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ABSTRACT Home-range models implicitly assume equal observation rates across the study area. Because this assumption is frequently

violated, we describe methods for correcting home-range models for observation bias. We suggest corrections for 3 general types of home-range

models including those for which parameters are estimated using least-squares theory, models utilizing maximum likelihood for parameter

estimation, and models based on kernel smoothing techniques. When applied to mule deer (Odocoileus hemionus) location data, we found that

uncorrected estimates of the utilization distribution were biased low by as much as 18.4% and biased high by 19.2% when compared to

corrected estimates. Because the magnitude of bias is related to several factors, future research should determine the relative influence of each of

these factors on home-range bias. ( JOURNAL OF WILDLIFE MANAGEMENT 71(3):996–1001; 2007)
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Accurate depiction of animal home ranges is a significant
component of wildlife research and management. Home
ranges have been used to gain insight into important
resources (Marzluff et al. 2004), predator–prey relationships
(Norbury et al. 1998), and competition (Minta 1992), as
well as social pressures and mating systems (Conner et al.
1999). Because direct observation of the home range is
usually impossible or impractical, home ranges are typically
modeled from a sample of observations used to estimate the
probability that the animal occurred in an area during a
specified period of time (i.e., utilization distribution).

The sample of observations may be obtained using a
variety of techniques, including direct observation of marked
individuals, as well as the more common techniques of
radio- and Global Positioning System (GPS) telemetry.
Because the utilization distribution is estimated from a
sample, its accuracy can be affected by statistical character-
istics of the sample including independence of locations,
sample size, measurement error, and observation rate
(Samuel and Fuller 1994, Garton et al. 2001, Kernohan et
al. 2001).

The most prominent sampling concerns in the wildlife
literature have been serial correlation and sample size, and
several authors have suggested appropriate sampling designs
for dealing with these problems (Samuel and Fuller 1994,
Otis and White 1999, Garton et al. 2001, Kernohan et al.
2001). Two sampling concerns that have received compa-
rably less attention are measurement error and observation
bias. Measurement error occurs when the true location of
the animal is different from the estimated location, with the
general result being decreased power of subsequent analyses
(White and Garrott 1990). Although procedures for
mitigating measurement error of telemetry data have
received some attention (e.g., Samuel and Kenow 1992,
Anderson-Sprecher 1994), likely a more significant problem
for estimating the utilization distribution is observation bias.

Current home-range models implicitly assume an equal
probability of obtaining a location, given one is attempted,
in every part of the animal’s home range. However,
numerous studies have shown a marked difference in these
probabilities (e.g., Moen et al. 1996, Johnson et al. 1998,
D’Eon et al. 2002). Although the vast majority of studies
have shown observation bias for GPS telemetry, it is likely
that other methods for gathering location data may be
biased as well (Rodgers 2001). When home-range models
fail to incorporate observation bias, the resulting estimates
and inferences based on these estimates will be biased.
Therefore, we describe techniques for explicitly incorporat-
ing the probability of obtaining a location into many home-
range models so that researchers can correct home-range
models for observation bias and determine the relative
impact of this bias on home-range estimates.

CORRECTING HOME-RANGE MODELS

Observation bias occurs when an attempt to gather location
data on an animal is unsuccessful. Failure to obtain a
location may result from equipment failure, position of the
radiotransmitting antenna, or position of the GPS-receiving
antenna. In addition to these factors, researchers have shown
certain physiographic characteristics of the animal’s location
to affect observation rates (Dussault et al. 1999, D’Eon et al.
2002, Frair et al. 2004). Field studies have shown substantial
variation in observation rates across study sites, ranging from
13% to 100% (Moen et al. 1996, Obbard et al. 1998,
D’Eon et al. 2002, Frair et al. 2004). Because observation
rates are often related to physiographic characteristics,
researchers have successfully used spatially explicit covariates
(h) to model the observation rates across a study site [ p̂(x,
y)jh], where p̂ is the estimated probability of successfully
collecting a location at (x, y), given one was attempted (e.g.,
Johnson et al. 1998, D’Eon et al. 2002, Frair et al. 2004).
These estimated observation rates (p̂) serve as the basis for
correcting home-range models for observation bias.

Two approaches for correcting observation bias include1 E-mail: horn8262@uidaho.edu
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weighting and imputation (Cochran 1983). Weighting
methods use only the data that were collected and correct
observation bias by assigning a weight or inflation factor to
each unit in the sample. Imputation methods correct
observation bias by inserting values for missed measure-
ments. In general, researchers use weighting methods for
unit nonresponse (i.e., all data are missing from the intended
sample unit), whereas researchers use imputation for item
nonresponse (i.e., some measurements are missing from the
intended sample unit; Little 1986). Because nonresponse in
the context of home-range estimation deals with complete
loss of data (i.e., both x and y coordinates) from a sample
unit, we describe methods for correcting home-range
models based on weighting.

We suggest corrections for 3 general types of home-range
models. The first is parametric models in which researchers
estimate parameters using least squares, including the
bivariate circular normal (Calhoun and Casby 1958) and
the generalized bivariate normal (Jennrich and Turner
1969). The second is parametric home-range models in
which researchers estimate parameters using maximum
likelihood, such as the 2-mode bivariate normal mix (Don
and Rennolls 1983, Horne and Garton 2006a) and the
bivariate exponential power (Horne and Garton 2006a).
The last type includes nonparametric models based on
kernel smoothing techniques (Worton 1989).

Correcting home-range models is relatively straightfor-
ward once researchers have constructed an appropriate
model of observation rates [i.e., p̂(x, y)] in the study area
(see Johnson et al. 1998, D’Eon et al. 2002, Frair et al. 2004
for examples). Researchers assign each individual location i a
weight wi computed as the reciprocal of the probability of
being included in the sample wi ¼ 1/p̂i (Lohr 1999:265).

For the bivariate normal home range, researchers estimate
the bias-corrected model using a weighted mean l̂w and
covariance matrix Ŝw:

l̂w ¼
Xn
i¼1

wi

 !�1
3
Xn
i¼1

wixi;

Ŝw ¼
Xn
i¼1

wi

 !
1� 1

n

� �" #�1
3
Xn
i¼1

wiðxi � l̂wÞðxi � l̂wÞ0;

where x is a vector of x, y coordinates from n locations (West
1979). Researchers estimate the circular normal home range
similarly with equal variances in the x and y dimensions.

Researchers use a weighted likelihood function to correct
home-range models that use maximum likelihood to
estimate parameters. Under simple random sampling with
no observation bias (i.e., all N locations are fully observed),
researchers would maximize the log-likelihood function

L ¼
XN
i¼1

ln½ f̂ðxiÞ�

to find parameter estimates where f̂ is a probability density
function describing the home range. When there is

observation bias, a subset of locations (n) is observed from
N. Researchers can obtain an estimate of the complete data
log-likelihood, using only the observed locations, by weight-
ing them inversely proportional to their probability of being
included in the sample (Lawless et al. 1999:420–421):

~L ¼
Xn
i¼1

wiln½ f̂ðxiÞ�:

Because ~L is an estimate of the log-likelihood, it is
generally referred to as pseudolikelihood. Researchers find
parameter estimates by maximizing this weighted pseudo-
likelihood function.

Researchers can correct kernel home-range models for
nonresponse bias by increasing the volume of individual
kernels by wi (Jones 1991). Thus, the general weighted
kernel density estimate is

f̂kernelðxÞ ¼
Xn
i¼1

wi

 !�1
3
Xn
i¼1

wiKhðx� XiÞ;

where K is a symmetric probability density function. When
researchers use a circular bivariate normal for K, the
weighted kernel estimate is

f̂kernelðx; yÞ ¼
Xn
i¼1

wi

 !�1
3
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wi
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2h2
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where di is the distance of the ith observation from the x, y-
coordinate and h is the smoothing parameter. We suggest
using likelihood cross-validation (CVh) to choose h (Horne
and Garton 2006b), with the kernel estimate at each hold-
out location constructed using a weighted kernel.

EXAMPLES

To illustrate the effect of observation bias on estimates of
the utilization distribution, we first defined a true distribu-
tion of space use as a 1-dimensional normal distribution
with mean¼ 6 and standard deviation¼ 2. We generated 2
sets of locations where n ¼ 131. The first represented an
unbiased sample (i.e., no observation bias). For the second,
we created a biased sample by simulating the effect of
different location-acquisition probabilities in different parts
of the sample space. For the range 3 � x � 4, the
probability of obtaining a location was 1 (i.e., high success
rate for obtaining a location); for the range 5.5 � x � 6.5,
the probability was 0.33 (i.e., low success rate); and the
remainder received a probability of 0.8. We used a one-
dimensional fixed kernel with CVh choice of smoothing
parameter to estimate the true distribution with 1) unbiased
data, 2) biased data and an uncorrected kernel, and 3) biased
data and a weighted kernel. We chose the normal
distribution and the parameter values for convenience and
to reflect typical success rates and sample sizes.

The kernel estimate using the unbiased data provided an
estimate similar to the true distribution, although we
expected some discrepancies because we are using a finite
sample to estimate the true distribution (Fig. 1). However,
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when we used data biased by varying levels of acquisition

probability, the kernel estimate was substantially different

from when we used unbiased data (Fig. 2). When we

corrected the kernel model for observation bias by weighting

individual kernels, the estimate using the biased sample was

nearly identical to the estimate using the unbiased sample

(Fig. 2).

As a second example, we estimated the utilization

distribution of a mule deer (Odocoileus hemionus) at Starkey

Experimental Forest in LaGrande, Oregon, USA, using 3

home-range models (i.e., bivariate normal, 2-mode bivariate

normal mix, and fixed kernel). For each home-range model,

we estimated 1) an uncorrected utilization distribution (i.e.,

assumed equal observation rates across the animal’s range)

and 2) a bias-corrected distribution (i.e., used weightings to

correct for unequal observation rates). We obtained

weightings from a model of observation rates developed by

Johnson et al. (1998), with individual weightings (wi)

ranging from 1.34 to 2.34 (location data and weightings for

mule deer 930318D03 can be obtained from http://

www.fs.fed.us/pnw/starkey/).

We quantified the proportional difference in the estimated

probability-of-occurrence between bias-corrected
�
f̂ðx; yÞc

�
and uncorrected

�
f̂ðx; yÞu

�
home ranges using Relative

Bias(x, y) ¼
�
f̂ðx; yÞu � f̂ðx; yÞc

�
=f̂ðx; yÞc.

Positive values of Relative Bias(x, y) indicate areas where

the uncorrected model overestimated the probability of

occurrence, while negative values indicate underestimates.

All home-range models showed differences between

estimates of the utilization distribution uncorrected for

observation bias and those corrected for spatially varying

observation rates. However, the amount of difference varied

spatially across the home range and was dependent on

home-range model (Fig. 3). Of the 3 home-range models

we considered, the bivariate normal model was least affected

by unequal observation rates, with the uncorrected model

relative bias ranging from �0.25% to 10%. The 2-mode

bivariate mix and fixed-kernel home-range models had

similar ranges of relative bias ranging from �14.2% to

19.2% and �18.4% to 16.8%, respectively.

DISCUSSION

Habitats used by wildlife are typically heterogeneous in
terms of terrain and vegetation attributes. Because these
habitat attributes affect our ability to collect biotelemetry
data, observation rates are frequently unequal across the
landscape. This results in a systematic omission of locations
in portions of the home range and has the potential to bias
subsequent analyses of space use. Recognizing this problem,
several researchers have sought to correct resource selection
analyses for observation bias by adjusting estimates of
habitat use (e.g., Johnson et al. 1998, D’Eon 2003, Frair et
al. 2004). Models of the utilization distribution are also
based on estimates of space use, and our results demonstrate
that they can be biased by unequal observation rates as well.
The methods presented here, based on weighting individual
locations, provide the first approach to correct current
home-range models for observation bias.

If home-range estimates are not corrected for observation
bias, subsequent analyses and inferences based on these
estimates have the potential to be biased. For example,
Marzluff et al. (2004) recently suggested methods to
determine resource selection by animals based directly on
estimates of the utilization distribution. Their analysis
assumed that habitats with many locations per area are used
more frequently than habitats with few locations. However,
a relatively dense cluster of locations may be the result of
high observation rates in that area and not necessarily a
higher frequency of use. Without correcting models of the
utilization distribution for unequal observation rates,
researchers would be unable to differentiate between areas
of actual high use versus areas of low use with high
observation rates and vice versa.

Although there is potential for incorrect inference based
on biased home ranges, the frequency at which this occurs
will depend on the magnitude of the difference between
biased and unbiased home-range estimates. In addition to
our mule deer example, we estimated corrected and
uncorrected home ranges for several other mule deer, elk
(Cervus elaphus), and black bear (Ursus americanaus). These
preliminary investigations suggested that the magnitude of
the difference depends, at least in part, on 1) the magnitude
of the difference in observation rates across the home range,
2) the extent to which areas of similar probabilities are

Figure 1. Fixed-kernel density estimate of a one-dimensional normal
distribution with mean ¼ 6 and standard deviation¼ 2.

Figure 2. Corrected and uncorrected kernel density estimates used to
illustrate the effect of observation bias on estimates of the utilization
distribution.
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aggregated in space, 3) the home-range model, and 4)
sample size. Future research should seek to determine the
relative effect of each of these factors on the magnitude of
the difference between uncorrected and corrected home-
range models. Until this research is conducted, we warn of
certain conditions that will lead to greater bias.

First, home-range estimates will have greater bias if there
are areas with very low observation rates (p � 0.5), as well as
areas with high observation rates (p ’ 1). Approximately
equal observation rates, even if they are low, will not lead to a
substantial difference between corrected and uncorrected
home-range models. Several studies have developed models
of observation rates for a variety of environmental conditions
(see section on correcting home-range models). We suggest
researchers review these and other studies documenting
observation rates, with similar equipment, to determine if
their study area is likely to have a wide range of observation
rates.

Second, greater bias will occur if areas of low observation
rates are aggregated in one part of the home range while
areas of high observation rates are aggregated in other parts.

The degree to which observation rates are aggregated within
a home range depends on the extent of the home range
relative to the patchiness of areas with similar observation
rates. Home-range estimates will be more biased as patches
of similar observation rates become more aggregated (Fig.
4). We found that black bear home ranges in Olympic
National Park, Washington, USA, were generally quite
large relative to the extent of areas with similar observation
rates. Therefore, substantially different observation rates
were not aggregated in large, continuous parts of the home
range. The result was locations with large weights were
interspersed with locations with small weights. In contrast,
mule deer home ranges were generally smaller and thus
incorporated relatively large, more continuous, areas of
similar observation rates. In this case, we would expect
observation bias to have a greater effect on mule deer home
ranges than on black bear home ranges.

The role of home-range model and sample size in
determining the magnitude of the difference between biased
and unbiased home-range estimates is less predictable.
Different home-range models will likely be more sensitive to
observation bias than others. In our mule deer example, the
bivariate normal was least affected by observation bias
compared to the other 2 home-range models, especially if
we excluded the outer contours. However, we caution
against extrapolating this result to other situations and
suggest future research should address the susceptibility of
different home-range models to observation bias. As for the
effect of sample size, the method we outlined is based on
weighting observed locations. If observation rates are low
enough in certain areas and sample size is inadequate, these
areas may be void of locations, in which case the corrections
we suggested would fail to compensate for missed locations.

The bias corrections we suggest require an a priori model
of observation rates for the study area. However, developing
these models may require a substantial investment of
resources. Therefore, it is important to determine the
susceptibility of each particular study to observation bias.
Studies conducted in areas with extensive habitat hetero-
geneity including dense vegetation; open areas and steep
topography are prone to more observation bias than sites
with relatively flat terrain and homogenous vegetation.

If researchers suspect that significant observation bias will
affect their results, it would be prudent to conduct a pilot

Figure 3. Proportional difference between uncorrected home-range models
and models corrected for observation bias. Outer boundary represents 98%
cumulative probability contour of corrected home range.

Figure 4. Three example landscapes (a–c) depicting the interaction between
home-range extent (i.e., boundary of landscape) and patchiness of areas
with low (gray) and high (black) observation rates. Home-range estimates
become more biased as patches of similar observation rates become more
aggregated (a to c).
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study to estimate the magnitude of bias and its effects on
subsequent analyses. Researchers can either develop a model
of observation rates specific to their study site or use a
surrogate model developed with similar equipment under
similar environmental conditions. Researchers can then use
these models to assign weights to animal locations. By
applying the corrections we present, researchers can deter-
mine the relative effect of observation bias on their analyses.

To this point, we have discussed unequal observation rates
under the premise that they were extrinsic to the researcher’s
control. However, the methods we introduce can be applied
to intentional differences in observation rates. For example,
often researchers are more likely to collect radiotelemetry
data during daylight hours as opposed to 24-hour sampling
(Beyer and Haufler 1994). This type of sampling would bias
estimates of the utilization distribution high in areas used
during diurnal periods and low during nocturnal periods. By
weighting locations collected under different sampling
intensities, researchers could correct these unequal observa-
tion rates using the methods we present. For example, if a
study was designed to spend half the effort collecting
locations at night as during the day, then an unbiased
utilization distribution could be estimated by weighting
nocturnal locations twice as much as diurnal locations. More
generally, this approach could potentially be applied to a
variety of sampling designs by relating sampling effort to the
probability of obtaining a location (see Cochran 1977).

MANAGEMENT IMPLICATIONS

Wildlife management decisions are often based on estimates
of animal space use, and much work has been devoted to
developing new techniques and statistical models that more
accurately depict an animal’s true use of space. However, if
researchers use estimates of space use that are biased by
unequal observation rates, this might lead to erroneous
management decisions. Thus, it is critical that researchers
identify the level of observation bias in their study and
mitigate any substantial bias using the methods we presented.
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