Circle for Noment of Inertia mechanical engineering

Mohr's circle can be used to graphically determine:

a) the principle axes and principle moments of inertia of the area about O

b) the moment and product of inertia of the area with respect to any other pair of rectangular axes x' and y' through O

I_x=Moment of inertia about x axis I_y=Moment of inertia about y axis I_{xy}=Product of inertia = I_x cos² θ + I_y sin² θ - 2 I_{xy} sin θ cos

$$\begin{split} I'_{x} &= I_{x} \cos^{2} \theta + I_{y} \sin^{2} \theta - 2 I_{xy} \sin \theta \cos \theta \\ I'_{x} &= I_{x} \sin^{2} \theta + I_{y} \cos^{2} \theta + 2 I_{xy} \sin \theta \cos \theta \\ I'_{xy} &= I_{xy} \cos^{2} \theta + 0.5 (I_{x} - I_{y}) \sin 2\theta \end{split}$$

Graphical Solution Path

- On x-axis C= $(I_x+I_y)/2$
- R={[$(I_x-I_y)/2$)^2]+ I_{xy}^2 }^(1/2)

- Plot points (I_x, I_{xy}) & $(I_y, -I_{xy})$, and draw a line to illustrate original moment of inertia.
- Proceed with analysis as in Mohr's circle for stress to find $I_{x'}$, $I_{y'}$ and $I_{x'y'}$ at different angles.

