SELECTING THE CORRECT BOLT

Picking Bolt Length and Calculating Bolt Stiffness (kb)

Find the nut height (H). Find the washer thickness (t). Find the thread length (Lt) Pick Preferred bolt length (L). Calculate the unthreaded length of the bolt (Id). ·Calculate the length of the threaded portion in the grip (It). ·Calculate the area of unthreaded portion of bolt (Ad). ·Find the area of the threaded portion of the bolt (At).

Recommended Torque to Achieve Optimum Preload (Clamping Force) Using ARP* Moly Assembly Lubricant

teloa Torque w/30 wt.oil

3.804

6,264

6,264 29

6,948 32

9,276

9 276 51

10.512 57

12,720

12,720

16,992

27 072

6,264

10.680 61

14,220

Fastener Tensile Strength (PSI

14

14

16

28

50

80

82 90

122

125 137

175

179

241

247 273

28

90 109

190,000 (1309 N/mm²)

Torque ARP" M Protoa

11 4,280 15

11

13 4,887

22

23

25

39 10,436

41 10 436 67

44 11,826 63

63 14,310

65 70

95 19,116

99 107

137 24,516

142 24,516

153 27 351

187 30.456

196

212

22

48 71 86

4,280

7,047 7,047 7,817

14,310 15,998

19,116 21,560

30,456

7,047

15,998

or 30-wt. oil - Torque (tt./lbs.) - Preload (lbs.)

170,000 (1171 N/mm²)

Torque w/ARP[®] Moly

10 3.804

10

11 4,344

20

21 22

35

36

39

56

58 62

84

88 95 16,992 19,164

122 21792

126 21,792

136 24 312 196

167 174

189 30,660

20 42

63 77

Torque /30 wt. oil

12

13 14

25

26 28

45

46

50

71

73 80

108

111

122

156

17.4

214

220 243

25

80 97

Thread Siz

and Type

1/4" stud

1/4 - 20

1/4-28

5/16-18

5/16-24

3/8" stud

3/8-16

3/8-24

7/16" stud

1/16-14

7/16-20

1/2" stud

1/2-20

9/16" stud

9/16-18

5/8" stud

5/8-11

5/8-18

8mm stud

10mm stud

11mm stud

12mm stud

5/16" stud

Finding Thread Length (Lt)

Inch series bolts

Lt := 2 D + .25 L≤6 inches Lt := 2 D + .5 L>6inches D is the diameter of the bolt in inches. L is the length of the bolt

Metric series bolts D<48 millimeters

Lt=2D+.25 L≤125millimeter: Lt=2D+12125≤L≤200 Lt=2D+25 L>200

More Calculations

Calculation of the unthreaded length of bolt (ld). Id= (Total length of bolt (L))-(Threaded length of bolt (Lt)) Calculation of the threaded portion of the grip (It). I(t)= (Total length of grip (Lg))-(Unthreaded length of bolt (Id)) Calculation of the area of the unthreaded portion of bolt (Ad).

$$Ad := \frac{(\pi \cdot d)}{4}$$

TABLE 8-2:

The value for the area of the unthreaded portion of the bolt (At) comes from tables

Calculation of bolt stiffness (kb)

E = Modulus of Elasticity Ad = Area of unthreaded portion of bolt

- At = Area of threaded portion of bolt
- It = Thread length
- Id = Unthreaded length of bolt

 \sim

$$kb := \frac{(Ad \cdot At \cdot E)}{(Ad \cdot lt + At \cdot ld)}$$

FINE SERIES (UNF)

TABLE 8-1: Diameters and Areas of COURSE-PITCH and FINE-PITCH Metric Threads (All Dimensions are in Millime ters)

<	COURSE-PITCH SERIES				FINE-PITCH SERIES	
Nominal Major Diameter	Pitch		Minor Diameter Area	Pitch	Tensile Stress Area	
d	P	Ą	A,	P	Ą	A,
1.6	0.35	1.27	1.07			
2	0.4	2.07	1.79			
2.5	0.45	3.39	2.98			
3	0.5	5.03	4.47			
3.5	0.6	6.78	6			
4	0.7	8.78	7.75			
5	0.8	14.2	12.7			
6	1	20.1	17.9			
8	1.25	36.6	32.8	1	39.2	36
10	1.5	58	52.3	1.25	61.2	56.3
12	1.75	84.3	76.3	1.25	92.1	86
14	2	115	104	1.5	125	116
16	2	157	144	1.5	167	157
20	2.5	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	561	519	2	621	596
36	4	817	759	2	915	884
42	4.5	1120	1050	2	1260	1230
48	5	1470	1380	2	1670	1630
56	5.5	2030	1910	2	2300	2250
64	6	2680	2520	2	3030	2960
72	6	3460	3280	2	3860	3800
80	6	4340	4140	1.5	4850	4800
90	6	5590	5360	2	6100	6020
100	6	6990	6740	2	7560	7470
110				2	0100	0000

Note: For those using Newton/meters as a torquing reference, you must multiply the appropriate ft/lbs_factor by 1.356.

220,000 (1515 N/mm³)

Torque w/ARP* Moly Preload

12

13

14 5,430

25 7,830

26 28 7 830

44 11,595

45 11 595

49 13,140

70 15,900

72 78

105 21,240

110 119 21,240 23,955

152 27,240

158

170

208

208 33,840

25 53

79 96

4,755 4,755

8,685

15,900

27,240

33,840

38,325

7,830 13,350

17,775

Torque wioil

16

18

32

32 35

56

89

100

135

138 152

195

217

268

275

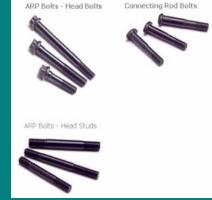
303

32 68

100 122

C	Alexandreal Marian	Threads Per Inch	Transfer Change Area	Menny Discoutes Area	Threads Per Inch	Transle Disease Area	Maria Diamatan Basa
Size	Nominal Major		Tensile Stress Area	Minor Diameter Area		Tensile Stress Area	Minor Diameter Area
Designation	Diameter	N	A,	Ą.	N	A.	A,
0	0.0600				80	0.00180	0.00151
1	0.0730	64	0.00263	0.00218	72	0.00278	0.00237
2	0.0860	56	0.00370	0.00310	64	0.00394	0.00339
3	0.0990	48	0.00487	0.00406	56	0.00523	0.00451
4	0.1120	40	0.00604	0.00496	48	0.00661	0.00566
5	0.1250	40	0.00796	0.00672	44	0.00880	0.00716
6	0.1380	32	0.00909	0.00745	40	0.01015	0.00874
8	0.1640	32	0.01400	0.01196	36	0.01474	0.01285
10	0.1900	24	0.01750	0.01450	32	0.02000	0.01750
12	0.2160	24	0.02420	0.02060	28	0.02580	0.02260
1/4	0.2500	20	0.03180	0.02690	28	0.03640	0.03260
5/16	0.3125	18	0.05240	0.04540	24	0.05800	0.05240
3/8	0.3750	16	0.07750	0.06780	24	0.08780	0.08090
7/16	0.4375	14	0.10630	0.09330	20	0.11870	0.10900
1/2	0.5000	13	0.14190	0.12570	20	0.15990	0.14860
9/16	0.5625	12	0.18200	0.16200	18	0.20300	0.18900
5/8	0.6250	11	0.22600	0.20200	18	0.25600	0.24000
3/4	0.7500	10	0.33400	0.30200	16	0.37300	0.35100
7/8	0.8750	9	0.46200	0.41900	14	0.50900	0.48000
1	1.0000	8	0.60600	0.55100	12	0.66300	0.62500
1 1/4	1.2500	7	0.96900	0.89000	12	1.07300	1.02400
110	1,6000	6	1.40500	1 29400	10	1.69100	1,62100

Diameters and Area of Unified Screw Threads UNC and UNF* (All dimensions are in **Inches**)


COURSE SERIES (UNC)

ARP FASTENER LUBE	Forged t utmost r
It's difficult to determine the amount of torque required to provide the correct preload and damp force of a given fastener. For example – when tightened, dry uncoated fasteners use up about 95% of the applied torque simply by overcoming the friction between the male and female threads. To ensure that all APOP fasteners provide the	than mo which, a nominal use in ci
optimum level of service, the installed residual stress is calculated and verified experimentally using a superior	A
quality lubricant. It is important to note that the friction coefficients of lubricants vary dramatically, making it diffuilt to consistently produce the exact amount of stress within the fastener to damp the components together. That's why ARP6 developed an ultra-consistent bubricant and recommend the use of our premium orade	4
In at s why Arkey developed an ultra-consistent ubricant and recommend the use of our premium grade ASSEMBLY LUBRICANT or THREAD SEALER in order to precisely duplicate the recommended tightening specifications provided with all ARP@ fasteners.	4

 Premium grade Moly base with rust and corrosion inhibitors. Effective lubrication range: -30°F to 750°F. Load range: 500,000 Psi. • Other applications: Primary assembly lube for engine components, press fitting, gear trains and general machinery. Thread Sealer Teflon based v/rust & corrosion inhibitors. Effective range: -30° to 550°F. Sealant range: 10,000 Psi (pressure). Application : delivers a flexible leak-proof seal in aluminum, steel, stainless steel and plastic against coolants, water, gasoline, natural gas and LPG.

NOTE: These products are formulated for use on fasteners. Not recommended for use on rotating components

from 8740 chrome moly, all bolts feature generous under-head radius and rolled threads for the reliability. The threads are rolled after heattreating, which gives them about 1000% longer fatigue life ost bolts, which are threaded prior to heat-treating. Available in the popular High Performance Series, at a nominal rating of 180,000 psi, is a premium replacement for OEM fasteners, or the 200,000 psi al rated Pro Series, application-specific main bolts with reduced wrenching head and are designed for competition applications.

