Water isotope balance
- Mica Creek

Paul Koeniger, Tim Link, John Marshall

01/08/2007 - Mica Creek Group Meeting
Isotope balance of a forested watershed

Combination of watershed hydrology and isotope methods for an isotope mass balance under consideration of forested treatments (CC, PC, CF)

Water isotope balance (Mica Creek):

\[P \cdot C_P = (E \cdot C_E + T \cdot C_{SW}) + SF \cdot C_R + GWR \cdot C_{SW} \{+/- \Delta SW \cdot C_{SW}\} \]

C: isotope concentration
P: precipitation
E: evaporation
SF: stream flow
T: transpiration
GWR: groundwater recharge
SW: soil water
1. Isotopes in precipitation

- Reference station in Moscow (weekly and monthly)
- Monthly sampling (CC, PC, CF) at Mica Creek
- Snow sampling in winter 2006

2006 mean: -15.2
Winter mean: -16.3

<table>
<thead>
<tr>
<th>Month</th>
<th>Precipitation [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>20</td>
</tr>
<tr>
<td>Nov</td>
<td>30</td>
</tr>
<tr>
<td>Dec</td>
<td>40</td>
</tr>
<tr>
<td>Jan</td>
<td>50</td>
</tr>
<tr>
<td>Feb</td>
<td>60</td>
</tr>
<tr>
<td>Mar</td>
<td>70</td>
</tr>
<tr>
<td>Apr</td>
<td>80</td>
</tr>
<tr>
<td>May</td>
<td>90</td>
</tr>
<tr>
<td>Jun</td>
<td>100</td>
</tr>
<tr>
<td>Jul</td>
<td>110</td>
</tr>
<tr>
<td>Aug</td>
<td>120</td>
</tr>
<tr>
<td>Sep</td>
<td>130</td>
</tr>
<tr>
<td>Oct</td>
<td>140</td>
</tr>
<tr>
<td>Nov</td>
<td>150</td>
</tr>
<tr>
<td>Dec</td>
<td>160</td>
</tr>
<tr>
<td>Jan</td>
<td>170</td>
</tr>
</tbody>
</table>

δ¹⁸O (‰ SMOW):

- **2006 mean:** -15.2
- **Winter mean:** -16.3

Graph:

- ST Mica Creek (waterisotopes.org)
- ST Moscow (waterisotopes.org)
- Moscow weekly
- Moscow weekly-weighed
- Moscow monthly

1. Isotopes in precipitation

- Reference station in Moscow (weekly and monthly)
- Monthly sampling (CC, PC, CF) at Mica Creek
- Snow sampling in winter 2006
Isotopes in snow

- No altitude effect in snow
- Spatial variability vs. LAI
Isotopes in snowmelt

- No altitude effect in snow
- Spatial variability vs. LAI
- Spring snowmelt concentrations differ

"Isotopic composition of snow and snowmelt varies in response to forest management in Northern Idaho" (paper 1)
2. Isotopes in stream flow

- two weirs (snow-melt),
- seven flume sites
- monthly sampling
 at six sites (CC, PC, CF - springs, stream),
2. Isotopes in stream flow
Isotopes in stream flow 2004 - 2006

base flow sampling campaign
15-18 Sept. 2006
Base flow sampling

At 30 sites at Mica Creek

1. Discharge (salt-dilution)

2. Conductivity, silica, water chemistry

3. 18O, 2H and 3H (evtl. 13C, 15N)
Base flow sampling in September 2006

Conductivity (µS/cm) Sept., 15-18, 2006

Discharge (l/s)
Base flow sampling in September 2006
(2) "Isotope hydrological and hydrochemical characterization of base flow at Mica Creek Experimental Watershed, Idaho - USA"
3. Soil water isotopes

- Soil profiles at CC, PC, CF monthly during growing season

-> should represent transpiration

-> need soil water data
3. Soil water isotopes

1 Nov. 2006

(3) "...soil water isotope seasonality and impacts of forest treatments ..."
4. Water isotope balance

- Precipitation
- Stream flow
- Soil water
 Monthly during growing season
 -> should represent transpiration

- Tree-core / Transpiration
 Xylem water from monthly sampling of nine tree cores

- Evaporation
 No water vapor collecting so far
4. Water isotope balance

(4) "Isotopic mass balance of a mesoscale forested watershed, Mica Creek - Idaho"
Conclusions

- Isotopes in precipitation: reference stations in Moscow -> regionalization / sampling ongoing

- Isotopes in snow: variations within treatments

- Isotopes in stream flow, soil water, xylem: sampling / analyzing is ongoing

- Water vapor, separation of evaporation / transpiration needs future work (e.g. cold air drainage,...)