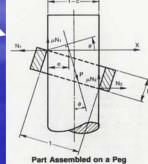
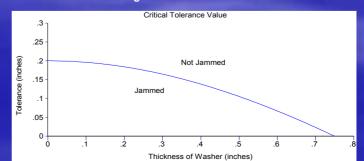

Lest Ye Jam


Problem: Bushings may jam when assembled on pegs, as a result of the two contact points creating more oppositional friction force than the assembly force applied.

Common Jam Scenarios

Battery Lid Assembly
Bushing/Washer being Assembled onto a Peg
Piston Assembly in an Cylinder Sleeve
Multiple Hole alignment
Bolt-Action Rifle
Changing Wheels on a Car

Design Equation for Preventing Jams


By summing forces and moments around the origin, this equation was derived to relate the dimensions of the assembly so a single calculation can be done to pick the correct size parts. As long as the inequality is satisfied the assembly will be jam free.

1+L²>(1-C)²(µ²+1)

- *L* = Thickness of Part being assembled on Peg
- C = Difference in the inside diameter of Part and outside diameter of Peg μ = Coefficient of Friction between the Part and Peg

Example

Graphical representation of a washer jamming on a bolt with a coefficient of friction of 0.75. The line shows the case when the above equation is set equal (where c is at its minimum value for a given L to insure no jamming).

