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INTRODUCTION 

Wildlife management programs must be based 
on quality scientific investigations that produce 
objective, relevant information; and quality science is 
dependent upon carefully designed experiments, 
estimates, comparisons, and models.  This chapter 
provides an overview of the fundamental concepts of 
wildlife research and study design, and is a revision of 
Ratti and Garton (1994) and Garton et al. (2005).   

 
Emergence of Rigor in Wildlife 

Science 

Wildlife science is a term the wildlife 
profession has only recently nurtured.  Our profession 
of wildlife conservation and management was built on 
natural-history observations and conclusions from 
associations of wildlife population changes with 
environmental factors such as weather, habitat loss, or 
harvest.  Thus, we have a long tradition of wildlife 
management based on “laws of association” rather than 
on experimental tests of specific hypotheses 
(Romesburg 1981). 

Although Romesburg (1981, 1989, 1991, and 
1993) and others (Steidl et al. 2000, Anderson 2001, 
Anderson et al. 2003, Belovsky et al. 2004) have been 
critical of wildlife science and resulting management, 
the wildlife biologist is confronted with tremendous 
natural variation that might confound results and 
conclusions of an investigation.  Scientists conducting 
experiments in cell-biology and biochemistry have the 
ability to control variables associated with an 
experiment, isolating the key components, and 
repeating these experiments under the exact same 
conditions to confirm their results.  They also have the 

ability to systematically alter the nature or level of 
specific variables to examine cause and effect. 

The wildlife scientist often conducts 
investigations in natural environments over large 
geographic areas making it difficult to control 
potentially causal factors.  Responses, such as density 
of the species in question, are simultaneously subject to 
the influences of factors such as weather, habitat, 
predators, and competition; factors that may change 
spatially and temporally.  Thus, rigorous scientific 
investigation in wildlife science is challenging and 
requires careful design (Steidl et al. 2000).  

 
  
 

Experimental vs. Descriptive 

Research 

Most wildlife research prior to 1985 was 
descriptive.  Experimental research is the most 
powerful tool for identifying cause and effect, and 
should be used more in wildlife studies.  However, 
descriptive natural-history studies, field studies, and 
carefully designed comparisons based on probability 
sampling continue to be useful.  Descriptive research 
is an essential, initial phase of wildlife science, and can 
produce answers to important questions, but must be 
expanded to embrace interacting causes and variable 
results.   

Descriptive research often involves broad 
objectives rather than tests of specific hypotheses.  For 
example, we might have a goal to describe and analyze 
gray partridge (Perdix perdix) breeding ecology.  Thus, 
we might measure characteristics of nesting habitat, 
clutch size, hatching success, brood use of habitat, food 
habits of chicks and adult hens, and mortality due to 
weather events and predators.  From this information, 
we can learn details of gray partridge biology that will 
help us understand and manage the species. If we 
observe that 90% of gray partridge nests are in 
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vegetation type “A,” 10% in vegetation “B,” with none 
in “C” and “D,” we are tempted to manage for 
vegetation type “A” to increase nesting density.  
However, many alternatives must be investigated.  
Possibly vegetation type “A” is the best available 
habitat, but gray partridge experience high nest 
mortality in this type.  Maybe vegetation type “X” is 
the best habitat for nesting, but it is not available on 
our study area.  What vegetation types do gray 
partridge in other regions use?  How does nest success 
and predation differ among regions with differing 
distributions of vegetation types, species of predators 
present, gray partridge densities and climatic 
conditions?  With answers to these questions we can 
begin to see that defining quality nesting habitat is 
complex.   

Combining descriptive studies with other 

studies published in the scientific literature should 
provide sufficient information to develop a research 
hypothesis (i.e., theory or conceptual model, Fig. 1.1) 
that attempts to explain the relationship between 
vegetation type and nesting success of gray partridge.  
Such models are general, but can help define specific 
predictions to be tested to examine validity of the 
model.  These predictions can be stated as hypotheses.  
We can test hypotheses by gathering more descriptive 
observations or by conducting an experiment (Fig. 1.1) 
in which manipulated treatments are compared with 
controls (no treatment) to measure magnitude of 
change (+ or -) resulting from experimental treatments.  
Random assignment of plots to treatment and control 
groups dramatically increases our certainty that 
measured differences are due to treatment effects rather 
than some ancillary factor.  

 
 

 
Fig. 1.1.  Circular nature of the scientific method where data are synthesized inductively to develop theories which 
form the basis for deductively-derived predictions and hypotheses that can be tested empirically by gathering new 

data with experiments, new observations, or models (modified from Ford 2000:6). 
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Consider again the gray partridge study and 
assume we developed a theory (Fig. 1.1) that gray 
partridge adapted to be most successful at nesting in 
areas resembling their native habitat in Eurasia with its 
natural complement of predators, food sources, and 
vegetation cover.  From this theory we predict that 
partridge nesting success in grasslands in North 
America would be highest in undisturbed native 
prairie, resembling native, Eurasian gray partridge 
habitat and least successful in highly modified 
agricultural monocultures of corn, wheat, etc.  We then 
formulate the hypothesis that gray partridge nesting 
density and nest success are higher in areas dominated 
(e.g., >75% of the available landscape) by native 
prairie than in areas dominated by cultivated fields of 
corn or wheat.  The strongest test of this hypothesis we 
could perform would involve a manipulative 
experiment (Fig. 1.1) for which we must establish a 
series of control and experimental study plots.  Our 
study plots would be randomly chosen from large 
blocks of land where agricultural practices have not 
changed in recent years, which contain the types of 
agricultural practices common to the region where we 
want to apply our findings.  Some of these study plots 
(commonly 50%) will be randomly selected to act as 
control plots and will not change throughout the 
duration of the study.  On the experimental plots (the 
remaining randomly selected plots within the same 
region as our control plots), cultivated fields will be 
planted to native prairie grass to test the validity of our 
hypothesis and predictions regarding the effect of 
habitat on gray partridge nesting.  This process is 
difficult, because it requires large blocks of habitat, 
cooperation from landowners, several years to establish 
native prairie grass on the experimental plots, and 
additional years of study to measure the response of 
gray partridge to vegetative changes.  The comparison 
between control and experimental plots will provide a 
basis to reject the null hypothesis of no effect so we 
can conclude that increasing cover of native prairie 
grass, which could be within Conservation Reserve 
Program (CRP) fields in agricultural areas, will 
increase nesting density and success of gray partridge.  
If we fail to reject the null hypothesis we cannot draw a 
firm conclusion since it might be due to insufficient 
sample size.  If other studies have already shown 
higher nest success in areas of grass or CRP, then we 
must move beyond the potentially "silly null 
hypothesis" of no effect of grass cover (Johnson 1999, 
Läärä 2009).  Instead we should focus on estimating 
the magnitude of effects from management efforts 
directed at gray partridge nesting success so that we 
can build predictive models widely applicable to gray 
partridge management.   

Some questions concerning wildlife science 
are not amenable to experimentation (e.g., effects of 
weather on populations, or differences in survival rates 
between gender or age classes).  Other potential 
treatment effects are too expensive or difficult to 
accomplish.  Some treatments may require substantial 
efforts to convince interested publics of the value of 
applying them in any single treatment area.  Finally, 
the need to evaluate effects of many habitat or 
population factors simultaneously may preclude 
experimentation.  In these cases, construction of 
multiple biologically plausible models that seek to 
explain or predict observable phenomena can be a 
powerful tool for advancing knowledge (Hilborn and 
Mangel 1997) when combined with new information 
theoretic tools designed to identify the most likely 
explanatory model (Burnham and Anderson 2002).  
Incorporating modeling into the management process is 
an effective strategy for predicting consequences of 
management actions while simultaneously learning 
about key processes affecting wildlife populations and 
their habitats (Walters 1986).  A key requirement for 
this process to be successful is the need to monitor 
consequences of management actions through an 
adaptive management process (Walters 1986).  This 
adaptive learning process might be facilitated by 
application of Bayesian statistics, which use additional 
observations to improve estimates of key relationships 
assumed prior to the management action (Hilborn and 
Mangel 1997, Gelman et al. 2003, Bolstad 2007).   

 
Scientific Method 

In one of the early papers published on the 
scientific method in Science in 1890 Chamberlin 
(republished in1965) emphasized the need to examine 
“multiple working hypotheses” to explain an 
observation.  Popper (1959, 1968) formalized an 
approach to testing individual hypotheses, referred to 
as the hypothetico-deductive method that became the 
accepted standard in science.  The method is a circular 
process where previous information is synthesized into 
a theory, predictions are deduced from the theory, the 
predictions are stated explicitly in the form of 
hypotheses, hypotheses are tested through an 
investigation involving experimentation, observation, 
models, or a combination of these, the theory is 
supported, modified, or expanded on the basis of the 
results of these tests, and the process starts again (Fig. 
1.1).  Platt (1964) re-emphasized the importance of 
multiple competing hypotheses and proposed a 
systematic pattern of inquiry, referred to as strong 
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inference, where the investigator devises alternate 
hypotheses, develops an experimental design to reject 
as many hypotheses as possible, conducts the 
experiment to achieve unambiguous results, and 
repeats the procedure on the remaining hypotheses.  
Other major works that provide detailed discussions of 
the scientific method include Dewey (1938), Bunge 
(1967), Newton-Smith (1981), Ford (2000), and Gauch 
(2003). 

The most successful applications of the 
hypothetico-deductive method have been in physics, 
chemistry, and molecular biology where experiments 
can isolate the results from all, but a small number of 
potentially causal factors.  The classic methods of 
natural history observation in wildlife science and other 
natural sciences have expanded to include 
experimentation, hypothesis testing, and quantitative 
modeling.  James and McCulloch (1985:1) described 
this transition for avian biologists:  “traditional 
ornithologists accumulated facts, but did not make 
generalizations or formulate causal hypotheses . . 
.modern ornithologists formulate hypotheses, make 
predictions, check the predictions with new data sets, 
perform experiments, and do statistical tests.”  
Measuring simultaneous effects of multiple interacting 
causes (Quinn and Dunham 1983) may be facilitated 
by application of information theoretic tools to 
models incorporating multiple causes (Burnham and 
Anderson 2002).  In addition to James and McCulloch 
(1985), other excellent reviews of scientific approaches 
applicable to natural systems include Romesburg 
(1981), Diamond (1986), Eberhardt and Thomas 
(1991), Murphy and Noon (1991), Sinclair (1991), 
Hilborn and Mangel (1997), Boitani and Fuller (2000), 
Williams et al. (2002), and Morrison et al. (2008). 

The first steps in the scientific method begin 
with a clear statement of the research problem (Box 
1.1), followed by a careful review of literature on the 
topic and preliminary observations or data collection.  
Preliminary data can be combined with published data 
to conduct an exploratory data analysis (Tukey 1977).  
Established theory, including principles, concepts and 
widely accepted models (Pickett et al. 2007), should be 
combined with creative ideas and potential 
relationships resulting from the biologist’s observations 
and exploratory data analysis to develop a conceptual 
model (i.e., theoretical framework or general research 
hypothesis, Andrienko and Andrienko 2006).  This 
conceptual model is essentially a broad theory (Fig. 
1.1) that offers explanations and possible solutions, and 
places the problem in a broader context (Box 1.1).  The 
next step is to develop predictions from the conceptual 
model (i.e., statements that would be true if the 
conceptual model were true).  These predictions are 

then stated as multiple testable hypotheses.  Research 
should be designed to test these hypotheses; ideally 
experimentation should be used whenever possible.  A 
pilot test at this stage is invaluable in testing 
methodologies and gathering estimates of cost and 
variances.  Included in the design, with the assistance 
of a statistician, is calculation of sample sizes required 
to detect the hypothesized effects as well as decisions 
about how the data will be analyzed.  Peers and a 
statistician should review the proposed design before 
data collection begins.  Collect data with quality 
control.  Data analysis with appropriate statistical 
procedures is conducted to test the theory by rejecting 
fallacious hypotheses, selecting the best models of 
relationships or differences, obtaining unbiased 
estimates or selecting the best alternative.  Final 
conclusions usually result in further speculation, 
modification of the original conceptual model and 
hypotheses, and formulation of new hypotheses.  The 
publication process is the last, but essential, step, and 
peer-review comments should be considered carefully 
before research on new hypotheses is designed.   

 
Philosophical Foundation 

Why should wildlife biologists and managers care 
about the seemingly endless, esoteric debates by 
philosophers of science?  One reason is that modern 
philosophers have reached a perspective on how to 
gain truth and knowledge that is consistent with the 
approach of practicing wildlife biologists, managers, 
and scientists.  Modern philosophers assert that classic 
views of the scientific process are outmoded or 
inappropriate and propose replacing them with a new, 
integrated approach directly applicable to wildlife 
science and ecology (Pickett et al. 2007).  Their 
approach is founded on 3 beliefs inherent in scientific 
realism (Boyd 1992).  First, the universe is real and it 
is possible to gain true knowledge about the universe 
(Scheiner 1994).  Second, knowledge includes ideas 
that we posit in our theories, but can only sense 
indirectly (e.g., electrons, plant communities, and 
carrying capacities).  Third, all such theories must 
ultimately be tested empirically (Scheiner 1994).  The 
goal of wildlife research and experimental design must 
be to advance our knowledge by gathering new 
information to test and improve our evolving wildlife 
theory consisting of a set of interrelated concepts, 
definitions, and propositions (i.e., models and 
confirmed generalizations often referred to as 
principles). 
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Box 1.1.  Systematic outline of sequential events in scientific research 
with an example of elk in the Northern Rocky Mountains based on 
DelGiudice et al. (2001). 

1.  Identify the research 
problem. 

What are the influences of 
environmental factors, such as 
wildfire and winter severity, 
on the carrying capacity of elk 
winter range? 

2.  Conduct literature 
review of relevant topics. 

Excellent earlier work by 
Houston 1982, Merrill and 
Boyce 1991, DelGiudice 1995, 
Coughenour and Singer 1996. 

3.  Identify broad and basic 
research objectives. 

(a) determine temporal and 
spatial differences in food 
habits that may affect elk 
nutritional condition during 
winters of varying severity, (b) 
examine the relationship 
between energy intake and 
mobilization of energy 
reserves at the population level 
throughout winter. 

4.  Collect preliminary 
observations and data as 
necessary. 

(a) winter severity data for 
1987–1988, 1988–1989, and 
1989–1990 including snow 
depth, (b) monthly 
precipitation during 1988 
reflecting 100-year drought, 
(c) wet summers contributed to 
increases in elk population, (d) 
substantial winter kill first 
post-fire winter. 

5.  Conduct exploratory data 
analysis. 

(a) analyze food habits data for 
2 different spatial locations 
pre-fire, (b) estimate energy 
intake by elk pre-fire. 

6.  Formulate a theory 
(conceptual model or 
research hypothesis). 

Carrying capacity of elk winter 
range is influenced by wildfire 
and winter severity. 

7.  Formulate predictions 
from conceptual model as 
testable hypotheses (Fig. 
1.1). 

(a) carrying capacity of elk 
winter range increases in post-
fire areas, (b) carrying 
capacity of elk winter range 
decreases with increasing 
winter severity. 

8.  Design research and 
methodology for each 
hypothesis. 

(a) collect samples of urine 
during the same month of each 
winter to assess nutritional 
condition of elk from each 
study area.  Only include urine 
samples from cows and calves.  
Collect samples in both burned 
and unburned areas, (b) 
construct simulation model to 
translate individual responses 
to nutritional condition to 
population level responses. 

9.  Conduct a pilot study to 
test methodologies and 
estimate costs and 
variances. 

Pilot study collects urine 
samples and estimates costs 
and variances. 

10. Estimate required 
sample sizes and anticipate 
analysis procedures with 
assistance from a statistical 
consultant. 

Estimated sample sizes 
feasible and analysis 
procedures successful with 
pilot survey data. 

11. Prepare written research 
proposal that reviews the 
problem, objectives, 
hypotheses, methodology, 
and procedures for data 
analysis. 

Prepare written proposal:  
Combine steps 1, 3, 6, and 8 to 
provide background, 
justification, and methodology 
for research. 

12. Obtain peer review of 
the research proposal from 
experts on the research topic 
and revise if necessary. 

Seek out experts in state 
wildlife agencies as well as 
authors of papers found during 
literature review. 

13. Perform experiments, 
collect observational data, 
or construct a model. 

(a) collected elk urine samples 
from each winter and each 
study area, (b) model 
constructed to simulate energy 
intake and movements for the 
elk population. 

14. Conduct data analysis. (a) non-normally distributed 
urine sample data analyzed 
using non-parametric statistics, 
(b) compared measured and 
simulated nutritional condition 
using urine samples with 
unpaired t-tests. 

15. Evaluate, interpret, and 
draw conclusions from the 
data. 

Combined use of urine 
samples and model 
simulations provided strategic 
approach for assessing subtle 
changes in nutritional 
condition, physical condition, 
and mortality rates of elk.  
During winter 1988–1990, 
snow depth had a pronounced 
impact on nutritional 
condition.   

16. Speculate on results and 
formulate new hypotheses. 

Carrying capacity of elk winter 
range influenced more by 
winter severity than wildfire. 

17. Submit manuscript 
describing the research for 
peer-reviewed journal 
publication, agency 
publication, and/or 
presentation at scientific 
meetings. 

Combine steps 9, 11, 12, 13, 
and 14 to create a well written 
and concise manuscript of 
research findings which were 
published in this case as 
DelGiudice et al. (2001),    
Wildl. Monogr. No. 147. 

18. Repeat process w/ new 
hypotheses (from step 6 or 
7). 

Repeat process with new 
hypotheses. 
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The scientific method consists of an efficient 
approach to expanding this evolving knowledge base.  
This can be accomplished by gathering new 
observations to obtain unbiased estimates of important 
characteristics (e.g., age specific survival rates), testing 
proposed theories (e.g., harvest and starvation of 
subadults are compensatory), inferring new patterns or 
processes (e.g., harvest is additive to cougar mortality 
in adult elk [Cervus canadensis, Polziehn and Strobeck 
2002]), and restricting or expanding the domain of 
inference for models of patterns or processes (e.g., 
deeper snows decrease winter survival of elk and deer, 
but thresholds for the effects differ between 
species).This integrated approach estimates strength 
of contributions (Quinn and Dunham 1983) by 
multiple, simultaneously acting causes (e.g., survival of 
elk calves depends on date of birth, milk production of 
cows, quality and quantity of hiding cover, and density 
of bears, cougars and wolves) rather than attempting to 
falsify all but 1 causal mechanism (Platt 1964). 

 
INITIAL STEPS 

 
Problem Identification 

The initial step in most wildlife research is problem 
identification (Box 1.1).  Most research is either applied 
or basic.  Applied research usually is related to 
management concerns, political controversy or public 
demand.  For example, we may study specific 
populations because the hunting public has demanded 
greater hunting opportunity or a non-game species 
decline raises concerns about its long-term persistence.  
Other applied studies may be politically supported due to 
projected loss of habitat by development or concerns 
over environmental problems such as contamination 
from agricultural or industrial chemicals.  Basic 
research seeks to gain knowledge for the sake of 
knowledge and a more complete understanding of factors 
that affect behavior, reproduction, density, competition, 
mortality, habitat use, and population fluctuations.  
Research on management questions can often be 
designed so basic research on underlying principles can 
be conducted for minimal extra cost as data are gathered 
to solve the immediate management problem. 

 

Literature Review 

Once rough objectives are identified, research 
should begin with a thorough literature review 
including collecting published and unpublished 
management agency data.  Searching Google Scholar 
(http://www.scholar.google.com) and other free online 
databases provides instant access to titles with links to 
abstracts and full-text, frequently, of published peer-
reviewed literature.  Membership in The Wildlife 
Society and other professional organizations 
(Ecological Society of America, Society for 
Conservation Biology, American Fisheries Society, 
etc.) as well as many public libraries provide access to 
full-text databases of every paper published in 
societies' refereed journals and monographs.  Broad-
scale internet searches on Google and other search 
engines may provide unpublished information of value 
from public agencies and institutions, but information 
posted by individuals or unknown organizations should 
be treated with substantial skepticism.  Using a variety 
of sources for your literature review will ensure you 
have compiled the most relevant and recent 
information pertaining to your objectives.  

 
 
 

Biological, Political, and Research 

Populations 

Wildlife professionals work with 3 types of 
populations that impact study design:  biological, 
political, and research populations.  Mayr (1970:424) 
defined a biological population as a group “of 
potentially interbreeding individuals at a given 
locality,” and species as “a reproductively isolated 
aggregate of interbreeding populations.”  Thus, a 
population is an aggregation of individuals of the 
same species that occupy a specific locality, at a 
particular time, and often the boundaries can be 
described with accuracy.  For example, the dusky 
Canada goose (Branta canadensis) population breeds 
within a relatively small area on the Copper River delta 
of Alaska and winters in the Willamette Valley near 
Corvallis, Oregon (Chapman et al. 1969).  Between the 
breeding and wintering grounds of the dusky Canada 
goose is the more-restricted range of the relatively non-
migratory Vancouver Canada goose (Ratti and Timm 
1979).  Although these 2 populations are contiguous 
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with no physical barriers between their boundaries, 
they remain reproductively isolated and independent.   

For most populations, such as red-winged 
blackbirds (Aegolius phoeniceus), grouping individuals 
into a hierarchical organization of demes, populations 
and metapopulations within the species may require 
careful consideration of 5 facets (Fig. 1.2, Box 1.2):  
(1) geographical distribution of individuals, (2) 
geographical distribution of habitats (resources), (3) 
correlations in demographic rates (Bjørnstad et al. 
1999, Post and Forchhammer 2002, Palsbøll et al. 
2006), (4) genetic relationships (Manel et al. 2005), 
and (5) patterns of movement.  Identifying the 
appropriate level within this hierarchy to sample or 
assign treatments is critical to obtaining precise 
estimates and performing valid, powerful tests of ideas 
(i.e., theory), but keep in mind processes operating at 
one level are influenced by processes occurring at both 
lower levels in the hierarchy (i.e., mechanisms) and at 
higher levels (i.e., context).  Choosing the level in the 
biological hierarchy to study (Box 1.2) defines the 
research population or domain (Pickett et al. 2007) to 
which inferences and conclusions apply.   

 
Beletsky and Orians (1996:152) and refuge biologists 
studied red-winged black birds at Columbia National 
Wildlife Refuge and demonstrated, with 20 years of 
banding data, that territorial males and associated 
females occupying a set of discrete patches of marsh 
vegetation associated with ponds or streams on the 
refuge constituted a deme (Fig. 1.3).  High correlations 
in demographic rates amongst demes and genetic 
similarity due to dispersal amongst demes make the 
entire red-winged black bird population on the refuge 
an appropriate biological population for management 
(Beletsky 1996, Garton 2002:665).  Surrounding 
irrigated farmlands isolate red-winged black bird 
populations at refuges from each other to some degree, 
but populations at refuges throughout the Columbia 
Basin could be treated as a metapopulation within the 
subspecies (A. phoeniceus nevadensis, Fig. 1.3).   
Another example of biological populations with 
separate boundaries is the bison (Bison bison) 
populations in Yellowstone National Park (Olexa and 
Gogan 2005).  Biological populations for other species 
may not be so geographically distinct as Canada geese, 
red-winged black birds, and Yellowstone bison, in 
which case, the researcher will have to carefully 
consider from which biological aggregation their 
samples are selected and to which their findings will 
apply.  

 
The political population has artificial 

constraints of political boundaries, such as county, 

state, or international entities.  For example, a white-
tailed deer (Odocoileus virginianus) population within 
an intensively farmed agricultural region in the 
Midwest might be closely associated with a river 
drainage system due to permanent riparian cover and 
food critical for winter survival. The biological 
population may extend the entire length of the river 
drainage, but if the river flows through 2 states, the 
biological population is often split into 2 political 
populations that are subjected to different management 
strategies and harvest regulations.  Traditionally, this 
has been a common wildlife management problem.  
When biological populations have a political split, it is 
best to initiate cooperative studies, in which research 
personnel and funding resources can be pooled to 
benefit both agencies. 

Ideally, the research or statistical 
population should conform closely to the biological 
population so that inferences can be applied to the 
chosen biological population.  Due to logistical 
constraints, we often take a sample from this research 
population (i.e., sample frame; Scheaffer et al. 2005). 
Thus, sampling methodology is critical, for it provides 
the only link between our samples and the research 
population.  In rare instances, a population may be 
studied that represents all individuals of a species (e.g., 
endangered species with few individuals, such as 
whooping cranes [Grus americana]).  Or, our research 
population might represent an entire biological 
population, such as one of the bison herds in 
Yellowstone National Park (Olexa and Gogan 2005).  
However, the research population usually is only a 
portion of the biological population and a small 
segment of the species.  Carefully specifying a research 
or statistical population is essential in the planning 
phase of an investigation and may require thorough 
investigation of existing literature on the species to 
determine breeding biology and dispersal patterns, 
geographic sampling to identify distribution of 
individuals and  resources, and reviews of literature on 
biological aggregations (Mayr 1970, Selander 1971, 
Stebbins 1971, Ratti 1980, Wells and Richmond 1995, 
Garton 2002, Hanski and Gagiotti 2004, Cronin 2006). 

  
Conclusions from research are directly 

applicable only to the research population from which 
the samples were drawn.  However, biologists usually 
have goals to obtain knowledge and solve problems 
regarding biological populations and species.  The key 
questions are:  1) is the sample an unbiased 
representation of the research population, (2) is the 
research population an unbiased representation of the 
biological population, and (3) is the biological 
population representative of the species?  Because 
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Figure 1.2.  Hierarchical arrangement of individuals from organism to metapopulation illustrating multiple facets 

to consider in delineating levels to study: demography, genetics, geographical distribution of individuals, distribution and 
selection of resources, patterns of movement and interactions (e.g. diet, competitors, predators, parasites and diseases).  
Processes operating at one level in this ecological hierarchy are influenced by processes and characteristics at lower levels 
in the hierarchy (i.e. mechanisms) and at higher levels in the ecological hierarchy (i.e. context, modified from Pickett et 
al. 2007:29). 
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Box 1.2.    Hierarchy of spatial-population units (modified from Garton 2002). 

 

Deme The smallest grouping of individuals approximating random breeding within the constraints of the breeding system 
where it is reasonable to estimate birth, death, immigration, and emigration rates.  Animals in this grouping are 
ideally distributed continuously across 1 patch of homogeneous to heterogeneous habitat, and their movements are 
restricted to home ranges for breeders during the breeding season.  The size of this patch ideally would be related to 
the dispersal distance of juveniles or perhaps equal an area 20 to 50 times the size of a female breeding home range 
(e.g., Fig. 1.3 and Garton 2002 for red-winged blackbirds).  Note:  for some species demes are not feasible to 
delineate because of complex mating patterns and movements (e.g., in mallards, Anas platyrhynchos, males and 
females form pair bonds on wintering areas and males follow females to nesting areas the following spring which 
may be quite distant from their natal area; Bellrose 1976:236). 

                                                                                                                  

Population  A collection of demes or individuals at one point in time, typically the breeding season, with strong connections 
demographically (very high correlations in vital rates), geographically (close proximity), genetically (Manel et al. 
2005), and through frequent dispersal.  The population occupies a collection of habitat patches (relative to dispersal 
distance) without large areas of non-habitat intervening.  The area is typically less than 100 times the size of an 
average female home range and not larger than the dispersal distance of 95% of natal dispersers, but it may be much 
larger if habitat patches are linear in shape and widely dispersed (e.g., all red-winged blackbirds occupying Columbia 
National Wildlife Refuge during the breeding season might be reasonably treated as a population [Fig. 1.3; Garton 
2002]).  A population is dynamic through time with demes or groups of individuals showing correlated fluctuations 
associated with effects of broad-scale environmental factors (e.g., weather and fires) or other populations (e.g., 
competitors, predators, and disease outbreaks). 

 

Metapopulation A collection of populations sufficiently close together that dispersing individuals from source populations 
occasionally colonize empty habitat resulting from local population extinction (Levins 1969).  Populations within a 
single metapopulation may show low or high correlations in demographic rates, but the low rates of dispersal are 
sufficient to maintain substantial genetic similarity (e.g., red-winged blackbird populations distributed among the 7 
national wildlife refuges along 200 km of the Columbia River in the south-central part of the state of Washington 
constitute a metapopulation (Fig. 1.3; Garton 2002).  Numerous types of metapopulations have been described from 
source-sink to non-equilibrium to classic (Levins) metapopulations (Harrison and Taylor 1997). 

 

Subspecies A collection of populations as well as metapopulations, if present, in a geographic region where very rare dispersals 
maintain genetic, morphological and behavioral similarity, but populations and metapopulations occupy habitat 
patches that may be separated by large areas of non-habitat resulting in substantial demographic independence among 
populations or metapopulations (Fig. 1.3; Mayr 1987, Garton 2002). 

 

Species The collection of interbreeding populations as well as metapopulations and subspecies, if present, encompassing the 
entire distribution and geographic range of the species.  The species may show substantial differences in phenotypes 
(vegetation association, physiology, behavior) and genotypes (Fig. 1.3; Garton 2002). 
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Fig. 1.3.  Red-winged blackbird hierarchy of spatial population units from demes to species at Columbia National 
Wildlife Refuge (from Garton 2002: Fig.I5.1 with permission Island Press). 
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traits among segments of biological populations (and 
among populations of a species) often differ, broad 
conclusions or inferences relative to a research 
hypothesis should be avoided until several projects from 
different populations and geographic locations provide 
similar results.  Combining and synthesizing replicate 
studies across large spatial extents should be a long-term 
goal, but may require use of new techniques such as 
meta-analysis (Osenberg et al. 1999). 

Preliminary Data Collection 

Making a preliminary effort to gather 
observations at this stage can pay great dividends in the 
end by allowing the researcher to explore a variety of 
potential research techniques reported in the literature 
or recommended by experienced researchers.  If careful 
records of time and effort involved in their use are 
made as well as preliminary estimates of variation and 
precision then optimal choices on techniques can be 
made at an early stage in the design before substantial 
effort has been expended on methods too time-
consuming or imprecise to use in answering the 
important questions.  Likewise these preliminary 
investigations provide valuable information to use in 
exploring potential relationships between key 
characteristics of interest.  Gathering such open-ended 
observations also are remarkably helpful in identifying 
key relationships and alternate hypotheses that may be 
meaningful to understanding the primary problem. 

 
Exploratory Data Analysis 

Exploratory data analysis should be applied to 
preliminary or pilot study observations as well as data 
from the literature or public agencies and institutions 
(Tukey 1977, James and McCulloch 1985, Andrienko 
and Andrienko 2006).  During this process data are 
quantitatively analyzed in terms of means, medians, 
modes, standard deviations, and frequency distributions 
for important groups as well as scatter plots of potential 
relationships.  Exploration of the data should be as 
complete and biologically meaningful as possible, 
which may include comparison of data categories (e.g., 
mean values, proportions, ratios), multivariate analysis, 
correlation analysis, and regression.  The “basic aim of 
exploratory data analysis is to look at patterns to see 
what the data indicate” (James and McCulloch 
1985:21).  If the research topic has received extensive 
previous investigation, the exploratory phase might 

even take the form of a meta-analysis of previous data 
gathered on the question (Osenberg et al. 1999).  This 
phase often involves extensive discussions with other 
investigators with field or experimental experience on 
the topic. 

 
 

THEORY, MODELS, 

PREDICTIONS, AND 

HYPOTHESES 

Exploratory data analysis, literature reviews 
and perceived associations should lead to development 
of a theoretical framework (i.e., conceptual model, Fig. 
1.4) of the problem.  Wildlife theories (Fig. 1.1) are a 
set or system of interrelated concepts, definitions, 
assumptions, facts, confirmed generalizations, and 
propositions (Kerlinger and Lee 2000, Pickett et al. 
2007) that present a structured view of wildlife ecology 
and management by specifying general relations 
among variables (e.g., waterfowl populations, annual 
rainfall, abundance of ponds and riparian habitat, 
hunter harvest), with the purpose of explaining and 
predicting the phenomena (e.g., changes in waterfowl 
abundance, Office of Migratory Bird Management 
1999, Ford 2000, Conroy et al. 2005). 
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 Fig. 1.4.  Conceptual model of waterfowl population 
dynamics. 

 
Let’s explore the meaning and value of theory 

by considering our conceptual model of waterfowl 
population dynamics (Fig. 1.4), which expresses in a 
simple way complicated patterns of fall waterfowl 
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populations being positively influenced by spring 
breeding population size, number of ponds, and 
quantity and quality of wetland habitat, while they are 
negatively affected by nest predators whose influence 
likely interacts with quality and quantity of wetland 
habitat around ponds.  Likewise harvest influences 
spring population sizes the following year (i.e., t+1 in 
Fig. 1.4), but the interaction may be complex with 
either or both of compensatory and additive effects.  
Utilizing this theory to understand dynamics of any 
particular waterfowl population requires stating a 
domain of interest and inference.  For example, Conroy 
et al. (2005) studied an American black duck (Anas 
rubripes) metapopulation breeding in 3 regions and 
harvested in 6 regions in Canada and the United States 
(Box 1.2).  Any individual investigation asks important 
questions and evaluates alternative hypotheses (e.g., 
models of harvest) in a restricted portion of the entire 
theory.  For example, Conroy et al. (2005) used 
Bayesian methods to evaluate harvest models for 
American black ducks for this metapopulation.  Many 
times important variables (e.g., abundance of nest 
predators) are very difficult to estimate so their 
influence must be inferred through changes in nest 
success and fledging rates resulting from experimental 
manipulations (e.g., predator removals or manipulation 
of nesting cover).   

Ford (2000:43) identifies 2 parts of a theory 
consisting of a working part providing information and 
a logical basis for making generalizations and a 
motivational or speculative part that defines a general 
direction for investigation.  Stating our theoretical 
framework (conceptual model) explicitly requires 
careful thinking and analysis of accepted 
generalizations (principles) stated in classic textbooks 
and reviews of the topic, as well as, published, peer-
reviewed literature on the topic.   Predictions or 
deductive consequences of theory form the basis for 
hypotheses, which are variously described as assertions 
subject to verification (Fig. 1.1; Dolby 1982, James and 
McCulloch 1985) or testable statements derived from 
or representing various components of theory (Box 1.3; 
Pickett et al. 2007:63).  Normally, the primary research 
hypothesis is what we initially consider to be the most 
likely explanation, but if the question has been placed 
into the proper theoretical framework several alternate 
hypotheses are presented as possible explanations for 
observed facts (Fig. 1.1).  Modern hypotheses 
commonly take the form of quantitative models which 
explicitly describe the relationships or magnitude of 
differences (Box 1.3). 

 
 

 

We take an important step from descriptive 
natural history when we formulate conceptual models 
as research hypotheses.  Interpretation of exploratory 
data analysis, creation of a theoretical framework, 
deducing predicted consequences, and formulation of 
testable hypotheses as alternative models are difficult 
aspects of science that require creativity and careful 
reasoning, but they are essential to the future of 
wildlife science. 

 
OVERVIEW OF STUDY DESIGN 

Introduction 

Many different study designs are available for 
answering questions about the biology and 
management of wildlife species (Fig. 1.5; Eberhardt 
and Thomas 1991, Morrison et al. 2008).  These 
options differ dramatically in terms of 2 criteria:  how 
certain are the conclusions reached and how widely 
applicable are the conclusions?  No single option is 
perfect.  The biologist must weigh the available options 
carefully to find the best choice that fits within 
constraints of time and resources.  Here we provide an 
overview of the most prominent study designs with 
further explanation in subsequent sections. 

 
 

 
 

Fig. 1.5.  Potential for wildlife study designs to produce 
conclusions with high certainty (few alternative 
hypotheses likely) and widespread applicability (a 
diversity of research populations where inferences 
apply). 
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Box 1.3.  Components of theory (after Pickett et al. 
2007:63). 

Component___________________________________        
Example____________________________________ 

Domain.  The scope in space, 
time, and phenomena 
addressed by a theory. 

An individual waterfowl 
population or 
metapopulation in North 
America (e.g., American 
black duck, Anas rubripes) 
during 1971–1994. 

Assumptions.  Conditions 
needed to build the theory. 

Conroy et al. (2005) assumed 
survival and productivity 
rates estimated for 3 
regions in Canada and 
harvest rates from 6 regions 
in Canada and the United 
States determined the 
dynamics of this 
metapopulation. 

Concepts.  Labeled 
regularities in phenomena. 

Harvest refers to waterfowl 
shot during a legal hunting 
season and retrieved by the 
hunter. 

Definitions.  Conventions and 
prescriptions necessary for 
the theory to work with 
clarity. 

Conroy et al. (2005) defined 
harvest rate as the 
probability of harvest based 
on direct recoveries (hunter 
reports of banded birds shot 
or found dead in the 
hunting season immediately 
following release; Williams 
et al. 2002). 

Facts.  Confirmable records 
of phenomena. 

All data on harvest 
regulations (season length 
and bag limit) and hunter 
numbers for 1971–1994 
were obtained from 
Canadian Wildlife Service 
and U.S. Fish and Wildlife 
Service (Conroy et al. 
2005). 

Confirmed generalizations.  
Condensations and 
abstractions from a body 
of facts that have been 
tested or systematically 
observed. 

Harvest rates of male and 
female waterfowl generally 
differ and Conroy et al. 
(2005) estimated harvest 
rates for males only to 
eliminate the need for 
estimating sex-specific 
harvest rates. 

Laws or principles.  
Conditional statements of 
relationship or causation, 
statements of identity, or 
statements of process that 
hold within a domain. 

Better wetland habitat 
conditions positively 
influence productivity in 
waterfowl populations (Fig. 
1.4). 

Models.  Conceptual 
constructs that represent 
or simplify the structure 
and interactions in the 
material world.  
(Scientific models can 
project consequences of 
ideas while statistical 
models draw inferences 
and discriminate 
competing ideas based on 
limited observations). 

Conroy et al. (2005) 
developed statistical models 
for harvest rates in 
American black ducks.  
They found harvest rates 
depended upon both season 
length and bag limit, but 
differed between years and 
areas during 1971–1994. 

Translation.  Procedures and 
concepts needed to move 
from the abstractions of a 
theory to the specifics of 
applications or test or vice 
versa. 

Annual changes in wetland 
conditions are estimated 
from aerial strip transect 
counts of pond densities 
throughout waterfowl 
breeding areas in North 
America (U.S. Fish and 
Wildlife Service and 
Canadian Wildlife Service 
1987). 

Hypotheses.  Testable 
statements derived from or 
representing various 
components of theory. 

Harvest rates for American 
black ducks increase with 
season length and bag 
limits in an area (tested and 
confirmed by Conroy et al. 
2005). 

Framework.  Nested causal 
or logical structure of a 
theory. 

During the fall, groups of 
American black ducks join 
with other groups on the 
same wetlands and other 
nearby wetlands to form 
populations which join 3 
other populations in Canada 
during their migration south 
to form a metapopulation 
occupying 6 regions of 
Canada and the United 
States (Fig. 1.2; Conroy et 
al. 2005). 

 
 

Experiments consisting of manipulative trials 
are under-used in wildlife science (Fig. 1.5).  
Laboratory experiments, in which most extraneous 
factors are controlled, provide the cleanest results with 
the most certainty, but results generally have only 
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narrow inference to free-ranging wildlife populations 
unless they concern basic processes (e.g., disease 
susceptibility or nutritional biology).  Natural 
experiments, in which large-scale perturbations such 
as wildfires, disease outbreaks, and hurricanes affect 
populations and landscapes naturally, provide only 
weak conclusions because of lack of replication and 
inability to control extrinsic factors through random 
assignment of treatments (Fig. 1.5; Diamond 1986, 
Underwood 1997, Layzer 2008, Diamond and 
Robinson 2010).  Field experiments, in which 
manipulative treatments are applied in the field, 
combine some of the advantages of laboratory and 
natural experiments (Fig. 1.5; Hurlbert 1984, Scheiner 
and Gurevitch 2001).  They have singular advantages 
because truly replicated field experiments combine 
both a large breadth of inference and conclusions that 
are relatively certain (Johnson 2002).  By assigning 
treatments to field replicates randomly we can be 
certain that the conclusions are valid rather than 
resulting from extrinsic factors beyond our control. 

Some questions of importance in wildlife 
biology and management are not appropriate for 
experimentation.  For example, we may be interested in 
the effects of weather on a particular animal 
population, but we cannot manipulate weather at will in 
spite of mankind's apparent impact on its long-term 
trajectory.  In addition, we may be interested in the 
relative importance of factors such as predation, 
habitat, and food limitations on population changes 
(Quinn and Dunham 1983, Mills 2007).  In these cases 
we should formulate primary and alternate hypotheses 
in the form of models, estimate their maximum 
likelihood parameters, and test them statistically with 
likelihood ratios or compare them with information 
criteria (Hilborn and Mangel 1997, Burnham and 
Anderson 2002).  Case studies consisting of 
unreplicated, natural history descriptions are most 
useful at early stages in development of the research 
process (Fig. 1.5).  Pseudoreplicated field studies, in 
which replicates are not statistically independent or 
samples rather than treatments are replicated, are only 
slightly better than descriptive natural history 
studies.  At the other extreme are replicated field 
studies wherein no manipulation or randomization of 
treatments occurs, but true replication occurs within a 
probability sampling framework and information is 
gathered to evaluate alternate hypotheses.  Conclusions 
from replicated field studies are broadly applicable, but 
are less certain than those from replicated field 
experiments.   

Designing good field studies is more difficult 
than designing good experiments because of the 
potential for extraneous factors to invalidate tests or 

comparisons.  One key step for both experiments and 
field studies is designing a sampling procedure to draw 
observations (experimental units or sample units) from 
the populations of interest.  Only if this is done 
properly can conclusions of the tests be applied to these 
populations.  Survey sampling provides methods that 
are helpful in designing such sampling procedures 
(Cochran 1977).  These methods are particularly 
important for field studies, but also are useful in field 
experiments for drawing experimental units and 
subsamples (samples within 1 experimental unit). 

Impact assessments are another type of study 
design, but typically there is no replication because the 
impact only occurs at a single site (e.g., oil spill in a 
National Wildlife Refuge).  However, they are useful 
for collecting baseline data as long as the type, time, 
and place of the impact are known, germane variables 
can be measured, and spatial and temporal controls 
exist (Green 1979, Williams et al. 2002).  Frequently, 
impact assessments are planned (e.g., prescribed fire), 
which allows for before and after measurements.  The 
inference can be improved by monitoring both impact 
and non-impact sites at several replicated impact and 
non-impact sites rather than only monitoring impact 
sites (Anderson 2002, Williams et al. 2002). 

Models, which are a simplified representation 
of a system or process, are a versatile way to address a 
wide range of research questions that emphasizes being 
certain the conclusions do follow from the estimates, 
relationships and assumptions (Fig. 1.5).  The inference 
space of such models spans a continuum from large 
and general for theoretical or mathematical models 
(simple differential or difference equations) to smaller, 
more realistic for simulation models (complex multi-
causal, multi-scale simultaneous differential and/or 
difference equations, see Fig. 1.5).  The certainty of 
conclusions based on models is in part influenced by 
the measurement of model variables and estimation of 
model parameters and thus can be portrayed in 
predictions of models incorporating both process and 
estimation uncertainty (Hilborn and Mangel 1997:59).  
Models provide an important framework from which to 
begin to understand the processes influencing questions 
in wildlife science.  They can help gauge the influence 
of 1 variable on other variables.  For example, models 
can be used to assess how much juvenile dispersal 
influences population growth.  By holding all other 
variables that influence population growth constant and 
then varying juvenile dispersal rates within the model 
we can estimate how much the population growth is 
altered by small or large variation in juvenile dispersal 
rates.  Conducting this type of sensitivity analysis 
makes such models an important tool for wildlife 
scientists. 
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In a subsequent section we will describe an 
integrated research process that combines many 
aspects of study design, such as natural history 
observations, natural experiments, and laboratory 
experiments (Fig. 1.5).  Using this process makes the 
research inference space large and increases the 
certainty of research conclusions by combining 
multiple study components.    The complexity of the 
ecosystems within which wildlife science takes place 
are best addressed with the integrated research process 
because it enables the wildlife scientist to capture more 
of the natural variability inherent within ecosystems 
(Clark and Stankey 2006, Morrison et al. 2008).   

Once a research option has been chosen for 
each hypothesis or predictive variable, careful planning 
of the actual testing process can proceed.  We must 
identify exactly what data will be collected for each 
hypothesis or predictive variable as well as when, how, 
how much, and for how long.  Further, how will these 
data be treated statistically?  Will the data meet 
assumptions of the statistical test?  Is the sample size 
adequate?  Will the statistical hypothesis provide 
information directly related to the theory or model?  Do 
biases exist in data collection, research design, or data 
analysis that might lead to a spurious conclusion?  
These questions must be considered carefully for each 
hypothesis before fieldwork begins.  Consulting a 
statistician is important, and the statistician should 
understand the basic biological problem, the overall 
objectives, and the research hypotheses.   

Peer review (evaluation by independent, 
qualified reviewers) of the proposed research including 
both study design and subsequent data collection and 
analysis should be obtained from several people with 
expertise and experience with the research topic.  Peer 
review will usually improve a research design, and may 
disclose serious problems that can be solved during the 
planning stage.  Unfortunately, most peer reviews 
occur too late, after data collection when the final 
report or publication manuscript is written.   

 
Laboratory Experiments 

Drawing inferences from laboratory 
experiments is easy because of the high level of 
control, yet this advantage must be weighed against 
their disadvantages (Table 1.1) in terms of:  (1) scale–
laboratory experiments are restricted to small spatial 
scales and short time periods, (2) scope–only a 
restricted set of potential manipulations is possible in 
the laboratory, (3) realism --the laboratory environment 
places many unnatural stresses and constraints on 

animals, and (4) generality–some laboratory results 
cannot be extrapolated to natural communities.  In a 
continuation of our example, laboratory experiments 
could be designed to examine if geese really can select 
the most nutritious forage when given several 
alternatives in a cafeteria-feeding trial. Diamond 
(1986) provided examples of the 3 types of 
experiments and excellent suggestions for improving 
each type.  Other examples and discussion of 
experiments were provided by Cook and Campbell 
(1979), Milliken and Johnson (1984), Kamil (1988), 
Hairston (1989), Underwood (1997) , Tilman et al. 
(2006), and Chalfoun and Martin (2009).  

 
Table 1.1.  Strengths and weaknesses of different types of experiments 
(modified from Diamond 1986). 
______________________________________________________ 
    Experiment 
 ____________________________________________________ 
                   Laboratory  Field Natural 
                _____________________________ 
Control of independent variablesa  Highest Medium Low 
Ease of inference   High Medium Low 
Potential scale (time and space)  Lowest Medium Highest 
Scope (range of manipulations)  Lowest Medium High 
Realism   Low High Highest 
Generality   Low Medium High 
______________________________________________________ 
aActive regulation and /or site matching. 

 
 

Laboratory experiments in biology have been 
most useful in studying basic molecular or biochemical 
processes common to all organisms of a class.  
Laboratory experiments also have provided valuable 
information on emerging issues such as wildlife 
diseases (e.g., Cooke and Berman 2000, Woodhams et 
al. 2008), efficacy of fertility control (Chambers et al. 
1999, Hardy et al. 2006), and interactions between 
exotic and native species (e.g., Komak and Crossland 
2000, Kope and Jokela 2007). 

Identifying 1 research design as best for all 
situations is not possible.  All options should be 
considered as possibilities for evaluating hypotheses.  
Sometimes the best evaluation of a hypothesis involves 
using a combination of field studies and several types 
of experiments.  For example, field observations by 
Ratti et al. (1984) indicated spruce grouse 
(Dendragapus canadensis) fed exclusively on certain 
trees while ignoring numerous other similar trees of the 
same species.  This led to a laboratory experiment with 
captive birds that tested the hypothesis that trees 
selected for feeding had higher nutritional content than 
random trees (Hohf et al. 1987).  
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Natural Experiments 

Natural experiments are similar to field 
studies except that we study the effects of uncontrolled 
treatments such as wildfires, hurricanes, mass mortality 
from diseases, agricultural practices, and range 
expansions by animals or plants (Layzer 2008, 
Diamond and Robinson 2010).  A key problem in 
evaluating natural experiments is that we cannot assign 
treatments randomly and therefore cannot be certain 
any differences between treated and untreated units 
were not due to other factors that differed between 
them before they were "treated."  In natural 
experiments the treatment precedes the hypothesis and 
most comparisons must be made after the fact.  With 
our Canada goose example, a natural experiment might 
be to survey farmers in the region to locate pastures 
that have been fertilized and those that have not been 
fertilized in recent years.  If our observations of 
feeding geese show more use of pastures that had been 
fertilized, we have more evidence indicating they select 
morenutritious forage.  However, many alternative 
explanations remain.  For example, perhaps those 
pastures that were fertilized were grazed later in the 
summer, and geese preferred fields with the shortest 
grass where ability to detect approaching predators was 
greatest.  Many hypotheses of interest to wildlife 
biologists can be tested only with natural experiments, 
yet it is difficult to draw inferences from such 
experiments.  The applied nature of wildlife 
management makes the realism and generality of 
natural experiments an important advantage, but their 
applicably to other populations is questionable unless 
multiple similar natural events are analyzed.   

 
Field Experiments 

Field experiments span a range from 
pseudoreplicated field experiments (Hurlbert 1984) 
where no true replication is used (or possible) and 
conclusions are not certain, to replicated field 
experiments where conclusions are relatively certain 
(Johnson 2002).  Replicated field experiments 
provide conclusions that are broadly applicable to free-
ranging wildlife populations.  Field experiments offer 
advantages over natural experiments in terms of 
certainty of inference and control of confounding 
factors, but disadvantages of restricted scale and lower 
generality (Table 1.1).  Compared to laboratory 
experiments, field experiments have greater scope and 

realism.  Their main advantage is that we can randomly 
assign treatments and thereby eliminate fallacious 
conclusions due to effects of confounding factors.  In 
field experiments, manipulations are conducted, but 
other factors are not subject to control (e.g., weather).  
In many situations in wildlife science, field 
experiments offer the best compromise between 
limitations of laboratory experiments and natural 
experiments (Wiens 1992, Krebs 2001).  In our Canada 
goose example, a subsequent field experiment would 
be to select random pairs of plots in known foraging 
areas.  One member of each pair would be randomly 
assigned to be fertilized to learn if geese select 
fertilized plots more than non-fertilized control plots.  
If they did select fertilized plots more, a stronger 
inference about selection of nutritious foods could be 
made, because random assignment of a large number of 
plots to fertilization and control groups should have 
canceled effects of extraneous confounding factors.  
Interspersion of treatment and control plots (Hurlbert 
1984, Johnson 2002) in fields naturally used by geese 
strengthens our belief that our conclusion would apply 
in systems where geese typically forage.  Adaptive 
management could successfully incorporate field 
experiments by breaking management zones into 
replicates that are assigned various treatment levels for 
comparison to a standard management action 
(Connelly et al. 2003).  The strong advantages of field 
experiments are that random assignment of treatments 
to units interspersed amongst units to which the 
conclusions will apply protects against reaching invalid 
conclusions due to extrinsic factors. 

 
Field Studies 

Field studies may appear similar to 
experiments when they are conducted to test 
hypotheses, but they differ because treatments are not 
assigned at random.  For example, in a field study of 
dietary selection by Canada geese we might randomly 
select plots where flocks of geese have fed and those 
where they have not fed to examine if geese chose 
areas with vegetation that is more nutritious.  If they 
did, a weak inference would be that geese are choosing 
nutritious food, but numerous alternative explanations 
remain untested (e.g., maybe geese preferred hill-top 
sites where visibility was good, and coincidentally 
these also were sites farmers fertilized most heavily to 
compensate for wind-soil erosion from previous years 
of tillage).  Making inferences from field studies is 
difficult because we make ex post facto comparisons 
between groups (Kerlinger 1986).  Drawing firm 
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conclusions is difficult, because these groups also 
differ in many other ways.  The important 
characteristic of a field study is that we have 
comparison groups (e.g., use vs. non-use plots), but we 
have no treatments.  Well-designed field studies can 
make important contributions to wildlife science and 
management (e.g., Paltridge and Southgate 2001), but 
their limitations must not be overlooked.   

 
Impact Assessment 

The most basic form of impact assessment 
compares measurements of wildlife and other 
characteristics at a site potentially affected by pollution 
or development to similar measurements at an 
unaffected reference site (Anderson 2002, Fig. 1.5).  
This most simple form of impact assessment provides 
almost no basis for inference because the reference site 
may differ for a multitude of reasons besides absence 
of the pollution source or development.  Green (1979) 
noted the potential improvement in this design that 
results from making measurements before and after 
development at both reference and development sites.  
The basic before-after/control-impact (BACI) design 
has become standard in impact assessment studies 
(Anderson 2002, Morrison et al. 2008) and also has 
been used in predator-removal studies (e.g., Risbey et 
al. 2000).  However, differences from before to after at 
reference (control) and impacted (treatment) sites are 
confounded by natural temporal variation and may not 
be produced by the impact itself (Hurlbert 1984, 
Underwood 1994, Williams et al. 2002).  In contrast to 
a well-designed field experiment, neither reference nor 
impacted sites are chosen randomly over space, and 
treatments are not assigned randomly.  These severely 
limit certainty of conclusions and inferences to other 
areas.  The goal is not to make inferences to all 
possible sites (Stewart-Oaten et al. 1986) for a power 
plant, for example, but to the particular power-plant 
site developed.  For larger impact studies where the 
goal is to make inferences with more certainty and to 
more sites (Fig. 1.5), the basic BACI design must be 
improved through addition of replication and 
randomization (Skalski and Robson 1992, Underwood 
1994).  Stewart-Oaten et al. (1986) emphasized the 
value of expanding the BACI design to include 
temporal replication and noted the advantage of taking 
samples at non-regular time intervals rather than on a 
fixed schedule.  Hurlbert (1984) emphasized that 
comparing abundances of wildlife from repeated 
surveys at 1 impact and 1 reference site constitutes 
pseudoreplication that is only eliminated by having 

several replicated impact and reference sites.  
Replicated reference sites with environmental 
characteristics similar to the impact site are quite 
possible and highly desirable; however, replicated 
impact sites are only feasible in large-scale impact 
studies, typically involving meta-analysis of many 
single impact-site studies. 

 
Modeling 

Modeling can be used as a deductive tool to 
synthesize theoretical understanding together with 
creative ideas about potential solutions to a problem or 
question.  Creating a quantitative model makes the 
assumptions, accepted facts, generalizations, and laws 
or principles explicit for use in making valid and/or 
testable predictions.  Kitching (1983:31) suggested that 
this process of modeling involves 9 steps that 
correspond exactly to steps in the scientific method 
(Box 1.1, see further details below under VII. 
Modeling).  Starfield and Bleloch (1991) describe this 
process in a simple, straightforward manner with lots 
of wildlife examples created in spreadsheets while 
Clark (2007) presents a very rigorous account of 
ecological modeling utilizing free statistical and 
modeling software such as R (R Development Core 
Team 2006) and Otto and Day (2007) provide a more 
mathematical but very readable treatment of ecological 
modeling for biologists. 

Modeling currently plays an essential role in 2 
widely practiced processes of wildlife science:  
adaptive management and population viability analysis.  
Adaptive management requires building predictive 
models that summarize what is known or assumed 
about a management issue in order to examine 
alternative management actions.  Managers choose 1 of 
the alternatives and monitoring is conducted to:  (1) 
insure that the action was accomplished, (2) evaluate 
whether the predicted consequences did in fact result, 
and (3) feedback of results to improve understanding of 
the system, its behavior, key parameters and 
relationships incorporated into the model.  Population 
viability analysis uses models and data for populations 
to estimate the probability populations of rare species 
will persist for specified times into the future (Mills 
2007:254).  These forecasts are essential to make 
scientifically defensible decisions concerning the 
listing or delisting of a species under the Endangered 
Species Act.  Clearly building models such as these are 
an application of the scientific method that produces 
knowledge in the form of forecasts of the future, but 
other applications of modeling strive to increase our 
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general understanding of inter-relationships (e.g., long-
term impacts and dynamics of wolf, cougar and 
coyotes on deer and elk, Garton et al. 1990, Varley and 
Boyce 2006), which are difficult to manipulate 
experimentally.  Likewise building conceptual and 
quantitative models acts as a helpful early step in any 
investigation as it sharpens our focus on what are 
critical relationships and assumptions.  It is an essential 
step in an integrated research process. 

 
Integrated Research Process 

The integrated research process (Fig. 1.5) 
builds on a solid base of natural-history observations.  
Field observations and conceptual models should lead 
to experiments, and the results of natural experiments 
should lead to field and laboratory experiments.  For 
example, Takekawa and Garton (1984) observed birds 
feeding heavily on western spruce budworms 
(Choristoneura occidentalis) during a budworm 
outbreak, which suggested that birds were a major 
source of budworm mortality.  Field experiments were 
conducted to test this hypothesis by placing netting 
over trees to exclude birds.  Survival of budworms on 
trees with netting was 3–4 times higher than on the 
control trees exposed to bird predation (Takekawa and 
Garton 1984).  The level of certainty increases as many 
predictions from the research hypothesis are supported 
and alternate hypotheses are rejected in successively 
more rigorous tests that use replicated research options.  
After such findings are repeated over broad geographic 
areas or throughout the range of the species, the 
research hypothesis may become a principle of wildlife 
science (Johnson 2002).  The integrated research 
process should be the goal of wildlife science (Clark 
and Stankey 2006, Morrison et al. 2008). 

Outstanding examples of integrated research 
programs include long-term research on red grouse 
(Lagopus lagopus scoticus) in Scotland (Jenkins et al. 
1963, Watson and Moss 1972, Moss et al. 1984, 
Watson et al. 1994, Kerlin et al. 2007, New et al. 
2009), red deer (Cervus elaphus) on the Isle of Rhum, 
Scotland (Lowe 1969, Guinness et al. 1978, Clutton-
Brock et al. 1985, Coulson et al. 1997, McLoughlin et 
al. 2008, Stopher et al. 2008, Owen-Smith 2010), and 
snowshoe hares (Lepus americanus) in North America 
(Keith 1963, 1974; Windberg and Keith 1976; Keith 
and Windberg 1978; Keith et al. 1984, Krebs et al. 
2001).  Research on red grouse and snowshoe hares has 
focused on hypothesized causes of population cycles, 
while research on red deer has focused on population 
regulation and density-dependent effects on survival, 

fecundity, reproductive success, spacing behavior, and 
emigration.  Research on snowshoe hare has evaluated 
the role of predators (i.e., lynx (Lynx lynx) primarily, 
but other mammals and birds too) as well as alternate 
proposed causes of the classic 10-year cycle in 
snowshoe hare and lynx numbers.  In all 3 examples, 
descriptive studies and field observations formed the 
groundwork for subsequent research that included a 
series of innovative field studies and experiments 
(natural, field, and laboratory).   

For example, preliminary studies of red 
grouse in Scotland (Jenkins et al. 1963) provided 
information on fundamental population parameters:  
births, deaths, immigration, and emigration.  This 
information was used to form research hypotheses 
about causes of population fluctuations.  Postulated 
causes initially included food quality, breeding success, 
spacing behavior, and genetics (Watson and Moss 
1972, Kerlin et al. 2007).  Using data from long-term 
field studies coupled with field and laboratory 
experiments, Watson and Moss (1972) concluded that 
quality of spring and summer foods [heather (Calluna 
vulgaris) shoots and flowers] affected egg quality, 
breeding success (viability of young), and spacing 
behavior of males and females, but territory size 
ultimately affected recruitment and population density 
(but see Bergerud [1988] for a critique of the self-
regulation hypothesis and inferences based on red 
grouse research).  Watson et al. (1984b) tested these 
conclusions with innovative field experiments in which 
they (1) fertilized fields to assess grouse response to 
increased nutritional quality of the heather and (2) 
implanted males with time-release hormones to 
monitor changes in territory size associated with 
aggressiveness induced by higher or lower levels of 
androgens and estrogens (Watson 1967).   Additional 
and more rigorous research rejected hypotheses that 
nutrition, genetics, and parasitism were causal factors 
(although Dodson and Hudson [1992] make a counter 
argument for the role of the parasite Trichostrongylus 
tenuis), and instead focused on emigration as the key 
factor in population declines (Moss et al. 1984, Watson 
et al. 1984a, Moss et al. 1990, New et al. 2009).  These 
findings led to more research because the mechanisms 
underlying density-dependent relationships, including 
summer and winter emigration, were unclear.  Recent 
research has focused on the hypothesis of kin selection 
and differential aggression between kin and non-kin to 
explain cyclic changes in red grouse (Moss and Watson 
1991, Watson et al. 1994) and synchronization of 
cycles across large regions by weather (Watson et al. 
2000, Kerlin et al. 2007). Thus, the integrated research 
process continues.   
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EXPERIMENTAL DESIGN 

A variety of designs are available for 
researchers planning an experiment or quasi-
experiment.  This brief overview of some designs that 
have seen wide and innovative application to wildlife 
science should augment information provided in 
standard courses and references concerning 
experimental design (Underwood 1997, Scheiner and 
Gurevitch 2001, Quinn and Keough 2002, Morrison et 
al. 2008)).  

 
Single-factor verses Multifactor Designs 

Single-factor analyses are the simplest 
because they involve only comparisons between 2 or 
more levels of 1 factor.  Evaluating the simultaneous 
effect of 2 or more independent variables (multifactor 
designs) at once requires use of complicated statistical 
methods, which should be discussed with a statistician.  
Under many conditions we can test 2 factors at once 
without expending more effort than would be required 
to test either of the factors alone.  A complicating issue 
is the potential for interaction between factors (Steel 
and Torrie 1980).  An interaction occurs if the effects 
of 1 factor on the response variable are not the same at 
different levels of the second factor.  For example, if 
we are interested in the effect of snowmelt date on nest 
success by arctic nesting, polymorphic snow geese 
(Chen caerulescens), we might discover an interaction 
between color phase and the onset of spring snow melt. 
Thus, darker, blue-phase birds would have higher 
nesting success during early snowmelt years because 
they are more cryptically colored once snow has 
melted and experience less nest predation. During late 
snowmelt years white-phase birds are more cryptically 
colored and experience less nest predation. Many 
observations might be required to clarify possible 
relationships in these situations. 

 
Dependent Experimental Units 

Special designs have been developed to 
handle many types of dependency in experimental units 
where dependence means that units tend to be more 
similar to each other than if we were to pick units at 
random from the entire population.  For example, 
animals within 1 group tend to be more similar to each 
other (e.g., doe-fawn groups of deer have few bucks) 
and vegetation plots close to each other spatially tend 
to be more similar to each other than plots picked at 

random from the entire study area.  A common design 
involves pairing.  In a paired design we match 
experimental units in pairs that are as similar as 
possible.  The treatment is then applied to 1 member of 
each pair at random.  If there is a confounding factor, 
which we succeed in matching in the pairs, this 
approach will lead to a more powerful test than if 
pairing is not performed.  For example, if we were 
studying the effects of spring burning on northern 
bobwhite (Colinus virginianus) habitat, we could place 
pairs of plots throughout our study area, being careful 
to place each pair in a homogeneous stand of 
vegetation.  We would then randomly assign 1 member 
of each pair to be burned in spring.  The analysis would 
then examine the differences between the members of a 
pair and test for a consistent improvement or decline in 
the burned portion of the pair.  Pairing would remove 
the effects of vegetation difference from one part of the 
study area to another and result in a more sensitive 
experiment.  If members of pairs are not more similar 
than members of the general population, the test will be 
less powerful because of the pairing.   

When more than 2 levels of a factor are 
compared, pairing is referred to as blocking. A block is 
a set of similar experimental units.  Treatments are 
randomly assigned to units within each block, and the 
effectiveness of blocking can be tested during the 
analysis.  For example, if we expanded our study of 
burning to include spring and autumn burning as 
treatments, a block design would be appropriate.  Three 
adjacent plots would be placed in homogeneous 
vegetation stands, and spring and autumn burning 
would be applied randomly to 2 of the 3 plots in each 
block (e.g., set of 3).  This powerful design is normally 
referred to as a randomized block.   

Another common form of dependency occurs 
when repeated measurements are taken on the same 
experimental unit through time.  This is common in 
wildlife research wherein the effects of treatments may 
change over time and must be monitored over a series 
of years.  For example, in our study of spring and 
autumn burning the effects may be different in the first, 
second, and third growing seasons after treatment.  The 
plots should be monitored over several years to 
measure these effects.  The measurements are repeated 
on the same plots, so they are not independent.  This 
must be treated correctly in the analysis by using 
repeated measures or multivariate analysis of variance 
(Milliken and Johnson 1984, Johnson and Wichern 
1988, Williams et al. 2002).  Dependency also is 
common in count data, especially when animals occur 
in groups (Eberhardt 1970).  This lack of independence 
is often referred to as over dispersion.  To properly 
cope with significant over dispersion the dependency 
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should be modeled.  Unless the biologist has extensive 
training in this topic, close cooperation with a 
consulting statistician is essential in designing and 
analyzing experiments involving such complicated 
designs. 

 
 

Crossover Experiments 

Crossover experiments provide a powerful 
tool to evaluate treatments that do not produce a long-
lasting effect.  Selecting pairs of experimental units and 
randomly assigning 1 member of each pair to be treated 
during the first treatment period initiates a crossover 
experiment.  The second member of each pair serves as 
the control during this treatment period.  In the second 
treatment period, the control unit becomes the 
treatment and the former treatment becomes the 
control.  In this way the effects of any underlying 
characteristics of experimental units are prevented 
from influencing the results.  This technique is valid 
only if treatment effects do not persist into the second 
treatment period. 

Consider the following example.  Suppose we 
wanted to test the hypothesis that mowing hay before 4 
July decreases ring-necked pheasant (Phasianus 
colchicus) nest success.  We could test this by dividing 
our study area into 5 homogeneous hayfield regions 
and then dividing each region into 2 portions.  In 1 
randomly selected portion of each region we could pay 
farmers not to mow their hay fields until after 4 July 
(treatments).  In the other portion of each region, hay 
mowing would proceed as in most years, with the first 
cutting during mid-June; these portions will serve as 
controls.  To monitor nest success, we locate nests by 
systematic field searches, being sure to search 
treatment and control areas with identical methodology 
(e.g., search intensity and seasonal timing).  Nest 
success will be measured with standard techniques.  
After 1 year, we might measure significantly higher 
nesting success in the treatment portions (i.e., those 
areas with delayed hay mowing).  However, the 
number of treatments is small and we are not able to 
conclude with confidence if higher nest success 
resulted from the treatment or from some undetected, 
inherent differences in treated portions of each region, 
such as nest predators.  We implement the crossover 
experiment by switching in the second year so the 
original control portions of the study regions now have 
mowing delayed until after 4 July (new treatments), 
and the original treatment portions revert to the 
standard practice of first cutting in mid-June (new 

controls).  If the portions with late cutting treatments 
again have higher nest success, we have better 
evidence that delayed mowing is responsible for higher 
nest success than we had at the end of the first year 
(i.e., we have better evidence for a cause-and-effect 
relationship).  If even stronger support for the 
hypothesis is desired, the crossover experiment might 
be repeated in the same region and in other farming 
regions.  

 
Fixed, Random, Mixed, and Nested 

Effects 

One of the most critical decisions we must 
make in design concerns choosing the population to 
which we want to make inferences.  If only a few 
levels of a treatment factor are relevant or would occur 
in the future, we set a limited number of values at 
which the treatment would be applied and the factor is 
termed a fixed effect or Model I.  If we want the 
conclusion to apply to any level of a treatment factor, 
we must select the treatment levels as a random sample 
from the population of potential values so a conclusion 
drawn about the effect of this factor applies across all 
levels at which it occurs. This design is termed a 
random effect or Model II.  A mixed model (Model 
III) includes both fixed and random effects.  In simple 
2-factor or multi-factor designs all levels of each factor 
are applied to all levels of other factors and the design 
is considered to be a crossed design.  When this is not 
possible, the design must use approaches in which 1 
factor is nested within another factor.  A nested design 
can be described as a hierarchical design, which occurs 
most commonly where certain levels of 1 factor only 
occur within some of the levels of another factor.  For 
example, a study evaluating the effect of vegetation 
treatment on bird communities might have 3 plant 
communities (ecological systems) with treatments of 
clearcut, burn, partial-cut, and controls. These factors 
would need to be nested if 1 of the plant communities 
was a shrub community where timber harvest does not 
occur.  Decisions about design of experiments must be 
reflected correctly in the analysis, as different measures 
of variance are appropriate for fixed, random, mixed, 
or nested effects. 
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Replication 

Sample size refers to the number of 
independent, random sample units drawn from the 
research population.  In experiments, sample size is the 
number of replicates to which a treatment is assigned.  
For logistical reasons, we may measure numerous 
subsamples closely spaced in a single sample unit.  
However, we must be careful to distinguish these 
subsamples from independent, random samples.  
Subsamples are not independent random sample units 
because they typically are more similar to each other 
than are widely spaced samples.  Similarly, subsamples 
in experiments are not true replicates if they cannot be 
independently assigned to a treatment category.  The 
precision of a statistic is measured by its standard error.  
Standard error is calculated from the variation among 
the true sample units or replicates and the number of 
samples.  If subsamples are mistakenly treated as true 
sample units or replicates, sample variance will 
underestimate actual amount of variation in the 
populations, sample size will overestimate true sample 
size, we will be over-confident in precision of the 
estimate because its true standard error will be under-
estimated.   

To illustrate this point, suppose we wanted to 
evaluate the effect of prescribed fire on northern 
bobwhite habitat in a large valley (1,000 km2).  We 
might conduct research on a habitat improvement 
project that involves burning 1 km2 of grassland and 
brush (e.g., Wilson and Crawford 1979).  We could 
place 20 permanent plots within the area to be burned 
and 20 in an adjacent unburned area.  Measurements on 
burned and unburned plots before and after the fire on 
the burned and unburned plots could be compared to 
examine effects of fire on bobwhite habitat.  However, 
the 20 plots on the burned area are not really replicates, 
but merely subsamples or pseudoreplicates (Hurlbert 
1984).  In fact, we have only 1 observation because we 
have only 1 fire in a 1-km2 plot within the 1,000-km² 
valley.  What would happen if we were to redesign the 
study to conduct 20 burns on 20 randomly chosen areas 
scattered throughout the valley.  We would expect to 
see more variation among these plots than among 20 
plots in a single burned area.  The fallacy of the first 
design is obvious.  A statistical test would evaluate 
only whether the burned 1-km2 area differed from the 
unburned 1-km2 area and could lead to false 
conclusions about effects of burning on bobwhite 
habitat in this area.  A more appropriate design would 
require randomly selecting 40 sites from throughout the 
entire valley and randomly assigning 20 to be burned 

(treatments) and 20 to be control (unburned) sites.  
Each burned and control site would be sampled with 5 
plots to measure bobwhite habitat before and after the 
treatment, and data would be analyzed by analysis of 
variance; the 40 sites are samples and the 5 plots per 
site are subsamples.  Thus, the 20 sites of each type 
would be true replicates.  Treating the 100 burned and 
100 unburned plots as experimental replicates would be 
an example of pseudoreplication.  Psuedoreplication 
is a common problem and investigators must 
understand the concept of replication and its 
importance in ecological research (Hurlbert 1984, 
Johnson 2002). 

 
 

Controls 

In experimental research, a control may be 
defined as parallel observations used to verify effects 
of experimental treatments.  Control units are the same 
as experimental units except they are not treated; they 
are used to eliminate effects of confounding factors 
that could potentially influence conclusions or results.  
Creative use of controls would improve many wildlife 
studies.  Experimental studies in wildlife that involve 
repeated measurements through time must include 
controls because of the importance of weather and 
other factors that vary through time (Morrison et al. 
2008).  Without adequate controls, distinguishing 
treatment effects from other sources of variation is 
difficult.  For example, in the northern bobwhite study, 
control sites were required to distinguish the effects of 
burning from effects of rainfall and other weather 
characteristics that affect plant productivity.  There 
might be an increase in grass production in the year 
following burning because the rainfall was higher that 
year.  Without control sites we cannot tell whether 
increased grass production resulted from increased 
rainfall, from burning, or from a combination of both 
factors.  Thus, we cannot evaluate the relative 
importance of each factor. 

 
Determining Sample Size 

One of the more challenging steps prior to 
starting actual data collection is to set goals for sample 
size using a prospective power analysis.  The power 
of any hypothesis test is defined as the probability of 
rejecting the null hypothesis when, in fact, it is false.  
Power depends upon the magnitude of the effect (e.g., 
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magnitude of difference between treatment and control 
or bound on estimate), variation in the characteristic, 
significance level (α), and sample size.  Zar (1999) 
provides formulas to calculate power and sample size 
for hypothesis tests, but a statistician should be 
consulted for complicated experimental designs and 
analyses.  Many statistical packages (e.g., Statistical 
Analysis System by SAS Institute 2008) or specialized 
analysis software (e.g., MARK ;White and Burnham 
1999) provide capability to generate sample data for 
analysis to determine in advance how large the sample 
size should be to detect effects expected.   

Effect size (magnitude of effect) is an 
important factor influencing sample-size requirements 
and power of a test.  However, power and sample-size 
calculations should be based on a biologically 
meaningful effect size.  Identifying a biologically 
significant effect usually involves expressing the 
conceptual model as a quantitative model plus value 
judgments about the importance of a biological 
response.  Estimating power of the test and calculating 
sample size requirements forces the investigator to 
evaluate the potential significance of the research prior 
to beginning fieldwork.  Sample size analysis may lead 
to substantial revision of the goals and objectives of 
research. 

 
A Checklist for Experimental Design 

The design of any experiment must be 
developed carefully or the conclusions reached will be 
subject to doubt.  Four particularly critical elements in 
the design of a manipulative experiment are:  (1) 
specification of the research population, (2) replication 
with independent units, (3) proper use of controls, and 
(4) random assignment of treatments to experimental 
units. An experimental-design checklist is useful to 
provide a series of questions to assist in addressing 
these critical elements.  Many of the questions will be 
helpful with design of data gathering for studies 
involving nonexperimental hypothesis testing.  Some 
experimental designs may address several hypotheses 
simultaneously (e.g., factorial designs); in other 
designs, each hypothesis may require independent 
experimental testing. 

1. What is the hypothesis to be tested?  The hypothesis 
developed from the conceptual model must be stated 
clearly before any experiment can be designed.  For 
example, we could test the hypothesis that nest 
predation on forest songbirds is higher at sharp edges, 
such as occur at typical forest clearcuts, than at 
feathered edges (partial timber removal), such as occur 

at the boundary of selectively-logged areas (Ratti and 
Reese 1988, Chalfoun et al. 2002, Stephens et al. 
2003). 

2. What is the response or dependent variable(s) and 
how should it be measured?  The response variable 
should be clear from the hypothesis (e.g., nest 
predation), but selecting the best technique to measure 
it might be more difficult.  We must consider all 
possible methods and identify 1 that will 
simultaneously maximize precision and minimize cost 
and bias.  It is often helpful to contact others who have 
used the techniques, examine the assumptions of the 
techniques, and conduct a pilot study to test the 
potential techniques.  In our example, we might search 
for naturally occurring nests along forest edges and use 
a generalized Mayfield estimator of mortality rate 
(Heisey and Fuller 1985, Jehle et al. 2004, King et al. 
2009).  This response variable is continuous and we 
could apply any of a variety of designs termed general 
linear models (GLM, e.g., ANOVA, linear regression, 
analysis of covariance) under a hypothesis testing 
framework though application of information theoretic 
methods to these models is equally or more valid.  
Alternately, we could measure our response for each 
nest as successful (at least 1 young fledged) or 
unsuccessful and use appropriate analysis methods 
such as chi-squared statistics applied to contingency 
tables or log-linear models (Fienberg 1970, 1980, 
Hazler 2004). 

3. What is the independent or treatment variable(s) 
and what levels of the variable(s) will we test?  The 
independent variable(s) should be clear from the 
hypothesis (sharp and feathered forest edges in our 
example), but selecting levels to test will depend upon 
the population to which we want to make inferences.  If 
we want to test the effects of our independent variable 
at any level, we must select the levels to test at random 
(random effects, Zar 1999).  If we are interested in only 
a few levels that our independent variable could take, 
we use only those levels in our experiment and make 
inferences only to the levels tested (fixed effects or 
Model I, Zar 1999).  For example, if we wanted to 
evaluate effects of forest edges of any type on 
predation rates, we would select types of forest edges 
at random from all types that occur and apply a random 
effects model to analyze the data.  In our example we 
are interested only in the 2 types categorized as sharp 
and feathered so a fixed effects model is appropriate.  
Additionally, our independent variable must be 
identified and classified clearly or measured precisely.  
Finally, how can we use controls to expand our 
understanding?  In our example, comparing nest 
predation in undisturbed forests to predation at the 2 
types of edges might be enlightening and we would 
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analyze the data with fixed-effects models.  Our final 
conclusions would not apply to predation rates in all 
types of forest edges, but only to the 2 types that we 
compared to undisturbed forest.   

An alternative approach to the design would 
be to treat the independent (treatment) variable as 
being continuous and use regression rather than a 
classified grouping of treatment categories.  Under this 
design we might specify the treatment would consist of 
some level of overstory removal on 1 side of the forest 
edge and we would apply regression forms of GLM 
under either hypothesis testing or information theoretic 
model evaluations.  The response could be measured as 
the difference in predation rates between the 2 sides of 
the boundary, which would be predicted from percent 
of overstory removed.  Here it becomes critical to 
select treatment levels (percent overstory removed) 
across the full range of forest treatments to which we 
want to apply our conclusions.   

4. To which population do we want to make 
inferences?  If the results of the experiment are to be 
applied to the real world, our experimental units must 
be drawn from some definable portion of that world, 
the research population.  The dependent and 
independent variables chosen should define the 
relationship(s) examined and place constraints on the 
definition of this population.  Finally, we must consider 
the impact of potential extraneous factors in selecting 
the population of interest.  If the population is defined 
so broadly that many extraneous factors impact the 
results, the variation might be so large that we cannot 
test the hypothesis (low internal validity).  If the 
population is defined so narrowly that we have 
essentially a laboratory experiment, application of the 
results might be severely limited (low generality or 
external validity).   

Reaching the proper balance between internal 
and external validity takes thought and insight.  For 
example, we might want to compare nest-predation 
rates in sharp and feathered forest edges throughout the 
northern Rocky Mountains, but the logistics and cost 
would make the study difficult.  Thus, we might restrict 
our population to 1 national forest in this region.  Next 
we need to consider the types of forests.  We might 
want to test the hypothesis for the major forest types, 
but we know the species of birds nesting in these 
forests and their nest predators differ among forest 
types.  Thus, we may need to restrict our population to 
1 important type of forest to remove extraneous factors 
that could impact our results if we sampled a large 
variety of forest types.  We need to ask what types of 
sharp and feathered edges occur to decide which we 
will sample.  Sharp edges are commonly produced by 
clearcuts, power line rights-of-way, and road rights-of-

way.  These 3 types differ dramatically in factors such 
as size, shape, human access, and disturbance after 
treatment.  Additionally, our ability to design a true 
experiment involving random assignment of treatments 
is severely limited for all but the clearcuts.  Therefore, 
we might restrict our populations to sharp edges 
created by clearcuts and feathered edges created by 
selective harvests. 
5. What will be our experimental unit?  What is the 
smallest unit that is independent of other units, which 
will allow random assignment of a treatment?  This 
must be identified correctly or the resulting experiment 
might not have true replication, but represent a case of 
pseudoreplication (Hurlbert 1984).  For example, we 
might erroneously decide the experimental unit for our 
nest-predation study will be an individual nest.  The 
resulting design might entail selecting 3 areas and 
randomly assigning them to be clearcut, control, and 
the other to be selectively logged.  By intensive 
searching we find 20 nests along the edge of each area 
and monitor them for predation.  The resulting data 
would suggest 20 replicates of each treatment, but in 
fact, only a single area was given each treatment.  Only 
1 area was randomly assigned each treatment and the 
20 nests are subsamples.  Thus, pseudoreplication 
restricts our potential inferences.  In effect, we have 
sampled from populations consisting only of 2 logged 
areas and 1 unlogged area, and our inferences can be 
made only to those 3 areas, not to clearcuts, selective 
cuts, or undisturbed forests in general.   

In some situations, pseudoreplicated designs 
are unavoidable, but interpretation of their results is 
severely restricted because, without replication, 
confounding factors rather than the treatment could 
have caused the results.  For example, in our nest 
predation experiment if 1 of the areas was within the 
home range of a pair of common ravens (Corvus corax) 
and the other areas were not, this single confounding 
factor could affect the results regardless of treatment.  
A more reliable experiment would require that we 
identify several areas with potential to be logged, 
perhaps 15, sufficiently far apart to be independent of 
each other, and that we randomly assign 5 to be 
clearcut, 5 to be selectively harvested, and 5 to be 
controls.  We would locate and monitor several nests in 
each area.  The nests in a single area would be 
correctly treated as subsamples and their overall 
success treated as the observation for that area.  This 
approach attempts to remove effects of confounding 
factors and allow development of a conclusion with 
general application to the populations sampled (i.e., 
edges created by clearcuts and selective cuts within this 
habitat type in this region). Including control stands 
without an edge provides invaluable information for 
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assessing the biological significance of the difference 
between the 2 types of edges. 

6.  Which experimental design is best?  A few of the 
most widely used designs are described, but we advise 
consulting texts on experimental design and a 
statistician before making the final selection (Scheiner 
and Gurevitch 2001, Quinn and Keough 2002, 
Morrison et al. 2008).  The choice depends primarily 
upon the type of independent and dependent variables 
(categorical, discrete, or continuous), number of levels 
of each, ability to block experimental units together, 
and type of relationship hypothesized (additive or with 
interactions).  For our study of nest predation along 2 
types of forest edges, a single-factor design would be 
appropriate, but Hurlbert’s (1984) argument for 
interspersion of treatments and controls could be 
incorporated using a more sophisticated design.   For 
example, 3 adjacent stands in 5 different areas might be 
randomly assigned to treatment and controls, with 
areas cast as blocks resulting in a randomized complete 
blocks design (Zar 1999). 

7. How large should the sample size be?  Estimating 
sample size needed for proper analysis is essential.  If 
the necessary sample size were too costly or difficult to 
obtain, it would be better to redesign the project or 
work on a different question that can be answered.  
Sample size depends upon the magnitude of the effect 
to be detected, variation in the populations, type of 
relationship that is hypothesized, and desired power for 
the test.  Typically some preliminary data from a pilot 
test or from the literature are required to estimate 
variances.  These estimates are used in the appropriate 
formulas available in statistical texts (e.g., Zar 1999) 
and incorporate a prospective power analysis to assure 
that we have a high (80–90%) chance of detecting 
biologically meaningful differences between our 
treatment and control categories.  Powerful analysis 
programs like SAS (SAS Institute 2008) provide tools 
to perform prospective power analysis for complicated 
designs. 

8.  Have you consulted a statistician and received peer 
review on your design?  Obtaining review by a 
statistician before the data are gathered is essential.  
The statistician will not be able to help salvage an 
inadequate design after a study is completed.  Peer 
review by other biologists with experience on similar 
studies also could prevent wasted effort if 
measurements or treatments are proposed that will not 
work on a large scale in the field.  Now is the time to 
get these comments! 

 

MODELING 

"Essentially, all models are wrong, but some 
are useful" (attributed to George Box by Burnham and 
Anderson 2001).  Rigorously evaluating ideas 
concerning wildlife habitats and populations using 
experimental manipulations may be difficult because 
we cannot randomly assign treatments and the high 
cost of treatments precludes adequate replication in 
many cases. However, modeling methods provide an 
alternative route to finding solutions to pressing 
problems (Starfield and Bleloch 1991, Shenk and 
Franklin 2001), selecting the best of alternative choices 
(Holling 1978, Walters 1986, Clemen and Reilly 2001, 
Conroy and Peterson 2009), determining the relative 
magnitude of effects from multiple causes acting 
simultaneously (Wisdom and Mills 1997, Saltelli et al. 
2001), and evaluating population viability (Mills 
2007:254).   A biologist’s goal should be to build the 
simplest model that describes the relationships between 
causative factors and the effects they produce.  It is 
most likely that a wildlife scientist will select a 
modeling strategy at the simple, empirical ends of the 
continua in terms of model complexity (Table 1.2) or 
in Levin's (1966) terms, sacrifice generality for realism 
and precision.  Long-term monitoring data and 
extensive measurements of demographic rates and 
habitat relationships provide the basis for more 
complex models.  

In most cases the goal is to model the 
responses of wildlife populations or habitats with the 
smallest number of predictors necessary to make good 
predictions.  Note that this use of the term model 
corresponds to what Williams et al. (2002:23) refer to 
as a scientific model rather than a statistical model.  
Statistical models are the foundation for all statistical 
estimation, hypothesis testing, and statistical 
comparison between competing models through an 
inductive process based on limited observations (see 
later under Parameter Estimation and Confronting 
Theory with Data).  Scientific models, described in this 
section, are used deductively to project system 
dynamics based on a set of ideas expressed as 
characteristics and relationships estimated inductively 
from statistical models.  We use these 2 types of 
models cooperatively to help us answer important 
questions about wildlife.  
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Table 1.2.  Modeling strategies along gradients of simple to complex 
for scientific and statistical models.   

______________________________________________________ 
           
  ________________________Gradient___________________ 
           
__Scientific Models___Simple_____________________Complex 
 
  Quantification Conceptual (verbal)---------------Quantitative 
  Theoretical General-------------------Complex Simulation 
  Relationships Linear---------------------------------Non-linear 
   Variability Deterministic------------------------Stochastic 
  Time Scale Time-specific------------------------Dynamic 
  Mathematical Difference ------------ ----------Differential  
       Formulation      Equations                  Equations 
  Factors Single--------------------------------Multifactor 
  Spatial Single Site---------------------------Multi-site 
  No. of Species Single Species-------------------Multi-species 
 
__Statistical Models____________________________________ 
 
  Sampling Simple Random----------Stratified, Clustered  
               or Multi-stage 
  Hypothesis        Testing Fixed or --------------Mixed Fixed and 
   Random Effects             Random Effects  
  Independence of  Complete ----------------Dependence between  
    Observations Independence            Observations In Space,  
           Time or Both 
  Errors  Single Term------------------Separate Process  
                    and Observation Errors 
____________________________________ 

 
 

Scientific models are commonly referred to as 
simulation models because they simulate the 
dynamics of a system described in terms of the 
assumptions, characteristics, relationships, and 
variability observed.  When variability is a key 
component they are referred to as Monte Carlo 
scientific models.  Kitching (1991) suggested a 
variation of the following 8 steps to build an ecological 
model which are directly applicable to building 
scientific wildlife models.   

 
Steps to Build a Model 

Problem Definition 

The problem of interest must have been 
identified earlier as one of the first steps in the 
scientific method and the relevant theory, previous 
observations, conceptual model (Fig. 1.4), predictions 
and hypotheses stated clearly.  Someone proposing to 
build a model to answer the question must now answer 
the question why a numerical or mathematical model is 
an appropriate way of tackling the problem (Kitching 

1991:31).  A good example of an appropriate question 
is which of the available management options are more 
likely to recover an endangered species and prevent its 
extinction.  It is important to embrace the modeling 
approach to this problem as a pragmatic one.  "There is 
no point at all in building an ecological model that is 
more complex, more complete or more time-
consuming than is justified by the terms of reference of 
the problem to which the model is a response" 
(Kitching 1991:31).  The better the problem(s) is 
identified the more useful the model. 

 
System Identification 

After identifying the problem(s) it is critical to 
define the system boundary and level of resolution to 
model within the hierarchy of ecological levels from 
individual animals with associated spatial extent to 
population or metapopulation (Fig. 1.2).  Next the 
biologist must select a set of components to model (see 
examples in Fig. 1.4).  One strategy is to pursue a 
parsimonious approach, making the model as simple as 
possible, by selecting only critical components 
essential to describe the system.  This is the approach 
followed in developing general, theoretical models 
taking the form of analytical mathematical models 
(Table 1.2).  The other extreme is to include all the 
components likely to be involved in the processes of 
interest.  Such models take the form of complex 
simulation models (Table 1.2).  The typical route 
followed in wildlife models is to take the simple 
empirical approach and Starfield and Bleloch (1991) 
recommend tending toward the parsimonious end while 
including enough complexity to produce realistic 
predictions.  Once the initial set of components is 
defined to meet the objectives, the nature of their 
interactions must be defined based on creative thinking 
and literature as follows:  positive, negative, feedback 
loops, and complex combinations.  Creating a simple 
system diagram is useful in clarifying these relations 
(e.g., Fig. 1.4) and guiding literature searches. 

 
Selecting Model Type 

The great variety of model types available 
(Table 1.2) may seem daunting at first, but the problem 
definition above should guide us in selecting the 
appropriate type of model along the continuum from 
simple to complex with preference always toward the 
simplest model necessary to meet the needs.  Building 
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complex models requires estimating more 
characteristics with more complex relationships.  
Fortunately most wildlife problems can be handled 
with simple, linear models incorporating deterministic 
effects of a few independent factors at a single or small 
number of sites.  Even forecasts for population viability 
requiring stochastic models with time lags are easily 
modeled with simulation models based on estimates 
obtainable with standard linear regression methods 
(e.g., Garton et al. 2010). 

 
Mathematical Formulation 

Almost all wildlife models are formulated as 
difference equations because of the strong seasonal and 
annual patterns which make estimating parameters for 
continuous time models formulated as differential 
equations difficult.  Differential equation formulations 
have been more successful for developing general, 
theoretical models that form the basis for many of the 
ecological theories underlying principles of wildlife 
population ecology (Ginzburg 1986, Turchin 2001, 
Colyvan and Ginzburg 2003, Berryman 2003), but 
translating these general models into stochastic 
difference equation models has proven very 
successful for modeling time series of populations with 
complex dynamics (e.g., population viability analysis 
for San Joaquin kit fox, Vulpes macrotis mutica, 
incorporating density-dependence and a 2-year lag in 
rainfall effects on plant productivity, Dennis and Otten 
2000).  

Selecting Computing Methods and Programs 
Simple wildlife models formulated in 

commonly used general purpose, spreadsheet programs 
can provide remarkable insight into wildlife population 
dynamics (Starfield and Bleloch 1991).  Some 
specialized software designed for specific purposes 
such as population viability analysis see wide 
application to projecting persistence for endangered 
and rare species (e.g., RAMAS , Akçakaya 2000 and 
VORTEX, Lacy 1993).  Programs designed for 
statistical analysis (e.g., SAS; SAS Institute [2008] and 
R; R Development Core Team [2006]) are equally 
adaptable to simulating both deterministic and 
stochastic models as they are to estimating the 
parameters for these models (Bolker 2008 and Garton 
et al. 2010). 

 

Parameter Estimation 

Sampling methods, least squares for GLM, 
and maximum likelihood methods are all useful to 
estimate parameters for alternative models.  
Information-theoretic approaches to evaluating 
competing models (see further details later under 
Confronting Theory with Data) provide excellent tools 
to evaluate relative precision of alternative models in 
predicting responses (Burnham and Anderson 2002).  
Burnham and Anderson (2002) contend that 
information theoretic methods, such as using AIC to 
assess the information content of a model, should be 
applied where we cannot experimentally manipulate 
causes or predictors.  Model averaged parameter 
estimates are readily calculated within this framework 
using Akaike weights (Burnham and Anderson 
2002:133ff.). 

 
Model Validation 

Validation of a model should take at least 2 
forms.  Comparing the predictions of the model to data 
that were analyzed to build the model provides a 
preliminary validation or verification (Oreskes et al. 
1994) that is always performed as part of constructing 
the model.  Clearly this is essential to verify that the 
model is performing as the investigator expects.  A real 
test of the validity of the model requires comparing 
output from the model to independent data not used in 
construction of the model (Gardner and Urban 2003).  
The comparison is usually made with standard 
statistical tools such as correlation and regression 
which may be evaluated under a frequentist perspective 
using either hypothesis tests or likelihood measures.  
Since models using all data possible maximize 
precision in parameter estimation approaches such as 
jack-knifing, in which, each individual observation is 
predicted from models fit to all the rest of the data are 
applied (Efron 1993). 

 
Model Experimentation 

Once earlier steps through model validation 
are completed the model is ready to be used to address 
the original questions that initiated the modeling 
process.  Experiments are performed by manipulating 
key input parameters to assess response of model 
output characteristics to anticipated alternative 
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management actions and/or potential environmental 
trends, changes, or variation.  A useful model is an 
invaluable aid to both research and management, but 
veracity of any predictions rest firmly on assumptions 
built into the model structure and relationships as well 
as validity of any parameters estimated from field 
observations.  Scheller et al. (2010) provide further 
details on the approach outlined above which applies 
modern software engineering techniques as part of a 
process to increase the reliability of ecological models.  
A useful model should be used interactively with 
ongoing research and management activities whereby 
modeling exercises help identify critical relationships 
and parameters that are then investigated in the field by 
gathering new observations or performing experiments.  
In the management context this process is adaptive 
management where model predictions guide 
management actions and continued monitoring 
provides feedback to validate and improve model 
assumptions expressed as model parameters and 
relationships. 

 
SAMPLING 

Most information gathered by wildlife 
biologists is used to meet descriptive rather than 
experimental objectives but obtaining precise estimates 
is equally important for both experiments and 
descriptive research.  Examples include estimates of 
population size, recruitment, herd composition, annual 
production of forage species, hunter harvest, and public 
attitudes.  In these efforts biologists attempt to obtain 
estimates of characteristics that are important for 
management decisions.  We want to obtain the best 
estimates possible within the constraints of our 
resources of time and money.  A large body of 
statistical literature exists to help; these types of studies 
are referred to as surveys and the topic is known as 
survey sampling (Cochran 1963, 1983; Scheaffer et al. 
2005) or finite population sampling.  

The research population is typically 
synonymous with the statistical population, but a 
powerful approach is to redefine the statistical 
population geographically in terms of units of space or 
habitat.  Defining our statistical population as 
drainages, forest stands, individual ponds, or square-
km blocks often facilitates estimating total numbers of 
animals and composition of a population.  Sampling 
smaller units of habitat is more likely to be logistically 
feasible.  Likewise this redefinition of our research 
(statistical) population makes it feasible to apply the 
powerful tools for sampling from finite populations.   

Sampling also is a critical part of experimental 
research and the test of formal statistical hypotheses.  
All field studies and most field experiments require 
creative sampling designs to reduce variation between 
observations in our treatment or comparison categories.  
For example, stratification and clustering can sharpen 
comparisons, but data collected using these methods 
require analysis by more complicated designs (e.g., 
block or split-plot designs; Zar 1999).  Choice of 
specific sampling methods is dependent on the 
objectives or hypotheses being addressed, the nature of 
the population being sampled, and many other factors 
such as species, weather conditions, topography, 
equipment, personnel, time constraints, and desired 
sample sizes.  A variety of sampling designs is 
available for biologists to use in wildlife surveys and 
experimental research (Thompson et al. 1998, 
Scheaffer et al. 2005, Morrison et al. 2008). 

 
Precision, Bias, and Accuracy 

One measure of quality of estimates is their 
precision.  Precision refers to the closeness to each 
other of repeated measurements of the same quantity 
(Cochran 1963, Krebs 1999, Zar 1999).  Precision of 
an estimate depends on variation in the population and 
size of the sample.  Indicators of precision of an 
estimator are standard error and confidence 
intervals.  Larger variation in the population leads to 
lower precision in an estimate, whereas a larger sample 
size produces higher precision in the estimator.  
Another measure of quality of an estimator is termed 
bias.  Bias describes how far the average value of the 
estimator is from the true population value.  An 
unbiased estimator centers on the true value for the 
population.  If an estimate is both unbiased and precise, 
we say that it is accurate (defined as an estimator with 
small mean-squared error, Cochran 1963).  Accuracy is 
the ultimate measure of the quality of an estimate (Fig. 
1.6) and refers to the small size of deviations of the 
estimator from the true population value (Cochran 
1963).  
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Fig. 1.6.  Concepts of bias, precision, and accuracy are 
illustrated with targets and a shot pattern (modified from 
Overton and Davis 1969 and White et al. 1982). 

Let us illustrate these concepts with a typical 
population survey. Suppose we were interested in 
estimating density of elk on a large winter range.  One 
approach might be to divide the area into a large 
number of count units of equal size and draw a sample 
of units to survey from a helicopter.  This would define 
our research population in terms of a geographic area 
rather than animals.  The elements of our target 
population are count units, and we select a sample of 
these units using an objective sampling design (a 
probability sample).  Using the helicopter we search 
each of the sampled units, attempting to count all elk 
present in each unit.  We divide the number of elk 
counted in each unit by the size of that unit to obtain a 
density estimate for each unit (Fig. 1.7A).  The 
histogram suggests little variation in density on this 
winter range, as most spatial-units (80%) have 
densities between 1.5 and 2.3 elk/km2.  We need a 
single value that is representative of the entire winter 
range, and we choose the mean from our sample as the 
best estimate of the mean for the winter range.  The 
variation from one unit to the next is small, thus the 
mean from our sample is a fairly precise estimate.  But 
suppose we had obtained different results (Fig. 1.7B).  
Now the variation from one unit to the next is great, 
and the sample mean is less precise and not as reliable 
as the previous estimate.  Thus, for a given sample size, 
the former estimate is more precise because of less 
variation in the population. 

 

 
 
Fig. 1.7.  Hypothetical example of elk counts and 
density estimates in Areas 1 and 2. 

 
Would the mean from the sample in Area A 

(Fig. 1.7A) be an accurate estimate of the mean density 
of elk on this winter range?  To answer this question, 
we must evaluate the bias in the estimate.  If the winter 
range was partially forested or had tall brush capable of 
hiding elk from view, aerial counts in each unit would 
underestimate the true number of elk present (Samuel 
et al. 1987).  In this example the mean density from the 
sample would be a biased estimate of elk density on the 
winter range and, therefore, not highly accurate.  If the 
winter range was a mixture of open brush fields and 
grasslands where all animals would be visible, mean 
density from the sample could be an accurate estimate 
of elk density on the entire winter range.  We strive for 
accuracy in our estimates by selecting the approach 
with the least bias and most precision, applying a valid 
sampling or experimental design, and obtaining a 
sufficiently large sample size to provide precise 
estimates. 

Evaluating bias in an estimate is difficult and, 
in the past, has been based on the researcher’s 
biological knowledge and intuition.  If bias is constant, 
the estimate can be used to make relative comparisons 
and detect changes (Caughley 1977).  Usually bias is 
not constant (Anderson 2001), but its magnitude often 
can be measured so that a procedure to correct 
estimates can be developed (Rosenstock et al. 2002, 
Thompson 2002).  For example, Samuel et al. (1987) 
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measured visibility bias in aerial surveys of elk from 
helicopters, and Steinhorst and Samuel (1989) 
developed a procedure to correct aerial surveys for this 
bias. 

 
Sampling Designs 

 
Simple Random 

A simple random sample requires that every 
sample unit in the population have an equal chance of 
being drawn in the sample and the procedure for 
selecting units is truly random.  This can be 
accomplished by assigning each member of the 
population a number and then picking numbers, to 
identify members to sample, from a table of random 
numbers or a random number generator on a computer or 
calculator.  For example, suppose in a special hunt, we 
wanted to estimate the number of successful hunters 
where limited permits were issued.  We might decide to 
contact a sample of permit buyers by telephone after the 
season to measure their hunting success.  A survey 
design checklist (Box 1.4) helps us design such a survey 
properly.  The population that we want to make 
statements about is all persons who obtained a permit.  
The list of the members of the population is usually 
called the sampling frame (Scheaffer et al. 2005).  It is 
used to draw a random sample from the population.  The 
sampling frame must be developed carefully or the 
resulting estimates may be biased.  For example, if a 
portion of our permit buyers did not have telephones and 
we decided to drop them from the list, the results could 
be biased if such hunters had different hunting success 
than permit buyers with telephones.  To draw a random 
sample for our survey we could assign each person who 
purchased a permit a number and select the numbers to 
be contacted from a random-numbers table or by using a 
random-number generator. 
 

In other types of surveys, obtaining a truly 
random sample of the population might be difficult.  In 
such instances another method such as systematic 
sampling should be used.  One approach, when the 
research population consists of animals that would be 
difficult to sample randomly, is to change the design.  
We do this by making small geographic units, such as 
plots or stands, our sample units (or experimental units 
if we are developing a sampling design for an  
 

Box 1.4.  Survey design checklist. 
________________________________________________ 
 Question  Example 
________________________________________________ 
1.    What is the survey Estimate the percentage of 
         objective?          successful hunters 
2.    What is the best technique Telephone survey of permit 
              or method?       holders 
3.    To which population do   Everyone who has a 
  we want to make           permit for this hunting 
       inferences?             period 
4.    What will be the sample    Individual permit  
             unit?        holders 
5.    What is the size of the    N = 350 (for special permit      
              population to        hunt) 
         be sampled (N)? 
6.     Which sample design is    Simple random sample  
         best?  
7.    How large should the          
       sample be?a      
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  where: 
   N = population size (350) 
   p = proportion of permit  
      holders who harvested 
      deer (from pilot  
      survey = 0.24) 
   B = bound on the estimate = 
   0.05 (we want an estimate 
   with p ± 0.05 confidence) 
  Therefore 
    
  

)24.01(24.0)4/)05.0)((1350(
)24.01)(24.0(350

2 −+−
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=n  

  n = 159, i.e., we should contact  
          approximately160 permit  
          holders 
8.    Have you contacted a Yes! 
statistician to review design? 
________________________________________________ 
a Scheaffer et al. (2005). 
 

experimental treatment) and making our measurement 
on each plot a number or density of animals.  Thus, we 
can take a random sample of spatial units and use it to 
infer abundance across our entire study area sampled.  
A valid random sampling procedure must be 
independent of investigator decisions.  For example, an 
excellent procedure to locate plots randomly in a study 
area would be to use a Landsat image of the study area 
stored in a geographic information system (GIS) 
program which allows us to select random locations 
within the boundary of our study area using Universal 
Transverse Mercator (UTM) coordinates (Fig. 1.8A).  
The UTM coordinates of these selected plot locations 
can be entered into a hand-held GPS (Global 
Positioning System) unit that will guide us to the exact 
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location.  Random-like methods, referred to as 
haphazard or representative, have been used in place of 
truly random designs, but should be avoided because 
they are subject to investigator bias.  An example of 
these methods is the technique of facing in a random 
direction and throwing a pin over the shoulder to obtain 
the center for a vegetation plot.  Although this sounds 
random, the odds of a field crew randomly facing away 
from a dense stand of thorny shrubs such as multiflora 
rose (Rosa multiflora) and throwing the pin into the 
middle of such a patch is practically zero.  Truly 
random samples occasionally produce poor estimates 
by chance due to poor spatial coverage of the area or 
population of interest (e.g., in an area with a small 
number of important habitat patches, all of the patches 
may be missed by a truly random approach; Hurlbert 
1984, Johnson 2002).  

 
 

 
Systematic 

A systematic sample is taken by selecting 
elements (sampling units) at regular intervals as they 
are encountered.  This method is easier to perform and 
less subject to investigator errors than simple random 
sampling.  For example, if we wanted to sample bird-
watchers leaving a wildlife management area it would 
be difficult to draw a truly random sample.  However, 
it would be easy to draw a systematic sample of 10% of 
the population by sampling every tenth person leaving 
the area.  Systematic sampling also is used extensively 
in vegetation measurements because of its ease of use 
in the field.  Systematic sampling is almost exclusively 
used in geographic sampling because it makes possible 
evaluation of the spatial pattern of variability (e.g., 
spatial autocorrelation), which is used for most modern 
spatial modeling.  A valid application requires random 
placement of the first plot followed by systematic 
placement of subsequent plots, usually along a transect 
or in a grid pattern (Fig. 1.8B).  This approach often 
provides greater information per unit cost than simple 
random sampling because the sample is distributed 
uniformly over the entire population or study area.  For 
random populations (i.e., no serial correlation, cyclic 
pattern, or long-period trend), systematic samples give 
estimates with the same variance as simple random 
samples. 

The major danger with systematic samples is 
that they may give biased estimates with periodic 
populations (i.e., with regular or repeating cycles).  
For example, if we were interested in estimating the 

number of people using a wildlife management area, 
we might establish a check station and take a 
systematic sample of days during the season.  This 
procedure could yield extremely biased results if we 
chose to take a sample of one-seventh of the days.  If 
the day sampled fell during the workweek, we could 
obtain different results than if it was during the 
weekend.  Additionally, our estimate of variance would 
likely be too small, leading us to conclude that our 
estimate was much more precise than in reality.  In this 
situation the population sampled obviously is periodic; 
in other situations the periodicity might be quite subtle.  
Thus, systematic sampling must be used with caution.  
The formal procedure is conducted by randomly 
selecting one of the first k elements to sample and 
every kth element thereafter.  For example, if we 
wanted to sample 10% of our population, k would 
equal 10 and we would draw a random number 
between 1 and 10.  Suppose we selected 3, we would 
then sample the third element and every tenth element 
thereafter (i.e., 13th, 23rd, 33rd, . . .).  At a check station 
we might use this to sample 10% of the deer hunters or 
bird watchers that came through the station.  When 
locating plots along a transect, we would randomly 
locate the starting point of the transect and then place 
plot centers at fixed intervals along the transect such as 
every 100 m.  Advantages and disadvantages of 
random and systematic sampling have been reviewed 
by Thompson et al. (1998), Krebs (1999), and 
Morrison et al. (2008). 

 
Stratified Random 

In many situations, obvious subpopulations 
exist within 1 total population.  For example, tourists, 
bird-watchers, and hunters are readily divided into 
residents and nonresidents.  A study area can be 
divided into habitats.  A population of animals can be 
divided into age or gender groups.  If members of these 
subpopulations are similar in terms of the 
characteristics we are estimating and the 
subpopulations themselves differ from each other in the 
characteristic of interest, a powerful design to use is 
stratified random sampling.  Subpopulations are 
referred to as “strata,” and we draw a simple random 
sample of members from each of these strata.  
Stratified random sampling also is useful if we are 
particularly interested in the estimates for the 
subpopulations themselves.  The strata are chosen so 
they contain units of identifiably different sample 
characteristics, usually with lower variance within each 
stratum.   



32 

 

 
 
 
Fig. 1.8.  Examples of sampling designs:  A = simple random sample, B = systematic sample, C = stratified random 
sample, D = cluster sample, E = adaptive cluster sampling; and sampling methods:  F = point sampling, G = plots along 
transects, H = line transect, and I = road sampling. 
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For example, if the objective of a study of 

moose (Alces alces) is to estimate moose density, we 
might define strata on the basis of habitats (e.g., bogs 
and riparian willow [Salix spp.] patches, unburned 
forests, and burned forest).  We then draw a simple 
random sample from each of these strata (Fig. 1.8C).  If 
moose density is different among strata, variation in 
each stratum will be less than the overall variation.  
Thus, we will obtain a better estimate of moose density 
for the same or less cost.  If strata are not different, 
stratified estimators may not be as precise as simple 
random estimators.  In some instances, cost of 
sampling is less for stratified random sampling than for 
simple random sampling.  A final advantage of 
stratified random sampling is that separate estimates 
for each stratum (e.g., moose density in willows or in 
forests) are obtained at no extra cost.  The formal 
procedure for stratified random sampling consists of 3 
steps:  (1) clearly specify the strata–they must be 
mutually exclusive and exhaustive, (2) classify all 
sampling units into their stratum, and (3) draw a simple 
random sample from each stratum.  Formulas are 
available to calculate the sample size and optimal 
allocation of effort to strata (Krebs 1999, Scheaffer et 
al. 2005).  A pilot survey can be analyzed using 
analysis of variance (ANOVA) to learn if stratification 
is indicated.  If cover types define strata, most GIS 
software will automatically select random coordinates 
within cover types making stratified random samples 
easy to select. 

 
Cluster Sampling 

A cluster sample is a simple random sample 
in which each sample unit is a cluster or collection of 
observations (Fig. 1.8D).  This approach has wide 
application in wildlife biology because many birds and 
mammals occur in groups during all or part of the year.  
When we draw samples from such populations we 
draw clusters of observations (i.e., groups of animals).  
Likewise, many wildlife user groups (e.g., waterfowl 
hunters, park visitors) occur in clusters (e.g., boats in 
wetlands, vehicles along highways).  Cluster sampling 
also is useful where cost or time to travel from one 
sample unit to the next is prohibitive.  This is 
commonly the situation in surveys of animals and 
habitat.  The formal procedure for cluster sampling 
consists of 3 steps:  (1) specify the appropriate clusters 
and make a list of all clusters, (2) draw a simple 
random sample of clusters, and (3) measure all 

elements of interest within each cluster selected. 
Making a formal list of clusters is rarely 

possible or essential.  Instead, we emphasize obtaining 
a random sample of clusters.  If the sample units are 
animals, which naturally occur in groups, the size of 
the clusters will vary from group to group depending 
on the social behavior of the species.  Cluster sampling 
of habitat is performed by choosing a random sample 
of locations and then locating multiple plots in a cluster 
at each location. In this case, the researcher sets cluster 
size.  The optimal number of plots (cluster size) 
depends upon the pattern of variability in habitat.  If 
plots in a cluster tend to be similar (i.e., little 
variability within a cluster), cluster size should be 
small.  If plots in a cluster tend to be heterogeneous 
(high variability within a cluster), cluster size should be 
large.  For other types of cluster samples such as 
groups of animals or people in vehicles, cluster size is 
not under control, but is a characteristic of the 
population.  For example, aerial surveys of elk and deer 
on winter ranges result in samples of animals in 
clusters.  Estimates of herd composition (e.g., fawn:doe 
or bull:cow ratios) are readily obtained by treating 
these data as cluster samples (Bowden et al. 1984). 

 
Adaptive Sampling 

Adaptive sampling differs from earlier 
methods because the sample size is not set at the start 
of the sampling effort, but rather depends upon the 
results obtained during sampling.  Thompson and 
Ramsey (1983) pioneered adaptive cluster sampling for 
gathering information on rare animals and plants, 
which often are clustered in occurrence.  In adaptive 
cluster sampling, an initial sample of units is drawn 
by a random or other standard design and neighboring 
units also are sampled for any unit that satisfies a 
criterion such as having more than x individuals 
present (Thompson and Seber 1996, Williams et al. 
2002, Brown 2003, Thompson 2003).  The initial 
sampling unit and neighbors (where sampled) form 
neighborhoods analogous to clusters and are treated 
similar to cluster sampling.  Size of clusters does not 
need to be constant nor is it known in advance.  For 
spatially clustered animals or plants, the neighborhood 
consists of adjacent spatial sample units (Fig. 1.8E).  
Smith et al. (1995) showed that adaptive cluster 
sampling would be relatively more efficient than 
simple random sampling for estimating densities of 
some species of wintering waterfowl if the right sample 
unit size and criterion for further sampling in the 
neighborhood were chosen.  The species for which it 
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would be superior show more highly clustered 
distributions.  For other species, conventional sampling 
designs with fixed sample sizes were superior.  
Numerous examples of applications of adaptive 
sampling under conventional sampling designs and 
estimation methods, as well as applications based on 
maximum likelihood methods and Bayesian 
approaches can be found in Thompson et al. 1992, 
Thompson and Seber 1996, Smith et al. 2003, Smith et 
al. 2004 and Noon et al. 2006.  Thompson et al. (1998), 
Williams et al. (2002), and Morrison et al. (2008) also 
review the basic concept and provide simple examples.   

 
Sequential Sampling 

Sequential sampling differs from the 
classical statistical approach in that sample size is not 
fixed in advance (Wald 2004), but rather, samples are 
drawn 1 at a time and, after each sample is taken, the 
researcher decides whether a conclusion can be 
reached.  Sampling is continued until either the null 
hypothesis is rejected or the estimate has adequate 
precision.  This type of sampling is applicable to 
wildlife studies where sampling is performed serially 
(i.e., the result of including each sample is known 
before the next sample is drawn; Krebs [1999]).  The 
major advantage of this approach is that it usually 
minimizes sample size saving time and money.  After 
an initial sample of moderately small size is obtained, 
successive samples are added until the desired 
precision is met, the null hypothesis can be rejected, or 
a maximum sample size under a stopping rule has been 
reached.  This approach typically requires <33% the 
sample size required in a standard design (Krebs 
1999:304).  For example if we wanted to survey deer 
on a winter range to insure that harvest had not reduced 
buck abundance below a management guideline of 5% 
bucks, we would develop a graph (Fig. 1.9) and plot 
the results of successive samples as shown (Krebs 
1999:312). We must choose a level of significance for 
our test (e.g.,  = 0.10) and a power for the test (1- = 
0.90) and specify an upper rejection region (>10% 
bucks) above, which we assume the population has not 
been adversely impacted by buck-only harvests.  Once 
an initial sample of 50 deer has been obtained, 
sequential groups of deer encountered are added and 
totals plotted on the graph until the line crosses one of 
the upper or lower lines or the stopping rule is reached.  
For example, the lower rejection line was reached at a 
sample size of 140 (Fig. 1.9). At this point the null 
hypothesis that bucks were >5% would be rejected and 
the conclusion would be there were <5% bucks 

remaining.  An important constraint is the sample must 
be distributed throughout the entire population so that a 
simple random sample of deer groups is obtained.  This 
would be most feasible using aerial surveys from 
helicopter or fixed-wing aircraft. 

 
 
 
 

 
Fig. 1.9.  Sequential sampling for percentage bucks in a 

deer herd. 

Other Sampling Designs 

Many other sampling designs are available.  
For example, 2-stage cluster sampling involves 
surveying only a portion of the members of each 
cluster drawn in the sample.  This approach is efficient 
when clusters are large.  Cluster sampling is one 
version of the more general method referred to as ratio 
estimation (Cochran 1963, Williams et al. 2002).  
Related methods are regression estimation and 
double sampling (Scheaffer et al. 2005), which have 
wide potential for application to wildlife research.  The 
interested reader should consult a standard reference on 
sampling techniques (Scheaffer et al. 2005) and work 
with a statistician experienced in survey sampling.  
Stevens and Olsen (2004) proposed a new, efficient 
approach which combines the advantages of spatially 
systematic designs with the proven unbiased nature of 
random sampling.   They described this approach as a 
generalized random tessellation stratified (GRTS) 
design.  This uses a recursive approach that converts a 
2-dimensional map into a 1-dimensional map while 
maintaining spatial closeness in original locations so 
that a valid systematic sample can be drawn which 
meets requirements of random sampling while 
distributing the sample across the entire spatial area.  
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Theobald et al. (2007) have provided freely-available 
tools (STARMAP Spatial Sampling tools 
(http://www.stat.colostate.edu/~nsu/starmap/) which 
make it feasible to apply this approach to generating 
spatially balanced probability based survey designs. 

 
Sampling Methodology 

 
Plots 

Plots are used widely to sample habitat 
characteristics and count animal numbers and sign.  
Plots represent small geographic areas (circular, 
square, or rectangular) that are the elements of the 
geographically defined population.   The research 
population size is the number of these geographic areas 
(plots) that would cover the entire study area.  
Sufficient time, money, and personnel to study an 
entire area are usually not available, and a subset of 
plots is used with the assumption that it is 
representative of the area.  Any of the survey designs 
(simple random, systematic, stratified random, cluster, 
etc., Fig. 1.8) or more complicated designs such as 2-
stage designs may be applied (Cochran 1963, Williams 
et al. 2002).  Selecting the best design requires insight 
into characteristics and patterns of distribution of 
species across the landscape.  One advantage of this 
approach is that size of the population is known and 
totals can be estimated (Seber 1982).  Selection of plot 
size and shape, also an important consideration, has 
been reviewed by Krebs (1999). 

 
Point Sampling 

In point sampling, a set of points is 
established throughout the population and 
measurements are taken from each sample point (Fig. 
1.8F).  A common measurement is distance from the 
point to a member of the population (e.g., plant or 
calling bird).  Examples include point quarter and 
nearest neighbor methods used widely to estimate 
density of trees and shrubs (Mueller-Dombois and 
Ellenberg 1974), and the variable circular plot or point 
transect method of estimating songbird density 
(Reynolds et al. 1980).  If observers doing point counts 
for birds record the distance to each bird detected, as in 
the variable circular plot approach, transforming 
distances to areas makes it easy to apply the extensive 

methods and algorithms developed for line transects 
referred to as distance sampling methods(Buckland et 
al. 1993, Laake et al. 1994, Buckland et al. 2001, 
Buckland et al. 2004).  Selection of sample points 
usually follows a systematic design, but other sample 
designs can be used as long as points are spaced 
sufficiently that few members of the population are 
sampled more than once.  Necessary sample size can 
be estimated from formulas even if population size is 
assumed to be large or unknown (Zar 1999). 

 
Transects 

A transect is a straight line or series of 
straight-line segments placed in the area to be sampled.  
Transects are used to organize or simplify 
establishment of a series of sample points or plots, and 
as a sample unit themselves.  Transects are used widely 
to obtain systematic samples of spatially distributed 
populations (e.g., plants).  In these situations, plots 
along transects are actual sample units (Fig. 1.8G), and 
should be treated as described under systematic 
sampling.  Plots also can be placed along transects at 
random intervals.  When transects are used as sample 
units, they are commonly referred to as line transects 
(Burnham et al. 1980, Williams et al. 2002).  
Measurements of perpendicular distance, or sighting 
distance and angle, to the sampled elements (e.g., 
flushing animals, groups of animals, carcasses, snags, 
etc.) are recorded (Fig. 1.8H).  These distances are used 
to estimate effective width of the area sampled by the 
transect (Seber 1982, Buckland et al. 1993, Buckland et 
al. 2001, Buckland et al. 2004).  Each transect is 
treated as an independent observation, and transects 
should be non-overlapping according to established 
sampling designs (e.g., simple random, systematic, 
stratified random).  Transects are often easier to 
establish in rough terrain than are plots, but they must 
be established carefully with compass or transit and 
measuring tape or with a GPS unit.  Use of transects is 
becoming more widespread in aerial survey work 
because of development of precise navigational 
systems (Patric et al. 1988, Anthony and Stehn 1994, 
Marques et al. 2006).  The critical assumptions for 
transect methods for sampling mobile objects such as 
animals (i.e.,100% detection for objects directly on the 
line, no movement toward or away from the observer 
before detection) must be examined carefully before 
this sampling method is selected (Burnham et al. 1980, 
Williams et al. 2002).  In certain cases, more-
sophisticated methods may be used to adjust counts for 
less-than-perfect detection on the line (Buckland et al. 

http://www.stat.colostate.edu/~nsu/starmap/�
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1993, Manly et al. 1996, Quang and Becker 1996, 
Buckland et al. 2001, Williams et al. 2002, Buckland et 
al. 2004) or near the points (Kissling and Garton 2006).  
A strip transect appears similar, but it is really a long, 
thin plot, because the method assumes all animals or 
objects in the strip are counted (Krebs 1999). 

 
Road Sampling 

Sampling from roads is a widely used method 
for obtaining observations of species sparsely 
distributed over large areas, or for distributing 
observations of abundant species over a large 
geographic area.  This sampling method is usually the 
basis for spotlight surveys of nocturnal species such as 
white-tailed deer (Boyd et al. 1986, Collier et al. 2007), 
black-tailed jackrabbits (Lepus californicus; Chapman 
and Willner 1986), grassland owls (Condon et al. 
2005), brood and call counts of upland game birds 
(Kozicky et al. 1952, Kasprzykowski and Golawski 
2009), scent-station surveys (Nottingham et al. 1989, 
Preuss and Gehring 2007, Mortelliti and Boitani 2008), 
and the Breeding Bird Survey (Robbins et al. 1986, 
Sauer et al. 2008).  This approach involves drawing a 
sample from a population defined as that population 
occupying an area within a distance x of a road (Fig. 
1.8I).  The distance x is generally unknown and varies 
with any factor that would affect detection of an 
animal, such as conspicuousness, density, type of 
vegetation cover, or background noise for surveys 
based on aural cues.   

Roads rarely provide unbiased estimates for a 
region because they are generally placed along ridges 
or valleys and avoid steep or wet areas.  Further, roads 
modify habitat for many species and may attract some 
wildlife.  For example, during snow periods some bird 
species will come to roads for grit and spilled grain.  
Thus, sampling along roads rarely provides a 
representative sample of habitat (e.g., Hanowski and 
Niemi 1995) or wildlife populations (Pedrana et al. 
2009).  Although this bias is well known, it is often 
ignored in exchange for the cost efficient and easy 
method.  As with all indices, every effort should be 
made to standardize counting conditions along fixed, 
permanently located routes (Caughley 1977, Sauer et 
al. 2008); however, this alone does not guarantee 
reliable counts (Anderson 2001, Thompson 2002).  
Sampling along roads can be an efficient approach if it 
is designed as a random sample from a stratum 
adjacent to roads that is one element of a stratified 
random sample of the entire area including other strata 
distant from roads (Bate et al. 1999, Langen et al. 

2009). 
 

Dependent (Paired) and Independent 

Observations 

If we wish to make population comparisons, 
pairing observations is a powerful tool for detecting 
differences.  If there is a correlation between members 
of a pair, treating them as dependent or paired 
observations can improve the power of tests for 
differences.  For example, to compare diets of adult 
female mountain sheep (Ovis canadensis) and lambs, 
we might treat a ewe with a lamb as a pair and measure 
the diet of each animal by counting the number of bites 
of each plant they eat while foraging together.  
Treating these observations as pairs would sharpen 
comparison between age classes because it would 
compare animals foraging together and experiencing 
the same availability of plants.  Pairing is a powerful 
technique in other contexts in which there is 
dependency between the observations.  Pairing should 
be used only if an association really exists, otherwise 
power of comparison will be decreased. 

Pairing also can be used to help answer a 
different question.  For example, studies of habitat 
selection are often made by locating areas used by a 
species (i.e., nest sites or radio locations) and 
measuring habitat characteristics at these use sites with 
sample plots.  Available vegetation types are measured 
from random sample plots throughout the study area 
(Fig. 1.10A).  A comparison of use and random plots is 
used to identify characteristics of areas selected by the 
species.  An alternative approach involves pairing use 
and random plots by selecting a random plot within a 
certain distance of the use plot (Fig. 1.10B).  For 
analysis, use and random plots are paired (i.e., random 
plot locations are dependent on use sites).  This 
comparison could produce different results from the 
unpaired comparison because it would be testing for 
habitat differences within areas used by the species 
(microhabitat selection), whereas the unpaired 
comparison (e.g., independent plots) would be testing 
for habitat differences between areas used by the 
species and typical vegetation types available within 
the general study area (macrohabitat selection).  
Choosing a paired or unpaired design will depend on 
the objectives of the study, but both may be useful in 
applying a hierarchical approach to studying habitat 
selection (Wiens 1973, Johnson 1980, Cruz-Angón et 
al. 2008, Schaefer et al. 2008). 
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Fig. 1.10.  Illustrative examples of (A) use plots 
(  )and random plots ( ), and (B) use plots 
paired with random plots. 

 
 

CONFRONTING THEORIES WITH 

DATA 

Confronting theories with data involves 
evaluation and interpretation, which is a creative phase, 
similar to hypothesis formulation.  The quality of 
conclusions drawn is dependent upon the biologist’s past 
educational and professional experience as well as 
willingness to consider standard and less-traditional 
interpretations.  One great danger in wildlife science (and 
other fields) is that researchers often have a conscious or 
unconscious expectation of results.  This bias might 
begin with development of the overall research objective 
and carry through to the interpretation phase.  This 
danger is so great that in some fields, such as medicine, 
experiments are performed with a double-blind approach 
in which neither researcher nor subjects know 
membership of treatment and non-treatment groups.  A 
scientist must not design research or interpret data in a 
way that is more likely to support preconceived 
explanations of biological systems.  Biologists who are 
consciously aware of their own biases and strive to keep 
an open mind to new ideas are most likely to make 
revolutionary discoveries. 

The objective is to organize, clearly and 
concisely, the results of data collection, exploratory 
data analysis, and specific statistical analyses.  These 
results must be transformed from a collection of 
specific information into a synthesis explaining the 
biological system.  Do statistical evaluations support 
one or more of the theories and hypotheses and clearly 
reject others?  Do the results provide a reasonable 
explanation of the biological system?  Are there 
alternative explanations of the data and statistical tests?  
Are there specific problems with the data that should 
be identified, such as inadequate sample sizes or 
unusual variation in specific variables measured?  
What could have introduced bias into the estimates?  
Are additional data required?  These questions must be 
considered carefully and, if concerns are identified, 
they must be noted in reports and publications. 

During this phase, the biologist usually 
reaches some conclusions based on the data and results 
of statistical evaluations.  If the data support the 
hypothesis, we cannot conclude the theory (model) is 
true, but only that it has not been rejected (James and 
McCulloch 1985).  The central issue is that we do not 
prove a research hypothesis or theory to be correct, 
indeed some would argue that all hypotheses are to 
some degree incorrect.  Instead, the credibility of the 
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hypothesis increases as more of its predictions are 
supported and alternative hypotheses are rejected.  We 
can assist other biologists by carefully considering how 
broadly our conclusions can be generalized to other 
areas or populations and not allowing our conclusions 
to go beyond the data.  Interpretation of research data 
must clearly separate conclusions and inferences based 
on data from speculation.  For example, if we 
demonstrate that droppings from spruce grouse 
(Falcipennis canadensis) are most abundant under 
lodgepole pine (Pinus contorta) and Engelmann spruce 
(Picea engelmannii), we can conclude that grouse use 
both tree species for some behaviors, but the type of 
behavior (e.g., roosting or feeding) is speculation 
without additional data (e.g., observations of feeding 
activity, and crop or fecal analyses).  Likewise, 
replication of studies across space and time “provides 
us greater confidence that certain relationships are 
general and not specific to the circumstances that 
prevailed during a single study” (Johnson 2002:930). 

 
Data Collection 

Most novice research biologists are anxious to 
initiate data collection because of the attractiveness of 
working out-doors and the pleasure derived from 
observing wildlife-related phenomena.  However, the 
design phase should not be rushed to initiate fieldwork 
more quickly.  Successful research biologists often 
spend about 40% of their time in design and planning 
phases, 20% in actual fieldwork, and 40% in data 
analysis and writing publications.  Data collection can 
be physically difficult and highly repetitious. 

All data should be recorded on preprinted data 
sheets or entered directly into a hand-held data logger, 
computer, or personal digital assistant. This ensures 
that each field person collects exactly the same data as 
consistent collection of data simplifies analysis.  Data 
sheets should be duplicated after each field day (e.g., 
computer entry, photocopies, or transcribed) and stored 
in a separate location from the original data set.  Data 
entered electronically in the field should be 
downloaded daily and backed up for storage at another 
location.  Transcription of data (including computer 
data entry) must be followed by careful proofreading, 
which is greatly facilitated by checking for valid 
entries using database queries and spreadsheet scripts.  
All field personnel should receive careful instructions 
regarding data collection, and the principal researcher 
must check periodically to see that each person has 
similar skills and uses the same methods for 
observation, measurement, and recording (Kepler and 

Scott 1981).  The principal researcher has 
responsibility for quality control and validity of 
research results depends upon quality of research 
design and data collection. 

 
Pilot Study 

A pilot study is a preliminary, short-term trial 
through all phases of a research project.  Pilot studies 
are an important, but often neglected step in the 
research process.  Information can be obtained that will 
help the researcher avoid potentially disastrous 
problems during or after the formal research phase.  
Pilot studies often will disclose hidden costs or identify 
costs that were over- or underestimated.  Optimal 
sample allocation (Scheaffer et al. 2005) incorporates 
cost estimates to maximize benefit from limited 
research budgets.  Use of a pilot study should reveal 
basic logistical problems, such as travel time among 
study plots being underestimated or expectations for 
overall sample sizes might not be feasible without 
additional personnel and funding.  Statistical 
procedures for estimating needed sample sizes require 
variance estimates of variables that will be measured, 
and these variance estimates often are available only 
from data gathered in a pilot study.  These preliminary 
data might disclose the variance of the population is so 
large that obtaining adequate sample sizes will be 
difficult.  It is far better to discover these problems 
before time, energy, personnel, and critical research 
dollars are committed to a research project doomed to 
fail.  If the research is part of an ongoing project, or if 
much research on the topic has been published, costs, 
methodology, and variance estimates may already be 
firmly established. 

 
Power Analysis 

One of the more challenging steps prior to 
starting actual data collection is to set goals for sample 
size using a prospective power analysis.  The power 
of any hypothesis test is defined as the probability of 
rejecting the null hypothesis when, in fact, it is false.  
In descriptive studies, power analysis provides sample 
size requirements for obtaining an estimate of desired 
precision and can be calculated after an estimate of 
population variance is obtained from previous studies 
or a pilot study.  Formulas for sample size are available 
for standard survey designs (Thompson et al. 1998, 
Scheaffer et al. 2005) and for typical hypothesis tests 
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Table 1.3.    Four possible outcomes of a statistical test for declining production in a deer herd.  Counts of 500 antlerless 
deer (adult does and fawns) were obtained each year, and tests of the null hypothesis of no change in the fawn:doe ratio 
were performed at the 5% level of significance (α = 0.05). 

___________________________________________________________________________________________________ 

   Fawns per 100 does 

________________________________________________                                                                                      

   Actual herd values     Count values 

                                                                                                    

          Conclusion Result     Likelihood 

  Case  1988   1989 Change       1988  1989 from test  of test     of this result 

__________________________________________________________________________________________________                                                                                                                                                                                                                  

 1                   60 60 None       61 59  No change No error        95%  (1 - α) 

 2 60 60 None       65 50  Declined Type I error    5% (α) 

 3 65 50 Declined      65 50  Declined No error          50%  (1 - α) 

 4 65 50 Declined      62 57  No change Type II error    50%  (β) 

  __________________________________________________________________________________________________                                                                                                                                                                                                                 

 
 
(Zar 1999).  In studies involving experiments 

or other types of comparisons, sample size is increased 
to improve the power of a hypothesis test (defined as 
probability of detecting a real difference) and to 
prevent erroneous conclusions.  Power analysis for 
hypothesis tests depends upon several factors including 
sample size, level of significance (α), variance in the 
populations, effect size (the true change that occurred), 
and efficiency of the test or design (Steidl et al. 1997).    
Zar (1999) provides formulas to calculate power and 
sample size for hypothesis tests, but a statistician 
should be consulted for complicated experimental 
designs and analyses.  Many statistical packages (e.g., 
SAS by Statistical Analysis Systems) or specialized 
analysis software (e.g., CAPTURE and MARK) 
provide capability to generate sample data for analysis 
to determine in advance how large the sample size 
should be to detect effects expected.  In contrast to this 
essential prospective power analysis during the design 
phase, performing a retrospective power analysis after 
the data are collected, during the analysis phase, is 
controversial or contraindicated (Thomas 1996, Steidl 
et al. 1997).  Retrospective power analysis is 

uninformative unless effect sizes are set independently 
of the observed effect (Steidl et al. 1997). 

To illustrate power of a test, consider the 
following example.  Suppose we were using fawn:doe 
ratio as an indicator of production for a mule deer herd 
(Odocoileus hemionus; i.e., our biological population is 
our research population).  We want to know if the 
fawn:doe ratio has declined.  There are 4 possible 
outcomes from sampling the herd and testing for a 
decline in the fawn:doe ratio (i.e., the null hypothesis is 
that there is no change; Table 1.3).  We evaluate 
whether the fawn:doe ratio has declined by comparing 
the test statistic we calculate from our data to a value 
for this statistic at our chosen level of significance (α).  
The level of significance represents the chance of 
concluding the ratio changed when in fact it did not.  
An α = 0.05 indicates that we would make this error 
only 5 times if the population really did not decline and 
we tested it by drawing a sample 100 times.  This is 
referred to as Type I error.  But we could make 
another error.  We could conclude the ratio had not 
changed when in fact it had declined.  For the situation 
where we count 500 deer, we would fail to detect the 
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decline in the fawn:doe ratio 50% of the time (Table 
1.3).  This type of error is referred to as Type II error, 
and its likelihood is measured by β.  When we perform 
a test, we typically set α low to minimize Type I errors.  
But Type II errors might be as important (Alldredge 
and Ratti 1986, 1992) or even more important than 
Type I errors.  Obviously we want to detect a change 
when it occurs; the probability of detecting a change is 
called the power of the test.  The power of the test is 
calculated as the probability of not making the Type II 
error (1-β). 

 
Effect size (i.e., magnitude of effect) is an 

important factor influencing sample-size requirements 
and power of a hypothesis test.  However, power and 
sample-size calculations should be based on a 
biologically meaningful effect size.  Identifying a 
biologically significant effect usually involves 
expressing the conceptual model as a quantitative 
model plus value judgments about the importance of a 
biological response.  Estimating power of the test and 
calculating sample size requirements forces the 
investigator to evaluate the potential significance of the 
research prior to beginning fieldwork.  Sample size 
analysis may lead to substantial revision of the goals 
and objectives of the research. 

We cannot control natural variation within the 
population or the actual change that occurred, but we 
can control the other 3 factors (i.e., sample size, 
efficiency, significance level).  Parametric tests 
(based on a normal distribution [e.g., t-tests, F-tests, Z-
tests]) have the highest efficiency for normally 
distributed populations and for large samples.  
Nonparametric tests (based on distributions other 
than the normal distribution [e.g., Mann-Whitney, 
Wilcoxon signed- ranks test]) are superior when 
sample sizes are small (<30) and populations are not 
normally distributed (Johnson 1995, Cherry 1998).  
The power of a test declines as the level of significance 
is made more stringent (decreasing ).  In the example 
(Table 1.3), this is a critical problem because the Type 
II error (failing to detect declining production) is the 
more serious error.  It would be preferable to increase 
 so that power of the test could be increased.  In other 
situations the Type I error will be more serious and  
must be kept low.  Increasing sample size increases 
power of the test.  Calculating sample size necessary 
for a desired level of power is essential to designing a 
high quality study (Toft and Shea 1983, Forbes 1990, 
Peterman 1990).  However, such calculations should be 
based on meaningful effect sizes (i.e., what constitutes 
a biologically significant result [Reed and Blaustein 
1997, Cherry 1998, Johnson 1999]). 

The importance of sample size cannot be 

overemphasized.  Sample size and experimental design 
are the major factors under the control of the biologist 
that strongly influence power of the test (i.e., the 
likelihood of detecting a significant difference when 
one really occurs).  Inadequate sample size usually 
results from:  (1) inadequate consideration of 
population variance, (2) inability to collect data (e.g., 
observe a rare species), or (3) insufficient funding, 
time, or personnel.  Often a sample-size problem is 
overlooked initially because of failure to consider 
sample-size reduction throughout the study (i.e., we 
focus mostly on the initial sample size and not on the 
final sample size that represents the most important 
data for consideration of a hypothesis).  For example, 
in a study of mallard (Anas platyrhynchos) brood 
movements almost 10 times as many nests were 
required to be found as the sample size of broods 
indicated because of an 89% sample-size reduction 
from nests located to actual brood data (Rotella and 
Ratti 1992a, b). 

Another common problem is fairly large 
overall data sets that are not sufficiently similar among 
years (or seasons) to combine, resulting in annual 
sample sizes that are too small for analysis.  At the 
beginning of a research project we often set our desired 
sample size based on combining data collected over 
several continuous years.  However, if the 
characteristic of interest were different among years of 
the study, combining the data would not be valid.  For 
example, in a study of habitat selection by red fox 
(Vulpes vulpes), habitat use might differ between mild 
and severe winters with heavy snow cover.  In this 
example, combining the data would not be valid, yet 
the sample size in each year may be too small to detect 
selection (Alldredge and Ratti 1986, 1992). 

 
Approaches for Data Analysis 

At this point, researchers have developed well 
thought-out and biologically meaningful hypotheses; 
decisions have been made regarding study, 
experimental, and sampling designs; and empirical data 
have been collected to shed light on the validity of the 
hypotheses.  Now researchers must decide on a 
statistical approach.  Unfortunately, this decision has 
become less clear over the past decade (Butcher et al. 
2007).  General approaches for data analysis include 
Bayesian versus frequentist paradigms with distinct 
differences in how probability should be interpreted 
(Cox 2006).  Within the frequentist paradigm, one 
could choose null hypothesis significance testing 
(NHST), point and interval estimation of effect sizes, 
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likelihood-based and information theoretic methods, or 
some combination of these (Läärä 2009).  
Unfortunately, the statistical approach that is most 
familiar and widely used (i.e., NHST) in wildlife 
science has received continued criticism (e.g., Yates 
1951, Cherry 1998, Johnson 1999, Wade 2000, Fidler 
et al. 2006, Läärä 2009) causing confusion and 
frustration for researchers (Butcher et al. 2007).  We 
introduce these various approaches and point out some 
of the key differences while purposefully not 
recommending one over another as we think it is more 
important to expose researchers to the relevant 
discussions so that they can make an informed 
selection of the best approach. 

Ellison (2004) summarized the main 
differences between Bayesian and frequentist 
approaches to statistical inference (also see Ellison 
1996, Dennis 1996, Taper and Lele 2004, Hobbs and 
Hilborn 2006).  The first is a difference in what is 
considered a random outcome.  Frequentist inference 
considers the model and the true parameter values to be 
fixed quantities while the observed data are random 
outcomes from this process.  Thus, frequentists refer to 
the probability of the data (Y) given a particular 
hypothesis (H), as defined by the model and 
parameters, (Prob(Y|H)).  In contrast, Bayesian 
inference treats both the data and model as random 
allowing quantification of the probability of a 
hypothesis being true given the observed data 
(Prob(H|Y)).   

This brings up the second major difference 
between these approaches, that is the definition of 
probability.  Frequentist inference defines probability 
as the relative frequency of a particular outcome if the 
process was repeated an infinite number of times.  For 
example, the probability of obtaining a heads with a 
flip of a coin is the number of times a head turns up 
divided by the number of flips, where the number of 
flips is repeated to infinity.  Bayesian approaches 
define probability quite differently in that it is the 
degree of belief in the likelihood of an event occurring.   

Lastly, the 2 approaches differ in the way 
prior knowledge is incorporated.  For Bayesian 
inference, it is required that prior knowledge is 
translated into a probability distribution, which is then 
combined with the sample data to make inference.  
Frequentist inference generally uses only the observed 
data although prior knowledge can be incorporated by 
combining likelihoods from previous studies with the 
likelihood of the observed data (see Using Existing 
Knowledge and Data, Hobbs and Hilborn 2006:10).  
While the decision of whether to utilize Bayesian 
versus frequentist approaches is often made on 
practical grounds (Lele et al. 2007), we end with a 

quote from Ellison (2004:517) that we believe is 
particularly relevant.  

“…deciding whether to use Bayesian or 
frequentist inference demands an understanding of 
their differing epistemological assumptions.  Strong 
statistical inference demands that ecologists not only 
confront models with data, but also confront their own 
assumptions about how the world is structured.” 

 
Hypothesis Testing 

Significance testing as a statistical approach 
for confronting hypotheses with empirical data has 
received fervent debate in many disciplines (Fidler et 
al. 2004) including wildlife and ecological science 
(e.g., Anderson et al. 2000, Eberhardt 2003, Guthery et 
al. 2005, Lukacs 2007, Steidl 2007, Stephens et al. 
2007, Läärä 2009).  Nonetheless, it remains a viable 
option for practicing wildlife researchers (Robinson 
and Wainer 2002, Butcher et al. 2007).  Hypothesis 
testing is rooted in the philosophical idea of 
falsification in which an attempt is made to disprove a 
hypothesis leaving the alternative to be tentatively 
accepted (Underwood 1997).  Johnson (1999) 
described the 4 basic steps of statistical hypothesis 
testing that mirror the approach suggested by 
Underwood (1997).  First, the researcher develops a 
hypothesis that reflects his or her ideas about a 
particular ecological process or the effects of some 
treatment.  Next, the logical opposite of this hypothesis 
is usually set as the null hypothesis and data are 
collected to assess the validity of the null hypothesis.  
A statistical test of the null hypothesis involves 
calculating a P-value which is then used to decide the 
fate of the null hypothesis.  Strictly speaking, a P-value 
is the probability that, if the null hypothesis were true 
and the test was hypothetically redone, one would 
observe data at least as extreme as that which was 
observed.  Thus, a study that results in a P-value of 
0.05 means that if the null hypothesis was true, and the 
study was repeated 20 times, you would expect only 1 
of these 20 studies to produce results at least as 
different from the null hypothesis as your study.  
Obviously, the definition is quite cumbersome and 
likely has led to much confusion, misuse, and 
misinterpretation of a statistical hypothesis test 
(Johnson 1999). 

To more fully understand the role of 
hypothesis testing in wildlife science, it is helpful to 
have some historical perspective.  Robinson and 
Wainer (2002) provide a concise description of 
hypothesis testing as was originally intended by the 
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famous statistician R. A. Fisher who used it to assess 
potential innovations in agriculture, a few key points 
from this description are: 

1. It was often legitimate to assume a 
particular innovation would produce no 
effect and thus, testing a null 
hypothesis of no effect was not 
considered trivial. 

2. No single test should be the end of the 
discussion.  Because, there is a chance 
(depending on the significance level 
for a particular test) that an effect can 
be suggested even when there is none, 
an effect should only be accepted if 
repeated studies continue to provide 
significant results. 

3. Hypothesis testing only makes sense if 
continued research seeks to identify the 
size and direction of the effect. 

Given these original intentions, it is not hard 
to see why so many have been critical of hypothesis 
testing in wildlife science.  Several have argued that it 
is exceedingly rare to legitimately propose a zero effect 
or alternatively that some set of parameters are exactly 
equal (Cherry 1998, Johnson 1999, Anderson et al. 
2000, 2001, Läärä 2009).  These point null hypotheses 
are often deemed silly nulls because they are almost 
certain to be false a prori.  Additionally, although 
replication was a cornerstone of Fisher’s approach, true 
replication in wildlife science is not the normal 
procedure, instead relying on “single-shot studies” 
designed to reach conclusions based on a one-time 
interpretation of a P-value (Robinson and Weiner 
2002:265).  Although replication is an important 
component of the scientific method regardless of the 
statistical approach used, because of the definition of a 
P-value, it is particularly relevant to hypothesis testing.  
These issues are especially problematic when 
hypothesis testing is applied to field studies without 
random assignment of treatments.  Many statisticians 
strongly object to performing hypothesis tests on 
observational data or recommend alternative 
approaches for evaluating the data such as confidence 
intervals for estimates, information measures for 
models or Bayesian confidence measures (Cherry 
1998, Johnson 1999, Anderson et al. 2000, Hobbs and 
Hilborn 2006, Läärä 2009). 

Despite these criticisms, most statisticians 
agree that hypothesis testing can play a valuable, but 
limited role in data analysis (Cherry 1998, Johnson 
1999, Stephens et al. 2007) especially if accompanied 
by estimates of effect sizes and a measurement of the 
precision of these estimates (Robinson and Wainer 
2002).  One improvement might be for researchers to 

adopt a “trinary decision approach” which is likely a 
more productive route to interpreting results of a 
hypothesis test (Jones and Tukey 2000).  Under this 
approach, the conclusions of a hypothesis test are 
either 1 2µ µ> , 2 1µ µ> , or the direction of the 
difference is undetermined.  Using this language avoids 
the temptation to “accept” a null hypothesis that is 
likely untrue while stressing the need for continued 
research to determine the direction and magnitude of 
the effect (Robinson and Wainer 2002). 

 
Information-theoretic Model Selection 

Information-theoretic (IT) model selection 
offers a distinct alternative to hypothesis testing and 
the approach has seen widespread growth in wildlife 
and ecological sciences (Hilborn and Mangel 1997, 
Burnham and Anderson 2002, Johnson and Omland 
2004, Richards 2005).  In contrast to hypothesis 
testing, model selection seeks to identify the 
hypotheses that are closest to the truth out of a set of 
competing ideas while fully acknowledging that all are 
wrong or incomplete characterizations of the process.  
The philosophical basis for this approach is more in 
line with that of Lakatos (1978) who stated "All 
theories...are born refuted and die refuted.  But are they 
equally good?"  He considered it nonsensical to retain 
only unfalsified hypotheses because of the philosophy 
that hypotheses may never be truly falsified and, more 
importantly, science will keep a hypothesis that is 
known to be wrong if there is not a better one available 
to take its place.  Thus, a hypothesis is “falsified” only 
if a better one with greater empirical support is 
available to replace it.  The IT approach also closely 
follows Chamberlin’s (1890, 1965) view of science by 
advocating the construction of multiple working 
hypotheses which are subject to repeated confrontation 
with empirical data.  Those that are supported by the 
data tend to be retained while those with little support 
tend to be dropped from consideration (Burnham and 
Anderson 2001). 

Under the IT model selection approach, 
several competing models are suggested to reflect 
different hypotheses about how a process works or the 
effects of a particular treatment.  An appropriate study 
is designed to collect empirical data that will be used as 
the arbitrator in a contest among rival hypotheses.  
The metric for deciding among hypotheses is how 
close each model is to the truth.  Due to an explicit link 
with information theory (hence information-theoretic), 
Kullback-Leibler distance (KL-distance) has been 
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promoted as an appropriate measure of the distance 
each competing model is from the true data-generating 
model (see Burnham and Anderson 2002:50–54).  
Several criteria may be used to estimate the relative 
expected KL-distance (Shibata 1989, Burnham and 
Anderson 2002) including Takeuchi’s information 
criteria, likelihood cross-validation criteria (Stone 
1977), and Akaike’s information criteria (AIC; Akaike 
1973) which is the most common in the wildlife and 
ecological literature.  By focusing on the best 
explanation for an observed phenomenon, information-
theoretic model selection does not rely on a binary 
decision process characteristic of hypothesis testing, 
instead allowing models to be differentiated according 
to the amount of support they receive from the data.  
Several practical guidelines for using information 
theoretic approaches have been published (Anderson et 
al. 2001, Anderson and Burnham 2002, Richards 
2005).  In addition to the comprehensive treatment in 
Burnham and Anderson (2002), see Guthery et al. 
(2005) for a more critical review. 

 
Effect Size and Interval Estimation 

Most agree that hypothesis testing and model 
selection are only 1 component of statistical inference 
and that estimation of effect sizes and measures of their 
precision are at least as important (Johnson 1999, 
Robinson and Wainer 2002, Stephens et al. 2007).  
Quinn and Dunham (1983:613) suggested “The 
objective of biological research typically is to assess 
the relative contributions of a number of potential 
causal agents operating simultaneously.”  If this is the 
case, estimation of effect sizes is of primary 
importance to wildlife science and these results should 
be emphasized in data analysis.  Others have echoed 
this sentiment, Läärä (2009:152) stated “the very basic 
tools for statistical reasoning on the strength of 
associations and the sizes of differences and effects are 
provided by point estimates, their standard errors and 
associated confidence intervals”.  Reporting effect 
sizes are not only important for practical interpretation 
of the focal study, but they are the critical components 
for any subsequent meta-analysis (Gurevitch et al. 
2001, Hobbs and Hilborn 2006).  Läärä (2009) contains 
several practical recommendations for presenting and 
interpreting effect sizes that should be especially useful 
to practicing wildlife professionals. 

 
 
 
 

Regression and General Linear Models 

One of the most flexible approaches to 
identifying predictive and potentially causal 
relationships between wildlife and environmental or 
management characteristics involves use of ordinary 
least squares to estimate parameters of regression or 
general linear models (GLM, Fig. 1.11).  Experimental 
manipulations that produce different levels of predictor 
variables are more readily analyzed by ANOVA, 
regression, or analysis of covariance versions of 
general linear models under a Fisherian philosophy 
(Fig. 1.11), named after R. A. Fisher who pioneered a 
“spirit of reasonable compromise, cautious, but not 
overly concerned with pathological situations” (Efron 
1998:99) in the analysis of experiments.  Designing a 
study to gather data on a variety of potential causal 
variables rather than manipulating those variables 
through a designed experiment is an appealing 
alternative, but yields inferences of much lower 
certainty (Fig. 1.5).  Performing hypothesis tests on 
such data (e.g., testing point null hypotheses) is easily 
performed with modern regression programs.  
However, it may not be justified as an inferential 
approach and may readily lead into a “fishing-
expedition” doomed to failure due to high Type I 
errors.  Many statisticians refuse to analyze such data 
using hypothesis tests and instead encourage biologists 
to apply maximum likelihood and information-
theoretical approaches under a modeling perspective, 
i.e., identifying the most parsimonious model with 
good predictive ability (Milliken and Johnson 1984, 
Anderson et al. 2000, Burnham and Anderson 2002). 
 

It is essential in designing manipulative or 
observational studies to estimate linear models to strive 
to obtain observations throughout the full range of the 
predictive variables.  It is especially important to obtain 
observations at both low and high values of the 
predictive variable because these set limits for the 
range of values that can be used later for prediction.  
The values at the ends of this range have the most 
leverage on slope estimates.  If too narrow a range is 
measured, a significant relationship may not be 
detected among the variability.  However, a 
relationship may be linear only through a portion of its 
range such that beyond a certain level an increasing 
effect may turn into a negative effect at progressively 
higher levels.  Such situations should be apparent from 
exploratory data analyses (Anderson 2001, Johnson 
2002). 
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Fig. 1.11.  Selecting analysis methods from 3 dominant 

statistical philosophies (GLM = General Linear Model, 
BIC = Bayesian Information Criterion, AIC = Akaike’s 
Information Criterion; modified from Efron 1998). 

 
 
 
Bayesian Approaches 

Bayesian data analyses are described as 
“practical methods for making inferences from data 
using probability models for quantities we observe and 
for quantities about which we wish to learn” (Gelman 
et al. 1995:3).  One of the primary appeals of Bayesian 
statistics is that after sampling a population and 
calculating statistics such as the mean, variance, and 
confidence interval for the mean, Bayesian analysis 
allows us to state we are 95% certain the true mean for 
the population is within this 95% confidence interval.  
Johnson (1999) provided an easily understood 
description of the conceptual differences between the 
frequentist and Bayesian approaches (Fig. 1.11).  A 
Bayesian analysis requires performing 3 basic steps 
(Gelman et al. 1995).  

1. Specify a probability distribution for all quantities 
(i.e. use prior studies and creative thinking to specify a 
particular “prior” probability for the parameter[s]). We 
begin by stating what is the range of all possible values 
for the characteristics that we are attempting to 
measure and make our best guess (from earlier studies 
and clear thinking) if any of the values are more likely 
than others.  This step is controversial because it 
introduces subjective decisions into the process and has 
potential for misuse if one’s goal is to “cook the 
books” to produce a particular result (Dennis 1996).  

However, well-designed research should gather 
historical data so that knowledge is available on the 
probability distribution of the parameter(s) (Box 1.1) or 
failing that, specify a minimum and maximum value 
with equal chances of intermediate values (i.e., a flat 
prior).   

2.  Use the observed data to calculate a posterior 
distribution for the parameter of interest as a 
conditional probability distribution.  This second 
step in Bayesian analysis follows data collection.  We 
improve our prior guess of the value of the 
characteristic by combining it with the new data we 
gathered to state conclusively our best “posterior” 
guess of the value of the characteristic.  This step is 
performed using Bayes’ rule and this Bayesian 
estimate might be considered as a weighted average 
estimate based on the sample data and the assumed 
prior value where weights are proportional to the 
precision of the observed and prior values (Gelman 
1995:43).  As sample size increases, the Bayesian 
value approaches the maximum likelihood estimate and 
any influence of the prior probability vanishes.  
Markov chain Monte Carlo (MCMC) methods are 
used widely for these calculations (Fig. 1.11).   

3.  Evaluate the fit of the model and the implications 
of the resulting posterior distribution. The third step 
in Bayesian analysis (Gelman et al. 1995:3) consists of 
“evaluating the fit of the model and the implications of 
the resulting posterior distribution:  does the model fit 
the data, are the substantive conclusions reasonable, 
and how sensitive are the results to the modeling 
assumptions?”   

 
Validating Parametric and Simulation 

Models 

The validation and experimental phases of the 
modeling process described earlier really constitute an 
effort to confront theories with data.  The models 
express our theoretical understanding of the system, its 
characteristics, and processes.  When we conduct 
validation and experimentation we are confronting this 
theory with data, especially when we conduct these 
activities within adaptive management where future 
management actions are accompanied by monitoring in 
order to simultaneously validate the predictions of the 
models (our theory or understanding of the system) and 
probe the behavior of the system (Walters 1986:250).  
Comparing model predictions to data potentially 
completes the feedback loop that can be used to 
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improve our understanding, but the natural tendency of 
managers and biologists is to break the loop by 
ignoring inconsistencies detected.  This is a natural 
tendency because of the considerable effort expended 
in developing the models and tradeoffs in selection of 
management actions.  This leads to passive adaptation 
rather than a probing through experimental 
management actions.  "Conservative, risk-averse 
decision making creates a particularly difficult 
situation for learning" (Walters 1986:251), especially 
when effects of management actions are compounded 
with environmental changes and there are lags inherent 
in the responses.  Where the desired outcome is a 
harvestable surplus of a game species, the manager and 
biologist face substantial social, economic, and 
political pressure to find the "right" answer (see 
Adaptive Management:  Connecting Research and 
Management below).  Models are invaluable in efforts 
to ensure that management and ecological 
understanding are based on valid estimates and 
relationships rather than wishful thinking, but their 
results are often attacked by interested publics whose 
values and "gut instincts" are opposed to model 
predictions. 

 
SPECULATION AND NEW 

HYPOTHESES 

Rarely does a single research project provide 
the last word on any problem (Johnson 2002).  More 
commonly, research will generate as many questions as 
answers.  Speculation, based on inconclusive or 
incomplete evidence, is one of the most important 
aspects of science.  Speculation must be identified and 
should not be confused with conclusions based on data.  
But speculation is the fuel for future research.  Many 
facts of nature have been discovered by accident–an 
unexpected result from some associated research effort. 
However, most research is directional (i.e., it attempts 
to support or falsify a theory reached by speculating 
from facts).  New hypotheses can be considered a form 
of speculation, which is verbalized in a more formal 
fashion and has a specific testable format.  For 
example, considering spruce grouse, we can formulate 
a basically untestable hypothesis that “spruce grouse 
have evolved a preference for use of lodgepole pine 
and Engelmann spruce trees.”  This statement is too 
vague and requires historical data that cannot be 
collected.  However, we can hypothesize that spruce 
grouse use lodgepole pine and Engelmann spruce trees 

for:  (1) feeding or (2) roosting.  Testing these 
hypotheses we might learn that 80% of the spruce 
grouse diet is lodgepole pine even though Engelmann 
spruce is more abundant.  We may then speculate (i.e., 
hypothesize) that needles from lodgepole pine provide 
higher nutritional quality than needles from Engelmann 
spruce. 

 
PUBLICATION 

The final step of the scientific method is 
publication of research.  Unfortunately, many research 
dollars are wasted because knowledge gained was not 
published and the information is buried in file cabinets 
or boxes of data sheets. The publication process is the 
most difficult phase for many biologists.  Clear concise 
scientific writing is difficult because most biologists 
have little formal training and inclination in this 
activity.  Peer review also may be damaging to a 
person’s ego, because we must subject our work to 
anonymous critiques used by editors to judge whether 
the manuscript is acceptable for publication. 

Agency administrators often do not encourage 
or reward employees for publishing their work and 
discourage publication in some instances.  
Administrators are pressured with calls for immediate 
answers to management problems; thus, they devalue 
the long-term benefits of the publication process.  
Effective administrators recognize that peer review 
and publication will:  (1) correct errors and possibly 
lead to a better analysis, (2) help authors reach the most 
sound conclusions from their data, (3) make it easier 
to defend controversial policies, (4) help their 
personnel grow as scientists by responding to critical 
comments and careful consideration of past errors 
(which may have been overlooked without peer 
review), and (5) make a permanent contribution to 
wildlife management by placing results in a literature 
format available to other agencies, researchers, and 
students. 

Publication is essential to science.  Peer 
reviews normally improve the quality of a manuscript, 
but some research may not be suitable for publication.  
This emphasizes the importance of careful planning, 
design, data collection, etc.  Rarely would any research 
effort that is properly planned, designed, and executed 
(including a well-written manuscript) be unpublishable.  
However, the revision process (i.e., responding to 
criticisms from the editor and referees) may be painful 
and frustrating to authors.  Overall, the system is 
necessary to insure quality publications, and authors 
should not be discouraged by the necessity to defend 
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their work and revise manuscripts.  Research is not 
complete and does not make a contribution to 
knowledge and sound management of wildlife 
resources until results are published in a way that 
effectively communicates to the scientific community 
and user groups (e.g., wildlife managers).  In addition 
to publication in peer-reviewed journals, research 
findings will improve wildlife management 
immediately if they are communicated in other forums 
such as professional meetings, workshops, seminars, 
general technical reports, informational reports, and 
articles in the popular press. 

 
COMMON PROBLEMS TO AVOID 

 
Procedural Inconsistency 

Procedural inconsistency is another common 
problem that can be prevented with proper research 
design.  Problems of this type occur from seemingly 
minor variations or alterations in methodology.  For 
example, if a project is dependent upon field personnel 
to accurately identify songs of forest passerine birds, 
the data set may be biased by identification errors (Cyr 
1981).  In this situation, magnitude of the bias will 
depend upon the rate of errors by individuals, 
difference in the rate of errors among individuals, and 
relative proportion of data collected by each individual.  
Research methodology should be defined with great 
detail and all individuals collecting data should have 
similar skills and knowledge of methods used (Kepler 
and Scott 1981).  If inconsistencies cannot be 
eliminated through selection and training of field 
workers, the design must incorporate double-sampling 
or similar procedures to remove inherent biases 
(Farnsworth et al. 2002). One unfortunate aspect of 
biases of this type is that they are often overlooked (or 
ignored) as potential problems and are seldom reported 
in research publications.  

 
Non-uniform Treatments 

A common bias is non-uniform treatments.  
This problem is illustrated by considering 2 previous 
research examples.  In the discussion of crossover 
experiments, we described a 2-year study on pheasant 
nest success, in which mowing on treatment areas was 
delayed until after 4 July.  Assume that in the first year 
of this study, all treatment areas were mowed between 
4 and 7 July, as planned.  But during year 2 of the 

study, a 3-day rainstorm began on 4 July, and the 
treatment areas were not cut until 9–12 July.  Although 
this 5-day difference in mowing of the treatment areas 
may seem insignificant, the impact on the results and 
interpretation of our experiment is really unknown–and 
may be serious.  Thus, the second year of the 
experiment should be repeated.  Since dates of 
pheasant nesting and plant growth varies from year to 
year in response to temperature and rainfall patterns, a 
better way to set the date for the mowing treatment 
might be based on the cumulated degree-days widely 
published in farm journals. 

In the second example, we want to evaluate 
effects of sharp and feathered edges on nest success of 
forest birds.  If we had used both clear cuts and road 
ways as sharp edges we might have hopelessly 
confused our treatment results because of differences in 
attractiveness of sharp edges near roads where carrion 
is an abundant attractant to generalist predators like 
ravens.  High variability between replicates in non-
uniform treatments substantially reduces our power to 
detect biologically significant effects. 

 
Pseudoreplication 

Pseudoreplication occurs when sample or 
experimental units are not independent (i.e., they are 
really subsamples rather than replicates, but are treated 
as though they are independent samples or 
experimental units).  This is a widespread problem in 
field ecology (Hurlbert 1984) that should be avoided 
wherever possible.  In manipulative experiments, 
experimental units are independent only if we can 
randomly assign treatments to each unit.  In field 
studies, a simple test for pseudoreplication is to ask if 
the values for 2 successive observations are more 
similar than values for 2 observations drawn 
completely at random from the research population 
(e.g. Durbin and Watson 1971).  If so, the successive 
observations are probably not true replicates and the 
research should be redesigned or this lack of 
independence must be treated correctly in the analysis 
through use of cluster sampling, adjustments in degrees 
of freedom for tests (Porteus 1987, Cressie 1991) or 
applying Monte Carlo approaches to evaluate test 
statistics as is widely used for spatially correlated data 
(Dale and Fortin 2002).   

There must be a direct tie between the sample 
or experimental unit and the research population.  If 
the research population consists of 1 meadow in 
Yellowstone National Park, then 2 or more samples 
drawn from that meadow would be replicates.  In this 
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example, our inferences or conclusions would apply 
only to that single meadow.  If our research population 
consisted of all meadows in Yellowstone National 
Park, then 2 plots in the same meadow would not 
constitute true replicate samples.  Also, repeated 
sampling of the same radio-marked animal often 
constitutes a form of pseudoreplication (e.g., if our 
research population consisted of moose in one 
ecoregion, repeated observations of habitat use by a 
single animal would not be true replicates [and a 
similar problem would arise if 2 radio-marked animals 
were traveling together, thus, their habitat selection 
would not be truly independent]).  The data would have 
to be summarized into a single value such as the 
proportion of the observations in a certain habitat for 
statistical analysis.  This would reduce sample size to 
the number of radio-marked moose.  Treating repeated 
observations as replicates is strictly justified only when 
the individual animal is the research population.  In this 
situation, tests for serial correlation (Swihart and 
Slade 1985) should be conducted to assure the 
observations are not repeated so frequently that they 
are still pseudoreplicates.   

 
ADAPTIVE MANAGEMENT: 

CONNECTING RESEARCH AND 

MANAGEMENT 

Wildlife management programs should be 
developed from application of scientific knowledge 
based on research (i.e., we should apply scientific facts 
and principles resulting from research on specific 
topics such as population ecology, habitat selection, or 
behavior).  Initially, this is a sound practice for 
development of a new management program.  The 
logic behind formulation of a management program is 
similar to formulation of a research hypothesis; both 
provide opportunity for predictive statements.  Our 
management prediction is that our plan of action will 
achieve a desired result.  However, a major problem 
with nearly all wildlife management programs 
throughout the world is the lack of research on the 
effectiveness of programs (Macnab 1983, Gill 1985).  
Seldom is the question “does our management lead to 
the desired result?” addressed in formal, well designed, 
long-term research projects.  For example, research 
indicates that spinning-wing decoys make mallard 
breeding populations more vulnerable to harvest 

(Szymanski and Afton 2005).  A potential long-term 
management response would be to create more 
restrictive hunting regulations as spinning-wing decoys 
use increases.  The assumption is that if using 
spinning-wing decoys increases mallard harvest rates 
then hunting regulations need to be put in place to 
ensure mallard populations over the long term do not 
decrease with increased vulnerability.   However, we 
should consider several important questions.  Does 
increased vulnerability translate to increased harvest?  
What segments of the mallard populations are most 
vulnerable to the use of spinning-wing decoys?  Will 
mallards become accustomed to spinning-wing decoys 
over time and thereby decrease their vulnerability to 
harvest?  These questions and more should be 
addressed because imposing more restrictive hunting 
regulations could backfire if the answers to these 
questions do not support it. 

A second common example is prescribed 
burning as a management practice to increase deer and 
elk populations.  The effectiveness of this management 
has not been addressed directly, and most evaluations 
have only noted increases in browse forage species and 
changes in animal distributions (Stewart et al. 2002, 
Van Dyke and Darragh 2007, Long et al. 2008a, Long 
et al. 2008b).  Increased population levels in response 
to prescribed burning have not been adequately 
documented or thoroughly studied (Peek 1989). 

A third example is the use of population 
indices to monitor changes in population levels (e.g., 
ring-necked pheasant crowing counts, lek counts, track 
counts, catch-per-unit-effort, aerial surveys).  The 
primary assumption for use of a population index is 
that the index is directly related to density.  Although 
nearly every wildlife management agency uses trend 
data from population indices for management 
decisions, only a few rare examples of index validation 
exist (e.g., Rotella and Ratti 1986, Crête and Messier 
1987, Marchandeau et al. 2006,  Forsyth et al. 2007).  
Some studies have disclosed that index values are not 
related to density (Smith et al. 1984, Rotella and Ratti 
1986, Nottingham et al. 1989, Rice 2003). 

Walters (1986) proposed a systematic solution 
to these problems, which he called adaptive 
management.  It involves a more formal specification 
of management goals and responses to management 
actions through the use of predictive models (Table 
1.2) based on multiple working hypotheses, which can 
be compared to actual system responses through 
detailed monitoring (Thompson et al. 1998, Sauer and 
Knutson 2008, Conroy and Peterson 2009).  
Management actions are treated as experiments, which 
must be monitored carefully to ascertain if goals were 
met and to identify errors in understanding the 
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dynamics of the natural systems that we manage.  
Actual responses to management actions are 
compared to predictions from our models based on 
current knowledge and assumptions (e.g., adaptive 
harvest management, Williams and Johnson 1995, 
Williams et al. 1996, Johnson and Williams 1999, 
Johnson et al. 2002).  Adaptive resource 
management is an interactive process in which 
learning over time improves management as long as a 
monitoring program provides feedback to both our 
understanding of the system and management action 
effects (Conroy and Peterson 2009). 

Adaptive resources management is a specific 
case of structured decision making, which is a 
process that addresses complexity, uncertainty, 
multiple objectives, and different perspectives to 
achieve management objectives (Clemen 1996, Clemen 
and Reilly 2001).  Structured decision making has 
multiple steps, which are problem definition, 
objectives, alternatives, consequences, tradeoffs, 
uncertainty, risk tolerance, and linked decisions 
(Conroy et al. 2008).  The basic strength of this 
decision making approach is that it allows wildlife 
scientists to make effective decisions more consistently 
and to provide guidance for working on hard decisions 
(Clemen 1996, Clemen and Reilly 2001).  Wildlife 
scientists are faced with difficult decisions regarding 
both management and conservation of wildlife.  For 
example, how can bison be restored to their former 
range, which would benefit other threatened prairie 
species while also considering the economic and social 
impacts to cattle ranchers if brucellosis spread from 
bison to cattle.  Both structured decision making and 
adaptive resource management are being used more 
often by wildlife scientists (Conroy et al. 2002, 
Johnson et al. 2002, Dorazio and Johnson 2003, Regan 
et al. 2005, Moore and Conroy 2006, McCarthy and 
Possingham 2007, Martin et al. 2009).  Both of these 
approaches differ from scenario planning (Kahn 1965, 
Chermack et al. 2001) practiced in business and other 
organizations to make flexible long-term plans based 
on considering multiple assumptions about the future.  
Such future assumptions are developed from a 
combination of established facts and multiple plausible 
forecasts of future changes, especially social changes.  
Scenario planning use by the U. S. National Park and 
Fish and Wildlife Services in crisis situations such as 
British Petroleum's Deepwater Horizon oil spill of 4.9 
M barrels of oil into the Gulf of Mexico in 2010 should 
provide a foundation for a more measured adaptive 
management process to restore the damaged wetlands 
and marine ecosystems. 

If wildlife agencies have the responsibility for 
management of wildlife populations and their habitats, 

they also have the responsibility to conduct research on 
the effectiveness of management programs.  Wildlife 
agency administrators should strive to develop well-
designed, long-term management-research programs as 
a basic component of annual agency operations. 

 
SUMMARY 

Carefully designed wildlife research will 
improve the reliability of knowledge that is the basis of 
wildlife management.  Research biologists must 
rigorously apply the scientific method and make use of 
powerful techniques in survey sampling, experimental 
design and information theory.  Modeling is an 
effective tool to predict consequences of management 
choices, especially when it is based on carefully 
designed field studies, long-term monitoring, and 
management experiments designed to increase 
understanding.  More effort should be dedicated to the 
design phase of research, including obtaining critiques 
from other biologists and statisticians, and avoiding 
common problems such as insufficient sample sizes, 
procedural inconsistencies, non-uniform treatments, 
and pseudoreplication.  Wherever possible, we must 
move from observational studies to experimental 
studies that provide a more reliable basis for 
interpretation and conclusions; these studies need to be 
replicated across space and time.  Wildlife biologists 
have a tremendous responsibility associated with 
management of animal species experiencing increasing 
environmental-degradation problems, loss of habitat, 
and declining populations.  We must face these 
problems armed with knowledge from quality scientific 
investigations. 
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