to
the degree that ppos and pneg diverge from p(Y). In Ex-
ample 3, for instance, p(Y) = .5, but ppos = .75 and pneg

= .25. In this case, H = 2, but Hpos and Hneg cannot ex-
ceed 1.5.2

Hneg and Hpos have been reported to predict different
outcomes. For example, Morgan and Janoff-Bulman
(1994) found posttrauma adjustment was related to Hpos

but not to Hneg, and Woolfolk et al. (1995) found depres-
sion was related to Hneg but not to Hpos. The problem is
that just as p(Y) can influence H, so too can ppos influ-
ence Hpos and pneg influence Hneg. Therefore, it is not
clear if adjustment and depression are related to varia-
tions in positive versus negative complexity or simply
variations in the numbers of positive versus negative
traits endorsed. For example, Woolfolk et al. may have
found a link between depression and Hneg because de-
pression affects pneg, which, in turn, affects Hneg.

Overview of Demonstration Studies

To empirically demonstrate the preceding prob-
lems, three studies were conducted.3 In each study, par-
ticipants used trait checklists to describe themselves in
four different roles. The trait checklists contained
equal numbers of positive and negative traits. In Study
1, participants were allowed to endorse any number of
traits. In Study 2, participants were required to endorse
a specific number of traits. In Study 3, participants
were required to endorse a specific number of positive
traits and the same number of negative traits.

The participants also completed measures of de-
pression and esteem to show how relations between H
and other variables can sometimes be misleading. De-
pression and esteem were chosen as the “other vari-
ables” simply because they were common in self-com-
plexity research and were likely to influence ppos and
pneg. By influencing ppos and pneg, a person’s depression
and esteem scores could affect uncertainty about
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Table 2. Trait × Situation Matrices Illustrating the
Relationships of Hneg and Hpos to Overall H

Trait

Situation T1 T2 T3 T4 T5 T6 T7 T8

Example 1
R1: “with mom” Y N Y N Y N Y N
R2: “with dad” Y N N Y Y N N Y

Example 2
R1: “with mom” Y Y N N Y N Y N
R2: “with dad” Y Y N N N Y N Y

Example 3
R1: “with mom” Y Y Y N N N Y N
R2: “with dad” Y Y N Y N N N Y

Note: H = measure of unpredictability; Y = yes; N = no.

2InExample3,because thereareonly fourpositive traits andppos =
.75, Hpos is maximized when p(YY) = .5, p(YN) = p(NY) = .25, and
p(NN) = 0. In this case, H = −∑ p pi ilog = –([.5]log2[.5] +
[.25]log2[.25] + [.25]log2[.25] + [0]log2[0]) = 1.5. The same would be
true ifp(Y)=.25,as is thecasefor thenegative traits in thisexample.

3I had originally hoped to demonstrate these points by
reanalyzing data from previous studies. I attempted to obtain the data
from 12 articles published between 1991 and 1998 that had em-
ployed the H statistic. In all cases I was unable to conduct the
reanalysis because the researchers were either unable (due to lost
data or corrupted data files) or unwilling to share the data. I under-
took these demonstration studies only after becoming discouraged
about being able to use previously collected data.



whether or not that person would endorse positive or
negative traits within roles, and thus overall uncer-
tainty (Hpos and Hneg), even if those scores did not af-
fect uncertainty about whether or not that person
would make consistent responses across roles.

The influence of ppos and pneg on H can be controlled
either experimentally or statistically. In Study 3, it was
done experimentally by controlling ppos and pneg. In
Studies 1 and 2, it was done statistically by controlling
for Harray, the uncertainty that would exist if the re-
sponses were arranged in a one-dimensional array
rather than a two-dimensional Trait × Role matrix.
Mathematically, Harray = –{(p[Y])log2(p[Y]) +
(p[N])log2(p[N])}. Conceptually, Harray is one’s uncer-
tainty about whether a trait will be endorsed in a partic-
ular context when one does not know if it was endorsed
in other contexts. Because knowing how a trait was en-
dorsed in other contexts cannot increase uncertainty, H
cannot exceed Harray. Controlling for Harray, the residual
H reflects uncertainty about how the endorsements are
organized across roles. Harray can be computed on all
traits, on just positive traits (i.e., Hpos-array), or on just
negative traits (i.e., Hneg-array).

Study 1

In Study 1, p(Y) was allowed to vary across partici-
pants. As p(Y) varies from 0 to 1, Harray first rises and
then falls (see Figure 1). To the extent that Harray influ-
ences H, p(Y) will show a similar relation with H.
Moreover, if depression or esteem influence ppos (and
thus Hpos-array) or pneg (and thus Hneg-array), then depres-
sion or esteem might show a similar relation with Hpos

or Hneg. If those relations are only due to effects on
Hpos-array or Hneg-array, however, then controlling for
Hpos-array or Hneg-array should eliminate them.

Method

Participants. College students (85 women, 40
men, 1 unknown) participated for extra credit in under-
graduate psychology courses.

Beck Depression Inventory–2 (BDI–2). The
BDI–2 (Beck, Steer, & Brown, 1996) is a widely used
21-item self-report measure of symptoms associated
with depression.

Rosenberg Self-Esteem Inventory (RSEI). The
RSEI (Rosenberg, 1965) is a widely used 10-item
self-report measure of overall feelings of value and
worth.

Traits. The traits were selected from a pool of
400 adjectives for which there were published social

desirability norms from two independent samples
(Hampson, Goldberg, & John, 1987; Norman, 1967).
In both samples, students rated trait desirability on a 1
(extremely undesirable) to 9 (extremely desirable)
scale. I eliminated traits whose ratings across the two
samples differed by more than 2 scale points. Then I
averaged the ratings across the two samples to obtain a
more stable index of desirability. Then, so that the con-
tent and valence of the traits would be somewhat inde-
pendent, I paired together traits that were contrasting in
meaning but whose mean desirability ratings were
within .5 units of each other.

Finally, I selected 18 traits pairs: 3 very positive
(lively–relaxed, independent–sociable, adaptable–sta-
ble; desirability rating between 7 and 8), 3 medium
positive (humble–bold, dignified–playful, frank–sen-
sitive; desirability between 6 and 7), 3 mildly positive
(soft–tough, outspoken–quiet, cautious–carefree; de-
sirability between 5 and 6), 3 mildly negative (doc-
ile–dominant, conventional–rebellious, shy–dramatic;
desirability between 4 and 5), 3 medium negative (im-
patient–indecisive, submissive–argumentative,
meek–demanding; desirability between 3 and 4), and 3
very negative (irritable–apathetic, distrustful–gullible,
vain–insecure; desirability between 2 and 3). Partici-
pants in the 75% positive (POS) condition received
checklists containing nine positive pairs and three neg-
ative pairs. (The three negative pairs varied across par-
ticipants with the constraint that one pair be mildly
negative, one pair be medium negative, and one pair be
very negative.) The checklists in the 75% negative
(NEG) condition were constructed in the same way.

Procedure. In small classroom settings, the par-
ticipants completed the BDI–2 and RSEI and de-
scribed the following four roles: (a) “you when you are
engaging in school or work-related activities,” (b) “you
when you are with peers of the same sex,” (c) “you
when you are engaging in recreational activities,” and
(d) “you when you are with peers of the opposite sex.”
The participants described each role by circling traits
in an alphabetically ordered list of 24 traits (containing
either 18 positive and 6 negative traits or 18 negative
and 6 positive traits). The roles were presented in two
different orders. The affect measures were also pre-
sented in two different orders: Either the BDI–2 came
prior to and the RSEI came after the self-description, or
the RSEI came prior to and the BDI–2 came after the
self-description.

Participants were randomly assigned to one of the
eight conditions of a 2 (order of roles) × 2 (order of af-
fect measures) × 2 (POS vs. NEG) design. There were
no significant effects of order or gender, so these vari-
ables are not discussed further. The number of partici-
pants in the POS and NEG conditions were, respec-
tively, 65 and 61.

272

LOCKE



Results

Effect of number of traits endorsed. There is
an inverted U relation between p(Y) and Harray. To the
extent that Harray influences H, there may be a similar re-
lationbetweenp(Y)andH. In this study,Harray did in fact
explain most of the variance in H, r(126) = .80, p < .001.
Therefore, if the p(Y) for most participants is less than
.5, then one would expect a positive correlation between
p(Y) and H. If most p(Y) values are greater than .5, one
would expect a negative correlation between p(Y) and
H. If p(Y) averages about .5, one would expect no linear
relation. As Figure 2 shows, p(Y) was less than .5 for all
but 2 participants, so p(Y) had a positive effect on H,
r(126) = .68, p < .001. As Figure 3 (top) shows, pneg was
less than .5 forallparticipants, so thepneg alsohadaposi-
tive effect on Hneg, r(126) = .82, p < .001. In contrast,
Figure 3 (bottom) shows that ppos values were spread
over the middle portion of the distribution, and conse-
quently there was no linear association between ppos and
Hpos, r(126) = .01, ns.

Effects of depression and esteem. In the NEG
condition, Hneg was positively related to BDI–2 scores,
r(59) = .35, p = .005, and negatively related to RSEI
scores, r(59) = –.30, p = .02. When such results occurred
in previous studies they were interpreted as evidence
that a more complex negative self-image predicts higher
levels of depression and lower levels of esteem (e.g.,
Woolfolk et al., 1995). But we now recognize that de-
pression and esteem can affect H simply by affecting the
number of traits endorsed. Indeed, once we controlled
for Hneg-array (which is solely a function of pneg), the par-
tial r between Hneg and BDI–2 scores was r(58) = .05, ns,
and thepartial rbetweenHneg andRSEIscoreswas r(58)
= –.09, ns. Thus, the effects of BDI–2 and RSEI scores
on Hneg were due to their effects on pneg—that is, the
overall probability of endorsing negative traits—rather
than their effects on the complexity of negative trait en-
dorsementsacross roles.BDI–2andRSEIscoresdidnot
predict Hneg in the POS condition (perhaps because pneg

varied less in that condition) nor Hpos in either condition
(perhaps because ppos did not predict Hpos).

Study 2

Study 1 clearly demonstrated that H confounds dif-
ferent sources of uncertainty and that sometimes the
predominant source is within-role uncertainty. The
purpose of Study 2 was to demonstrate one way to sep-
arate uncertainty within roles from uncertainty across
roles—namely, requiring participants to endorse a spe-
cific number of traits. Controlling the total number of
traits endorsed should solve Problem 1. However, be-
cause participants can still endorse different numbers
of positive and negative traits, it should not solve Prob-
lem 2—the confounding of uncertainty within and
across roles when considering positive and negative
traits separately.

Method

Participants. College students (65 women, 37
men, 10 unknown) participated for extra credit in un-
dergraduate psychology courses.

Traits. Using the same trait pool and procedure
as in Study 1, I selected 5 desirable pairs (desirability
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Figure 2. H as a function of the proportion of traits endorsed in
Study 1.

Figure 3. Hpos as a function of the proportion of positive traits
endorsed and Hneg as a function of the proportion of negative
traits endorsed in Study 1.



greater than 6) and 5 undesirable pairs (desirability less
than 4). The desirable traits were: bold, dignified,
frank, humble, independent, lively, playful, relaxed,
sensitive, and sociable. The undesirable traits were: ap-
athetic, distrustful, gullible, impatient, indecisive, in-
secure, irritable, nosy, withdrawn, and vain.

Procedure. The procedure was identical to that
of Study 1 except that the participants were asked to
describe each self-aspect by circling a specific number
of traits (namely, 4, 6, 8, 10, 12, 14, or 16 traits) from a
list of 20 traits. Participants were randomly assigned to
one of the conditions of a 2 (order of roles) × 2 (order
of affect measures) × 7 (number of traits endorsed) fac-
torial design. There were no significant effects of order
or gender, so these variables are not discussed further.
Participants who circled one too many or too few traits
when describing a particular role were not excluded
from the analyses, but those (n = 2) who circled more
than one too many or too few traits were excluded. The
number of participants in the 20%, 30%, 40%, 50%,
60%, 70%, and 80% endorsed conditions were, respec-
tively, 17, 14, 17, 15, 16, 13, and 18.

Results

Effect of number of traits endorsed. Manipu-
lating the number of traits endorsed ensured that the
distribution of p(Y) in the sample was approximately
symmetrical around the midpoint of .5. When the p(Y)
distribution is symmetrical around .5, there should be
no linear relation between p(Y) and H, and there was
none, r(108) = .01, ns. Thus, controlling p(Y) elimi-
nates Problem 1; however, it does not control ppos and
pneg, so it does not eliminate Problem 2. As Table 3
shows, in every condition the participants endorsed
more positive than negative traits, so the distributions
of ppos and pneg were not symmetrical around .5. The
mean ppos was .65 (range = .15–1.00), and the mean
pneg was .35 (range = .00–.80). Because ppos tended to
exceed .5, the relation between ppos and Hpos was nega-
tive, r(108) = –.67. Because pneg tended to be less than

.5, the relation between pneg and Hneg was positive,
r(108) = . 74.

Table 3 shows the mean H, Hpos, and Hneg for each
condition. As p(Y) varied from .2 to .8, H showed the
expected inverted U curve, but Hpos showed only the
decreasing half of the curve, and Hneg showed only the
increasing half. For participants who endorsed less
than 50% of the traits (n = 48), ppos was close to .5 and
pneg was not. Consequently, Hpos was greater than Hneg,
and p(Y) had a linear relation with Hneg, r(46) = .90,
but not with Hpos, r(46) = .09. Conversely, for partici-
pants who endorsed more than 50% of the traits (n =
47), pneg was close to .5 and ppos was not. Conse-
quently, Hneg was greater than Hpos, and p(Y) had a lin-
ear relation with Hpos, r(45) = –.92, but not with Hneg,
r(45) = .05. When participants endorsed exactly 50%
of the traits, pneg and ppos were equally close to .5 (i.e.,
.36 and .64), so Hneg and Hpos were almost the same.

Effects of depression and esteem. BDI–2
scores were positively related to Hneg, r(108) = .25, p <
.01, but not to Hpos, r(108) = .06, ns. RSEI scores were
inversely related to Hpos, r(108) = –.23, p < .05, but not
to Hneg, r(108) = –.11, ns. Whereas previous studies
might have concluded that depression and esteem pre-
dicted the complexity of thinking about positive and
negative features of the self, we now know that they
may simply be predicting the proportion of positive
and negative features endorsed. Indeed, controlling for
Hneg-array, the partial r between Hneg and BDI–2 scores
was r(107) = .12, ns. Controlling for Hpos-array, the par-
tial r between Hpos and RSEI scores was r(107) = –.09,
ns. Thus, as in Study 1, depression and esteem pre-
dicted the proportions—and thus the predictability—
of positive and negative trait endorsements but not the
complexity of patterns of endorsement across roles.

Study 3

Whereas the participants in Studies 1 and 2 could
endorse different numbers of positive and negative
traits, Study 3 participants were asked to endorse the
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Table 3. Numbers of Traits Endorsed and H as a Function of Experimental Condition and Trait Valence in Study 2

Condition Traits Endorsed H

(% endorsed) Total Positive Negative All Traits Positive Negative

20 4 3.0 1.0 2.2 2.3 1.2
30 6 4.8 1.3 2.5 2.6 1.3
40 8 6.3 1.7 2.7 2.4 1.5
50 10 6.4 3.6 2.9 2.2 2.4
60 12 7.4 4.5 3.0 2.0 2.4
70 14 8.1 5.9 2.7 1.7 2.6
80 16 9.3 6.7 2.1 0.9 2.3

Note: H = measure of unpredictability; N = 110. The proportion of positive traits endorsed = the number of positive traits endorsed divided by 10,
and the proportion of negative traits endorsed = the number of negative traits endorsed divided by 10.



same specified number of positive and negative traits.
So, whereas Studies 1 and 2 controlled for the effects
of variations in ppos and pneg statistically, Study 3 did so
experimentally.

Method

Participants. College students (72 women, 32
men, 17 unknown) participated for extra credit in un-
dergraduate psychology courses.

Procedure. The procedure was identical to that
of Study 2 except that instead of presenting the traits as
a single list, the desirable traits and undesirable traits
were presented in two separate lists. The participants
were asked to describe each self-aspect by circling a
specific number of traits (i.e., 2, 3, 4, 5, 6, 7, or 8) from
the list of 10 positive traits and then the same number
of traits from the list of 10 negative traits. Participants
were randomly assigned to one of the conditions of a 2
(order of roles) × 2 (order of affect measures) × 7 (pro-
portion of traits endorsed) factorial design. There were
no significant effects of order or gender, so these vari-
ables are not discussed further. Participants who cir-
cled one too many or too few traits when describing a
particular aspect were not excluded from the analyses,
but participants (n = 1) who circled more than one too
many or too few traits were excluded. The number of
participants in the 20%, 30%, 40%, 50%, 60%, 70%,
and 80% endorsed conditions were, respectively, 16,
19, 20, 18, 15, 15, and 17.

Results

The experimental design created roughly symmetri-
cal distributions of p(Y)—for positive traits, negative
traits, and all traits combined. Thus, the relation be-
tween p(Y) and H approximated an inverted U—for
positive traits, negative traits, and all traits. Thus, there
were no significant linear relations between p(Y) and
H—for positive traits, negative traits, or all traits, all ps
> .05. Nor were there any significant linear relations
between BDI–2 or RSEI and Hneg or Hpos, all ps > .05.
Thus, once we controlled ppos and pneg, and concomi-
tantly Hpos-array and Hneg-array, there was no longer any
evidence that BDI–2 and RSEI scores predicted varia-
tions in the complexity with which participants used
those traits to describe themselves across roles.

Discussion of Findings

Harray is your uncertainty about whether a particular
response was Y versus N when all you know is overall
how many responses were Ys versus Ns. In all three
studies, Harray explained a significant proportion of the
variance in H. Consequently, the relations between

p(Y) and H approximated the inverted U relation be-
tween p(Y) and Harray shown in Figure 1. Accordingly,
when p(Y) tended to be less than .5 (as with negative
traits in Study 1), the relation between p(Y) and H was
positive. When p(Y) tended to be greater than .5 (as
with positive traits in Study 2), the relation between
p(Y) and H was negative. When p(Y) tended to be dis-
tributed evenly around .5 (as with all traits in Study 3),
there was no linear relation between p(Y) and H.

The important implication is that any variable may
influence H simply because it influences p(Y). For ex-
ample, these results revealed significant relations be-
tween measures of well-being and Hneg or Hpos. How-
ever, statistically controlling for the impact of pneg and
ppos on Hneg and Hpos eliminated these effects in Studies
1 and 2, as did experimentally controlling pneg and ppos

in Study 3. Thus, the well-being measures predicted
the positivity, not the complexity, of the self. But these
studies were not concerned with the particular question
of whether H is related to well-being. Rather, their pur-
pose was to show why it is critical to consider the influ-
ence of p(Y) in any study using H.

If the p(Y) distribution varies across studies, then
how variables that influence p(Y) influence H also will
vary across studies. Knowing this, the heterogeneity in
the findings relating H and measures of well-being
(Rafaeli-Mor & Steinberg, 2002) is not surprising. Un-
fortunately, previous studies neither controlled for nor
even reportedp(Y).Therefore,wecannotknowif the re-
sults of previous research were due to differences in the
complexity of patterns of trait endorsement across roles
or simply differences in the numbers of traits endorsed
within each role. To address Problems 1 and 2, future re-
search at least should report p(Y) and, better yet, test the
extent to which any relations involving H are due to un-
certainty within roles, between roles, or both.4

Problem 3: H Confounds Role
Numerosity and Role Independence

Once we control for the influence of uncertainty
within roles, however, we face another problem. The
residual H is a function of two conceptually and em-
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4The appropriate measure of uncertainty within roles will vary
across studies. In my demonstration studies, in which all participants
were forced to apply the same set of traits to the same number of roles,
the simplest possible control variable (Harray) was adequate. More
complex studies may require more complex measures. For example,
to control for variations in the number of roles (R) across subjects, one
could use R * Harray. To also control for variations in p(Y) between
roles within a single description, one could compute Harray for each
role separately and then sum them. Moreover, one could take into ac-
count the ways in which the number of traits under consideration (T)
constrains the maximum possible H, which is normally log2C =
log2(2R) = R. The most important such case (in terms of practical con-
sequences) is when T < C. In this case, the number of trait categories
thatcanactuallyoccur isT rather thanC,so themaximumH is log2T.



pirically distinct sources of uncertainty between
roles: role numerosity and role independence. In-
creasing R only permits, and does not necessitate, a
greater H. An additional role increases H only to the
extent that it increases uncertainty about how a trait
will be used. Specifically, the increment in H due to a
particular role is:

where C is the number of trait categories prior to add-
ing the role, and the pi are the probabilities of each of
those categories. Hinc shares several properties with
Harray: It can range from 0 to 1 bits, approaching its
maximum as the p(Yi) and p(Ni) converge toward .5,
and declining as the p(Yi) and p(Ni) diverge. The rea-
son is that Equation 2 actually says: (a) divide the role
into C parts, (b) compute Harray on each part separately,
and (c) compute a weighted average of the Harrays. In-
deed, if p(Yi) is the same for all C, then the Hinc func-
tion will be identical to Figure 1.

Consider the examples in Table 4. In each example,
p(Y) = .5, Harray = 1, and R = 2. What varies is Hinc. In
Examples 1 and 5, Hinc = 0 because, within the catego-
ries defined by R1, the p(Yi) for R2 are zero or one. R1
predicts R2 perfectly, so R2 does not increase H at all.
In Examples 2 and 4, Hinc = .811 because the p(Yi) are
.75 or .25. In Example 3, Hinc = 1 because the p(Yi) are
.5; R1 does not predict R2 at all. 5

Thus, in studies in which R has been allowed to
vary, any particular H may reflect a smaller number of
relatively independent roles or a larger number of
nonindependent roles. For example, Jane and Joe may
both have an H = 4 and a p(Y) = .5, but Jane’s self-con-
cept may consist of 4 completely independent roles,
whereas Joe’s may consist of 12 highly similar roles.
These very different organizations may have very dif-
ferent psychological implications. Therefore, my rec-
ommendation is that R at least be reported and ideally
be entered as a separate predictor. Based on their analy-
sis of empirical data, Rafaeli-Mor et al. (1999) also
concluded that using “measures that separately and in-
dependently reflect the two underlying components of
[role] quantity and overlap” (p. 351) may be more in-
formative than using H alone.

Problem 4: H is Not an Appropriate
Measure of Spillover

Controlling for R and Harray, the residual H is a mea-
sure of role independence. Yet, H is instead often de-
scribed as a measure of role distinctness. High H
self-concepts have been repeatedly defined as having
“greater distinctions among self-aspects” (Linville,
1987, p. 663), “different attributes in different roles or
situations” (Dixon & Baumeister, 1991, p. 364), or
“subselves that differ considerably from one another in
terms of their defining attributes” (Morgan &
Janoff-Bulman, 1994, p. 64). These definitions suggest
that greater H should predict lesser spillover—
spillover being when “feelings and inferences associ-
ated with the originally activated self-aspect spill over
and color feelings and inferences regarding associated
self-aspects” (Linville, 1987, p. 664). However, H does
not measure differences between roles, and therefore is
unlikely to predict spillover.

To appreciate why, imagine that Table 4 shows how
Jack conceptualizes his relationship with his parents,
and imagine Jack has had an upsetting falling out with
his mom. In Example 1, Jack is saying: “How I am
around mom is the same as how I am around dad.” In
Example 3, Jack is saying: “How I am with mom is in
some ways the same as when I am with dad, but some
things are different, too.” In Example 5, Jack is saying:
“How I am around mom is completely different from
how I am with dad.” Intuitively, one would expect
Jack’s upsetting thoughts and feelings about
“me-with-mom” to color his thoughts and feelings
about “me-with-dad” the most in Example 1 and the
least in Example 5. If so, one would want a measure of
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Table 4. Trait × Situation Matrices Illustrating the
Relationship of H to Role Independence

Trait

Situation T1 T2 T3 T4 T5 T6 T7 T8

Example 1  (H = 1.00)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y Y Y N N N N

Example 2  (H = 1.81)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y Y N Y N N N

Example 3  (H = 2.00)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y N N Y Y N N

Example 4  (H = 1.81)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y N N N Y Y Y N

Example 5  (H = 1.00)
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” N N N N Y Y Y Y

Note: H = measure of predictability; Y = yes; N = no.

5The Hinc computations for the examples in Table 4 are shown
here. In Example 1, Hinc = –{.5([1]log2[1] + [0]log2[0]) +
.5([0]log2[0]) + [1]log2[1])} = 0. In Examples 2 and 4, Hinc =
–{.5([.75]log2[.75] + [.25]log2[.25]) + .5([.75]log2[.75] +
[.25]log2[.25])} = .811. In Example 3, Hinc = –{.5([.5]log2[.5] +
[.5]log2[.5]) + .5([.5]log2[.5] + [.5]log2[.5])} = .1.



spillover that is greatest in Example 1, smallest in Ex-
ample 5, and decreases monotonically across the inter-
vening examples. Instead, H is greatest in Example 3
(when the roles are completely independent), and
smallest in Examples 1 and 5 (when the roles are com-
pletely identical or completely opposite). Thus,
self-descriptions that should maximize spillover (such
as Example 1) and those that should minimize spillover
(such as Example 2) yield the same H value. The impli-
cation is clear: Because H does not measure spillover,
the conclusions of dozens of published studies that
have used H to measure spillover are invalid.

How Should Role Similarity be
Measured?

On the basis of the data showing a lack of covariation
between H and an index of feature overlap, which they
called OL, Rafaeli-Mor et al. (1999) also concluded that
H was a poor predictor of spillover. They further sug-
gested that OL might be an appropriate alternative in fu-
ture research on spillover. Although I concur with their
conclusions in general, I question whether OL in partic-
ular will always be the best alternative.

OL is the conditional probability that if a trait is en-
dorsed in one role it is also endorsed in another role,
averaged across all pairs of roles. OL is thus a propor-
tion that can range from 0 to 1. Note that OL defines
similarity only in terms of shared Y responses, so it is
more accurate to call it OLY. The problem with only
considering shared Ys is that (all else equal) simply in-
creasing p(Y) will increase OLY. Consider the exam-
ples in Table 5. In each example the roles are independ-
ent (r = 0), so the probability of endorsing a trait in one
role is independent of whether that trait was endorsed
in another role. In other words, the conditional p(Y)
equals the unconditional p(Y); and so the mean condi-
tional p(Y)—that is, OLY—equals the mean uncondi-
tional p(Y). Specifically, OLY = p(Y) = .25 in Example
1, .5 in Example 2, and .75 in Example 3, even though
in each case the roles are not correlated.

That OLY ignores shared Ns is only a problem if
shared Ns influence perceptions of role overlap or sim-
ilarity. Do they? Although there is consensus that simi-
larity is a function of objects’ common and distinctive
features (Tversky, 1977), there is no consensus as to
what features should enter into that function and how
those features should be weighted. More to the point,
there is no simple formula for computing the relative
impact of shared Ys versus shared Ns.

However, one important predictor is the
diagnosticity principle (Tversky, 1977). The
diagnosticity principle states that features that reduce
more uncertainty—that is, convey more information—
about important classifications should have more
weight in similarity judgments. This principle predicts
that whether shared Ys have more or less weight than
shared Ns depends in part on whether shared Ys are
more or less diagnostic than shared Ns. What deter-
mines diagnosticity? According to information theory,
the more diagnostic feature is the less likely feature.
So, if Ys are relatively common, then shared Ys should
be less diagnostic—and thus receive less weight—than
shared Ns.

For example, if respondents are asked to use any
words in their lexicon to describe different roles, then,
of course, the few descriptors that might be shared by
two roles are much more diagnostic than the thousands
that are not applied to either role, and a measure such
as OLY would be appropriate. In contrast, if respon-
dents are asked (as some were in Study 3) to endorse 8
of 10 positive traits, then they are likely to focus more
on which 2 traits they lack than on which 8 traits they
have. Consequently, whether the positive features they
lack in one role are also lacking in another role may be
a potent determinant of perceived role similarity.

A second potential moderator of the impact of
shared Ys and shared Ns is the tendency for judg-
ments to be more influenced by events than
nonevents (e.g., Brendl, Higgins, & Lemm, 1995;
Fazio, Sherman, & Herr, 1982). Thus, saying “yes” or
saying “no” typically has more weight than not say-
ing “yes” or not saying “no.” So, if people are asked

277

H AS A MEASURE OF COMPLEXITY

Table 5. Trait × Situation Matrices Illustrating Properties of OL

Traits

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

Example 1
Y Y Y Y N N N N N N N N N N N N
Y N N N Y N N N Y N N N Y N N N

Example 2
Y Y Y Y Y Y Y Y N N N N N N N N
Y Y N N Y Y N N Y Y N N Y Y N N

Example 3
N N N N Y Y Y Y Y Y Y Y Y Y Y Y
N Y Y Y N Y Y Y N Y Y Y N Y Y Y

Note: OL = index of features overlap; Y = yes; N = no.



to mark the features that apply to them and not mark
those that do not, then (all else equal) Ys should have
more weight than Ns. Conversely, if people are asked
to mark the features that do not apply and not mark
those that do, then Ns should have more weight than
Ys. If people are asked to mark whether or not a fea-
ture applies—for example, if given a true–false or
agree–disagree response format—then Ys and Ns
should have equal weight.

So, if in the examples in Table 5 respondents ac-
tively asserted “I am … ” or “I am not … ” for each
trait, then (all else equal) shared Ys and shared Ns
should have equal weight. To make this concrete,
imagine that trait T1 is “unassertive” in Example 1 and
“assertive” in Example 3. The shared Y responses in
Example 1 (saying “I am unassertive with mom and
unassertive with dad too”) probably have the same psy-
chological meaning and weight as the shared N re-
sponses in Example 3 (saying “I am not assertive with
mom and not assertive with dad either”). Across all
traits, Examples 1 and 3 are identical, except that the
Ys and Ns are inverted. If the Ys and Ns have equal
weight, this should not affect role similarity. Yet,
whereas OLY = .25 (suggesting low overlap) in Exam-
ple 1, OLY = .75 (suggesting high overlap) in Example
3. The implication is that ignoring shared Ns some-
times can lead OLY to ignore psychologically mean-
ingful sources of role overlap.

Therefore, I recommend that researchers consider
using the following, expanded measure of overlap: S
= wYOLY + wNOLN, where OLN is the mean proba-
bility that if a trait is marked N in one role it also is
marked N in another role (i.e., the analog of OLY for
N responses), and wY + wN = 1. For example, the
weights could be wY = 2/3 and wN = 1/3 (if shared Ys
are deemed twice as important as shared Ns), or they
could be wY = 1/3 and wN = 2/3 (if shared Ns are
deemed twice as important as shared Ys). If shared
Ns are deemed irrelevant (wY = 1, wN = 0), then the
formula would reduce to OLY. If there is no basis for
weighting Ys more or less than Ns (as is true when
Ys and Ns occur with similar frequencies, and both
require active responses), then they would be given
equal weight (wY = wN = 1/2). In this case, S will
give equivalent results as computing the mean r
across all role pairs, which has already been used as a
measure of role differentiation in several studies
(Block, 1961; Donahue, Robins, Roberts, & John,
1993; Locke, 2002).

What Does H Measure That Other
Indexes Do Not?

In sum, for many purposes computing H will be un-
necessary. The critical information in a matrix could
instead be summarized in terms of the number of rows,

the rates of endorsement (perhaps translated into bits in
the form of Harray), and some measure of row similarity.
However, for some purposes, H may still be necessary,
such as when row independence is conceptualized as a
property of the matrix, rather than a property of pairs of
rows. Consider the self-descriptions of Jack and Jill in
Table 6. For both Jack and Jill, all between role rs are
zero, implying that we cannot predict the traits that will
appear in one role from the traits that will appear in
other roles. For Jill this is true, but for Jack it is not.
Jack shows with his wife only those traits that he shows
with both parents or does not show with either parent.
Thus, knowing how Jack is with his mother and father,
one can predict how Jack is with his wife perfectly.
This difference between Jack and Jill is missed by all
measures of pairwise association (such as correlation
coefficients) and all procedures that operate on mea-
sures of pairwise association (such as factor analytic or
multidimensional scaling techniques), but it is cap-
tured by H. For Jill, H = 3, whereas for Jack, H = 2. We
are one bit more certain about how Jack will use a trait
to describe himself.

But what can we conclude from the fact that Jill’s H
is higher? A high H may indicate that Jill is carefully
evaluating each Trait × Situation combination. Or in-
stead it may indicate that Jill is responding randomly.
A high H can result from either effortful or lazy re-
sponding. A low H can result from either effortful or
lazy responding, too. A low H may indicate that a per-
son is simply mindlessly endorsing the same traits in
every situation. Or instead it may indicate that the per-
son is trying to weave the sundry strands of a descrip-
tion into a meaningful pattern. For example, if you
know that Jack and Jill are describing themselves to a
marriage counselor and that T1–T4 are positive and
T5–T8 are negative traits, you will realize that Jack is
implying that the positive behaviors he exhibits with
Jill (T1 and T2) are how he is with everyone, whereas
the negative behaviors he exhibits with Jill (T7 and T8)
are unique to his interactions with her. Jack’s H is
lower because he is linking pieces of his self-descrip-
tion to tell a coherent (and self-serving) story.

278

LOCKE

Table 6. Trait × Situation Matrices Illustrating the
Difference Between H and Measures of Pairwise Similarity

Trait

Situation T1 T2 T3 T4 T5 T6 T7 T8

“Jill”
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y N N Y Y N N
R3: “with spouse” Y N Y N Y N Y N

“Jack”
R1: “with mom” Y Y Y Y N N N N
R2: “with dad” Y Y N N Y Y N N
R3: “with spouse” Y Y N N N N Y Y

Note: H = measure of unpredictability; Y = yes; N = no.



Complexity Versus Differentiation

So, a higher H does not always reflect the amount of
care and effort involved in a self-description, but does it
at least reflect complexity? Although there is no consen-
sus about how to define complexity, most definitions re-
fer to a combination of differentiation and integration
(Suedfeld, Tetlock, & Streufert, 1992). Differentiation
refers to distinguishing elements within a stimulus do-
main. Integration refers to linking or organizing the dif-
ferentiated stimuli. A complex self-description, there-
fore, would distinguish among a number of different
traits and situations (differentiation) and link or orga-
nize those traits and situations in meaningful ways (inte-
gration). Although differentiation does tend to raise H,
integration does not. Indeed, integration may typically
lowerH,as itdidwhenJack linkedhis rolesassonversus
husband.

However, just as H cannot distinguish thoughtful dif-
ferentiation from thoughtless randomness, neither can
H distinguish thoughtful integration from thoughtless
simplification. Neither H nor any other mathematical
formulacanmeasure integration,becauseultimately the
input for a judgment of integration is not numeric but se-
mantic. One cannot extract meaning from a matrix of Y
and N without knowing what each Y and N means.
Therefore, researchers have assessed integration by
having human judges apply detailed coding manuals,
such as those developed by Baker-Brown et al. (1992) or
Woike (1989), to narrative protocols.

Conclusions and Future Directions

In conclusion, when H is computed on a matrix, it
measures the unpredictability or independence of one
part of a matrix from any other part. The problem with
interpreting H is that it confounds three sources of un-
predictability: unpredictability due to the number of
rows in the matrix, unpredictability due to the inde-
pendence among the rows, and unpredictability due to
the rates of endorsement within roles. Therefore, when
research has found effects of H, there is no way to
know whether the effects were due to the number of
rows, the independence of rows, the overall rates of en-
dorsement, or an interaction of those variables. This is
true of any research involving H, regardless of the par-
ticular hypotheses, measures, or analyses involved.

Given that these sources of unpredictability are con-
ceptually and empirically distinct, I recommend distin-
guishing the influence of each source. To study the in-
fluence of rates of endorsement, one could test the
effects of Harray or some variant thereof (see Footnote
2). To study the influence of the number of roles or sit-
uations considered, one could test the effects of R. To
study the influence of role independence, one could
test the effects of H, controlling for R and Harray. Alter-

natively, one could control the number of roles and the
rate of endorsement experimentally, as long as adding
such constraints would not directly or indirectly pre-
vent the expression of important individual differ-
ences. In addition, to study the impact of independence
of particular roles from other roles (or of a particular
set of roles from another set of roles), one could di-
rectly compute and test the effects of Hinc. To study the
impact of role overlap, as opposed to role independ-
ence, one could test the effects of a measure of associa-
tion (such as OL, S, or r).

By clarifying some of the conceptual and method-
ological issues surrounding the use of H, this article
hopefully will facilitate progress on the substantive
issues. For example, some (typically personality psy-
chologists) have claimed that integrated, consistent
selves are healthy, contributing to positive affect, ad-
justment, and role satisfaction (e.g., Block, 1961;
Donahue et al., 1993). Others (typically social psy-
chologists) have claimed differentiated, multifaceted
selves are healthy, buffering the impact of negative
life events (e.g., Linville, 1985, 1987), and offering a
rich repertoire of behavioral responses (e.g., Sande,
Goethals, & Radloff, 1988). Perhaps one reason the
existing literature on self-complexity is inconclusive
is that there are no consistent effects at the level of H
(i.e., overall uncertainty). However, clearer patterns
may emerge once we distinguish among the effects of
the number of traits endorsed, the number of roles ar-
ticulated, the interdependencies among those roles,
and the interactions of these variables.

This article targeted self-complexity research only
because H has been applied most often to that topic.
The problems and solutions presented here pertain to
any data in which a set of attributes is applied to a set of
entities, which is a data structure pervasive in social in-
formation processing research. Consider research on
the self. Any time there are data on multiple attributes
(such as different motives or different attitudes or dif-
ferent behaviors) across multiple entities (such as the
self with different individuals, with different groups, or
in different states of mind), the data can be organized
as the type of matrix analyzed in this article. The same
is true of data on how a person conceptualizes attrib-
utes of another individual across different situations. In
a simple extension to social cognition about a group
(instead of an individual), the entities could be group
members (instead of roles); in this case, a high H im-
plies that attributes of one member may not predict at-
tributes of other members. In a further extension, the
entities could be different groups and the attributes
themselves could be different individuals; in this case,
a high H means that membership information on one
individual or group may not generalize to other indi-
viduals or groups.

Thus, mental representations of social information
can often be modeled as Attribute × Entity matrices, and
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H is just one of many structural properties that can be
computed on such matrices (Scott, 1969). However, we
must be cautious about reifying these properties—as-
suming that because we can compute an index of some
structural property (such as H), it actually is a psycho-
logically meaningful and unitary variable (such as
“complexity”), and not bother to even report the simpler
elements (such as the number of rows or the rates of en-
dorsementwithin rows). Instead,wealwaysshouldcon-
sider how a structural index might be influenced by sev-
eral simplerelements, andhowthoseelementsmayeach
be related to distinct underlying psychological pro-
cesses that have distinct causes and effects. Otherwise,
by only testing the structural properties of information
processing, a potentially productive line of research
may produce only confusion and frustration.
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