
 mechanical engineering

```
Mohr's circle can be used to graphically determine:
a) the principle axes and principle moments of inertia of
the area about O
b) the moment and product of inertia of the area with respect to any other pair of rectangular axes x ' and y ' through O
```


> Algebraic Solution Equations
> $\mathrm{I}_{\mathrm{x}}=$ Moment of inertia about x axis
> $\mathrm{I}_{\mathrm{y}}=$ Moment of inertia about y axis $\mathrm{I}_{\mathrm{xy}}=$ Product of inertia
> $\mathrm{I}_{\mathrm{x}}{ }_{\mathrm{x}}=\mathrm{I}_{\mathrm{x}} \cos ^{2} \theta+\mathrm{I}_{\mathrm{y}} \sin ^{2} \theta-2 \mathrm{I}_{\mathrm{xy}} \sin \theta \cos \theta$ $I_{x}^{\prime}=I_{x} \sin ^{2} \theta+I_{y} \cos ^{2} \theta+2 I_{x y} \sin \theta \cos \theta$ $\mathrm{I}_{\mathrm{xy}}=\mathrm{I}_{\mathrm{xy}} \cos ^{2} \theta+0.5\left(\mathrm{I}_{\mathrm{x}}-\mathrm{I}_{\mathrm{y}}\right) \sin 2 \theta$

Graphical Solution Path

- On x-axis $\mathrm{C}=\left(\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}\right) / 2$
- $\left.\mathrm{R}=\left\{\left[\left(\mathrm{I}_{\mathrm{x}}-\mathrm{I}_{\mathrm{y}}\right) / 2\right)^{\wedge} 2\right]+\mathrm{I}_{\mathrm{xy}} \wedge^{\wedge} 2\right\}^{\wedge}(1 / 2)$
- $\mathrm{I}_{\max }=\mathrm{A}=\mathrm{C}+\mathrm{R} \& \mathrm{I}_{\min }=\mathrm{B}=\mathrm{C}-\mathrm{R}$
- Plot points $\left(\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{xy}}\right)$ \& $\left(\mathrm{I}_{\mathrm{y}},-\mathrm{I}_{\mathrm{xy}}\right)$, and draw a line to illustrate original moment of inertia.
- Proceed with analysis as in Mohr's circle for stress to find $\mathrm{I}_{\mathrm{x}^{\prime}}, \mathrm{I}_{\mathrm{y}^{\prime}}$ and $\mathrm{I}_{\mathrm{x}^{\prime} \mathrm{y}^{\prime}}$ at different angles.

