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 There are four basic equations that govern the theory of pure bending.  These are 

derived from analyzing a beam as it is subject to a load P acting at one end.  In our poster 

we cover the four main parameters that apply to this theory, as well as some additional 

information that can be applied to a beam subjected to pure bending. 

 The first relationship is called the strain curvature theory.  As a beam is bent it 

curves around a theoretical O’, known as the center of curvature.  The distance from each 

point on the beam to the center of curvature is called the radius of curvature and is 

designated as ρ, rho.  For small deflections we can say that a small distance on the curve, 

ds, is equal to a small deflection, dx, along the beam and can be defined by dx= ρ*dθ, 

where is the angle of the section.  As a beam is bent it deforms in either tension or 

compression, except for the neutral axis which will remain unchanged.  Using this we can 

determine what the strain will be at any position along the beam.  Taking the radius of 

curvature of a point y1 with respect to the neutral axis, we find that radius=ρ-y1.  We can 

find the new length of this section using L= radius*dθ.  By rearranging these equations 

we come up with L-dx=(-y/ ρ)*dx, where dx is the original length and L is the new 

length.  L-dx gives us the change in length of the beam at position y, and if we divide dx 

out of the second part of the equation we get the change in the length of the beam divided 

by the original length, resulting in a strain.  The final equation comes out to look like:   

ε=-y/ρ. 

 The second equation in our analysis is called the moment-curvature equation.  

Since an element in pure bending is subject to no tensile stress, the only stress acting on a 

member is due to the moment, where the force acting at each point is equal to σ*dA.  We 

know that σ=E* ε (Hook’s law), and that ε =-y/ ρ, from above.  By combining these 
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equations we get that the ∫ (–E/ρ)*y*dA=0, since the sum of the forces is zero.  We also 

know that the internal bending moment created has to be equal to the external moment.  

From this we get that the external moment M is equal to the sum of the moments created 

by σ, thus M = ∫ σ*y*dA, which converts to (-E/ ρ) mulitiplied by the ∫ y^2*dA, which is 

the second moment of the area, or also known as I.  By combining these equations we 

come up with the expression M= (E/ρ)*I, or 1/ρ=M/(E*I).   

 We can derive the strain equation by combining the two relationships that was 

just derived and Hook’s law.  We know that ε=-y/ρ, σ=E* ε, and 1/ρ=M/ (E*I).  First we 

solve for ρ, ρ =-y/ε.  Then we isolate ε, ε= σ/E. By substituting ε into the equation for ρ 

and then ρ into the moment curvature equation E cancels out and we end up with         

σ=-M*y/I.   

 Finally we solve for the internal energy of a beam in pure bending.  We know that 

the energy stored in a beam in bending is dU=(M/2)*dθ.  We already demonstrated that 

dθ = ds/ρ, so we can substitute this into the internal energy equation and get 

dU=(M/2)*ds/ρ.  Next we substituted the moment of curvature equation for ρ and come 

up with the expression dU=M^2*ds/(2*E*I).  Since we know that for small deflections 

dx=ds, we can substitute and integrate the equation to get the energy of a beam in 

bending, U = M^2*dx/(2*E*I).   

 We also included the stress analysis for composite beams in our poster because it 

may be useful information, since composite beams can be used quite often in design.   

 We had three sources for our information.  The primary text we used was the 

James M. Gere, sixth edition, Mechanics of Materials textbook, pages 300-312.  We 

found the information for internal energy on pages 109 and 110 of the Shigley and 



 4

Mischke Mechanical Engineering Design text.  Lastly we used an analysis of pure 

bending handout provided by Edwin Odem.   


