CHECKSHEET FOR PART MINI-PROJECT (Cover page 1 of 2)
NAME: Andrew Hartman

$23 / 24$

Pre-CAD Plan

305

$\$ \mathcal{L}$ Identify Primary \& Secondary Features
$\checkmark /$ Explain Rationale for Location of Origin
$\longleftrightarrow /$ Pick Effective Front/Top/Side Views
$\measuredangle \ll$ Order of Feature Implementation
\checkmark Identify Key Size Dimensions
\downarrow^{α} Keep track of ALL Assumptions

Above and Beyond (Exemplary)

$\checkmark \sqrt{ }$ Exceptional organization and neatness
$\downarrow \not \downarrow$ Analysis of steps/features that could prove difficult
__ Other:

Process Documentation

$\checkmark /$ Completed Summary and Custom tabs ($\mathrm{w} /$ summary tab overlaid on model)
$\sqrt{ } \sqrt{ }$ Illustration of Modeling Steps
W/Kxplanation of Modeling Steps
$\checkmark /$ Rationale for Usage of Sketch Tools
// Expanded and Annotated Design Tree
$\checkmark /$ Compelling Lessons Learned (about this part as well as about SolidWorks)

Above and Beyond (Exemplary)

${ }^{N}$ Exceptional organization and neatness
W Thoughtful use of Reference or Construction Geometry to Simplify Modeling __ Other:

Finished Products (based on finished model and drawing)
lJ Fully-Defined Sketches
\checkmark / \mathcal{C} Correct/Accurate Model
$\checkmark \swarrow$ Attractive Visualization of Final Part (include at least 1 color image)
$X X$ Mass properties shown \longleftarrow
$\checkmark \ll$ Quality Engineering Drawing(s) on Multiple Sheets (use of part
properties, filled out ME template w/ title block items)
Complete/Non-redundant dimension scheme

Above and Beyond (Exemplary)

W Effective use of section view, detail view, or other to assist drawing clarity
W Effective/clean dimension scheme
_O_Other: \qquad

PART MINI-PROJECT SELF ASSESSMENT (Cover page 2 of 2)

NAME: Andrew Hartman
SECTION: 1
DATE: 3/10/2021

1. How many total hours did you spend on the part mini-project, including class time? How many in planning? How many in modeling? How many in documentation?

Planning	1.5	
Modeling	2.5	
Documenting	4	Total 8

2. Using the ME 301 grading rubric (1-4), analyze your performance in the following:

1- incomplete, major deficiencies	3 -complete, meets expectations
2- complete, some deficiencies	4 - exemplary, exceeds expectations

Project Component	Self Rating	Rationale
Pre-CAD Plan - Identify Primary \& Secondary Features - Explain Rationale for Location of Origin - Pick Effective Front/Top/Side Views	3	My identification of key dimensions is hard to follow and the blue outlining of key features is not ideal, but I think I hit - Order of Feature Implementation - Locate/Calculate Needed Dimensions - Keep track of ALL Assumptions
Process Documentation - Summary Tab Overlaid on Model		
- Illustration of Modeling Steps		
- Explanation of Modeling Steps		
- Rationale for usage of sketch tools		
- Annotated (i.e., renamed) Design Tree		
- Lessons/Discoveries (about this part as		
well as about SolidWorks)		

PART MINI-PROJECT SCHEDULE

Day 1 - Kick-Off (JEB 331)

1. Part Mini Project introduction and assignment review.
2. Analyze legacy drawing and ask questions.
3. Pre-CAD: specify planes, origin, axes, reference geometry, and modeling approach. (homework)
4. Begin modeling part. (homework)
5. Log notes/assumptions you make about your part. (homework)
6. Inventory additional consulting questions you would like answered. (homework)

Days 2 \& 3 - Computer Lab Consulting (JEB 331)

7. Bring hard copy and electronic documents/files to class on flash drives.
8. Share modeling/drawing rationale and progress to date.
9. Actively participate in individual/group consultations and problem solving.
10. Finish SW model and mass/center-of-mass calculations. (homework)
11. Finish SW drawing(s) w/dimensions and annotations. (homework)
12. Have someone check your drawing and sign off in the title block. (homework)
13. Prepare a complete documentation package. (homework)
a. pre-CAD plan
b. process documentation
c. finished products

Day 4 - Submit Entire Package at beginning of class March 11

1) I will begin by creating a sketch on the top plane to use for the main body and upper ring. It is outlined in blue in the lower left hand side. I plan to keep the origin at the center of the cylinder shaft. All of the corners will be created without fillets which will be added after the revolve. The only curve will be the one near the center below the
2) After creating the initial revolve I will create the bass extrude of one fin to connect the lower portion of the revolve to the upper portion. The dimensions in the upper right sketch on the drawing provide exactly how to draw this piece in order to be fully defined. I will extrude up the face of the upper ring portion.

16 mm piece which has a dimension of " $r=12$ ". For this I plan on creating a tangent arc but I do not know the best way to make it go in first before arcing out. This is the most critical and also the most difficult sketch of all of them. Making sure to draw the sketch in the correct shape and proportions when beginning will help reduce errors when dimensioning it afterwards.
3) Once the fins have been extrude I need to add the required fillets. No fillet dimensions are given, but based on size relative to the other dimensions I think the fillets on the connection between the fins and the other rings have a radius of about 1.5 mm .
5) The center edge of the piece where the angled piece meets the lower ring needs a fillet with a specified 24 mm radius.
7) The edges of the lower ring look to have multiple different fillets. I have marked my assumed dimension for each.
4) Once the fillets have been added they will be ready to circular pattern. There are 14 fins, equally spaced around the circle. This will be easy to accomplish using any of the circles of the revolve as the direction reference.
6) All of the edges of the upper ring above the fins have fillets on the edges. Based on size relative to other dimensions I will assume this is a 1 mm fillet.
8) In order to create the cone for the shaft and the keyway I will use a lofted cut. On the upper face of the center piece I will draw the circle and keyway sketch shown on the right of the page and then on the lower face of the center piece I will draw the smaller circle, but same keyway dimension, sketch shown to the left of the lower right view. These will then be loft cut between. The conicity will be defined by the two diameters of the circles, which works out to be the same as the specified 16% conicity.
9) The 6 M 7 holes around the backside of the part will be created using a Hole wizard with a M7 Tapped hole to the specified depth. In order to cut away the first 2 mm of thread I am going to follow up on each hole with a Cut-extrude of a 7 mm circle do a depth of 2 mm .
11) The final step will be to create the two M10 holes using a hole wizard tapped hole. These do not look like they have the threads cut away and look as if they are equally spaced between the other hole

The dimensions that I felt were key dimensions within each part of the given drawing I underlined in blue. These are what I am going to use to define my sketches.

Assumptions:

- The " $r=12$ " circle in my first step is tangent to the angled piece of the revolve and the 16 mm straight edge.
- That the fin has a radial segment as the back edge instead of being horizontal because it is drawn on a 286 mm diameter circle.
- That the edges of the fins that connect into the lower and upper rings are all 1.5 mm radius fillets.
- The fillets of the upper ring's edges are all 1 mm based on the size of the sketch.
- The outer edge of the lower ring has a 4 mm fillet, the inner edge has a 2 mm fillet, and the upper inner edge has a 7 mm fillet based on the size of the curves in the sketch.
- The keyway has a height dimension given as " 3 ?" which I am going to assume is just 3mm but could vary based on the key used. I will make it a global to be able to change later.
- The M10 holes are equally spaced between the two closest M7 holes and do not have the first 2 mm of thread cut away.

Process Documentation:

Summary Information		-	\square	\times
Summary Custom Configuration Specific				
Author: Keywords: Comments:	Andrew Hartman			
	Mini Part, Rotor, ME301, Tractor			
	Mini-Part project. Re-created rotor from an old italian tractor engine. ME301. Tapered axel shaft and $3 \times 10 \mathrm{~mm}$ keyway modifiable by global variables for different key depths.			
Title:	MP_Andrew_Hartman			
Subject:				
Statistics Created: Thursday, March 4, 2021 8:02:37 AM Last Saved: Thursday, March 11, 2021 3:13:51 PM Last Saved By: Ironm Last Saved With: SOLIDWORKS 2020				
	OK	Cancel	Help	

［1）Part1（Default \ll Default＞＿Displa
－（a）History
（2）Sensors
－A Annotations
－ 0 Solid Bodies（1）
－［̄］Equations
$\stackrel{\circ}{\circ}=$ Material＜not specified＞
［i］Front Plane
［1］Top Plane
［7］Right Plane
\bigsqcup Origin
－Main Body Revolve

$$
\square_{\text {Sketch1 }}
$$

－Fin Extrusion
Sketch3
（1）FinFillets
5r Fin Circ Pattern
－ 24 mm Large Fillet
Q Upper ring Edge Fillets
Lower Ring small edge fillets
（B）Lower Outer Edge Fillet
（1）Inner Large Fillet
－ 90 Shaft and Keyway CutLoft

$$
\square_{\text {Sketch5 }}^{\text {Sketch4 }}
$$

－［0］M7x 1．0 Tapped Hole2
$\Sigma^{(-) \text {Sketch6 }}$
$\square_{\text {Sketch7 }}$
Hole Thread3
－（回 M7 2mm Removed Thread

\square Sketch8

［気 M7 CirPattern
－（远）M10x1．0 Tapped Hole1

\square	Sketch9
Sketch10	

Summary Information
Summary Custom Configuration Specific

BOM quantity：

	Property Name	Type	Value／Text Expression	Evaluated Value	\square
$\mathbf{1}$	Description	Text	Tractor Piece，Mini－Part	Tractor Piece，Mini－Part	\square
$\mathbf{2}$	PartNo	Text	01	01	\square
$\mathbf{3}$	Revision	Text	1	1	\square
$\mathbf{4}$	Material	Text	Alloy Steel	Alloy Steel	\square
$\mathbf{5}$	UnitOfMeasure	Text	mm	mm	\square
$\mathbf{6}$		$\boxed{ }$			

The sketch for the base revolve was the most complicated portion to implement. Most of the width dimensions are done based on a centerline at the origin to ensure they are dimensioning the diameter. I had initially planned to only include the curve of the 24 mm circle but added in the fillet under the bottom edge. It had a radius of 2 mm but had a dimension to the upper inner portion of it from the bottom as 3 mm . So, I added a 1 mm vertical piece before adding a tangent arc with a radius of 2 mm . The center of the piece, where the hole and keyway will eventually go was left empty to use a lofted cut afterwards.

The majority of the straight lines were either horizontal or vertical, the ones that weren't I made sure to make parallel to each other and provide the appropriate dimensions to get the correct angles.

Before I had added the 24 mm tangent arc circle to create the curve I had dimensioned down 16 mm . This caused the vertical line to not meet up with the circle, so I ended up deleting the 16 mm dimension and extended the line to the curve. Instead of 16 mm the line is now 18 mm .

The next feature was adding fillets to the edges of the upper ring. Based on the drawing, I assumed all of the fillets were the same and added 1 mm fillets to all of the edges.

Along the edge closest to the back of the fins as well as the lower inner edge I added 1.5 mm fillets.

Along the lower outside edge I added a 4 mm fillet based on the drawing.

I also added a 24 mm fillet at the base of the inner cone as called out in the drawing.

Finally, I added a 7 mm radius fillet on the underside edge opposite of the 24 mm fillet.

		DIMENSIONS ARE IN MILLIMETE THIRD ANGLE PROJECTION © Θ	es Project Title	
	[scancok Tractor Piece, Mini-Part		UNIVERSITY OF IDAHO ME DEPARTMENT	
	MiniProject			1

SOLIDWORKS Educational Product. For Instructional Use Only.

I ran into an error and crashed anytime I tried to enter the "title block fields" to move the dimensions callout after changing it to millimeters. This meant that I was unable to move it so that millimeters didn't cross the cell's edge.

