

Edward O. Garton, Jon Horne, Adam G. Wells, Kerry Nicholson, Janet L. Rachlow and Moses Okello*

Fish and Wildlife Department, University of Idaho Moscow, Idaho USA and *SFS Centre for Wildlife Management Studies Nairobi, Kenya © 2012 by E O Garton, J Horne & A G Wells

Presentation Outline

- Demonstrate a new approach to analysis based on synoptic models
- A 12 step program based on a <u>new</u> <u>philosophy</u> for analysis of animal locations
- Examples with white rhinos, mountain goats, cougar, ocelots and Alaskan caribou
- After lunch: Demonstration of Windows and R software

Rather than simply drawing a boundary around an animal's locations, let's ask interesting ecological questions!

A New Philosophy in 12 Steps

- 1. State research question clearly with details of why location data are required to answer it.
- Specifically: what type of data necessary (scale/order) and how will it be used to answer the key question(s).

Research Activities

WDFW GPS Collaring Census and Sightability Harvest Effects Disease Genetics Space Use (Home Range & Habitat)

Habitat Objectives: 1) Multiple scales of analysis (2nd, 3rd, & 4th order) 2) Novel fine-scale analysis methodology (4th order) 3) Evaluate & map habitat across range 4) Prioritize translocation sites

Synoptic model of habitat selection and space use

•Mountain goats are selecting high elevation ridges in early summer

New Philosophy

- 2. Define animal population of interest and sampling approach providing inference to it.
- Ideally draw samples randomly but more typically we must use stratified random samples (see below).

New Philosophy

• 3. Identify potentially important strata:

- Age-sex-behavior classes of animals (males vs females, residents vs migrants)
- Temporal seasons
 - Breeding
 - Summer
 - Fall
 - Migration to winter range
 - Winter
 - Migration to summer range

Tests for Male-Female Differences in Resource Selection

MODEL	Statistic	Value	F Val	ue df	Pr > F	
Logistic	Wilks' λ	0.95342	0.67	4,55	0.6142	
BBSM	Wilks' λ	0.9701	0.42	4,55	0.7913	
					0.0002	
					0.0018	

Sex Differences in Selection								
GOAT	S Statistic	D2ET						
ALL	Average	-3.92						
	SE	2.53						
	Upper Cl	1.14						
	Lower Cl	-8.98						
	SE	4.11						
	Upper Cl	18.04*						
	Lower Cl	1.55*						
	SE	4.9						
	Upper Cl	-9.65**						
	Lower Cl	-29.31**						

Caribou Space Use and Alaskan North Slope Oil Development

• Using caribou locations gathered with 54 GPS collared cows over 5 years (1993-1997) to assess the impacts of oil developments on the North Slope, Alaska

New Philosophy

- 4. Select type of spatial analysis:
 - Model space use with a synoptic model combining home range with resource (habitat) selection
 - Model movements similarly with a synoptic model combining a movement model with resource (habitat) selection
 - Illustrate this approach after step 5 but an alternative exists and dominates analysis now!

Alternate Approaches

- Choose to leave this approach:
 - Delineate sharp boundary (Minimum Convex Polygon or Convex Hulls, Getz et al. 2007)
 Spatial density estimator (kernels)
- Polygon or non-parametric density approaches make further modeling difficult and they are weak at detecting effects.
- Illustrate their key problem

- 5. List interesting ideas (hypotheses) about ecological factors, processes or drivers determining patterns of space use: e.g.,
 - Probability of encountering potential mates
 - Need to provision a nest or den
 - Movements to water or salt licks
 - Food resources or cover requirements
 - Energetic demands of movement
 - Density of intraspecific or interspecific competitors
 Probability of encountering predators/hunters/poachers

Example: Space Use of Male White Rhinos

- Location Data: 3 Adult Males, Matobo National Park, Zimbabwe
- Rhinos in Zimbabwe
 - Topography: flat with granite outcrops
 - Prefer grass for foraging
- Social Behavior
 - Adult males: territorial around female concentrations

Ecological Questions:

- Since males defend territories to ensure breeding opportunities, must forage on grass in flat areas and are kept within the boundary fence:
- Do males choose areas with high female densities?
- Or flat areas with forage?
- Or both?

- 6. Select a null model for space use:
 - Need to provision a nest or den
 - Need to defend a territory against conspecifics

Brownian Motion

- 1827: examined pollen grains in water
- "Jittery motion"
- Phenomenon named in his honor

Brownian Motion Explained

- 1905: "On the Motion-Required by the Molecular Kinetic Theory of Heat
- Explained Brownian Motion
- Provided Evidence for the Existence of Atoms

Applying Selection Criteria to Null Home Range Models

- Can we calculate likelihood?
 - Yes, if home range models estimate the utilization distribution
 - No for minimum convex polygon (MCP) nor for kernel density estimators
- New model based on random to uniform distributions
 - Exponential Power Function

Exponential Power Function

Circular Uniform and Normal are Particular Cases 3 parameters: location, scale, shape (c)

Example: Information Theoretic Model Selection • Used location data from a variety of species • Used 4 home range models: • Bivariate normal • Exponential power

- 2-mode circular normal mix
- 2-mode bivariate normal mix
- Calculated AIC

Application of Model Selection AIC for parametric models

	AIC _c								
	Δ								
Model	bobcat	warbler	turtle	elk	black bear	hawk			
	(20)	(32)	(35)	(51)	(64)	(102)			
CU (4)	0.0	16.9	23.0	8.4	100.4	130.1			
BVN (6)	3.3	0.0	12.8	0.0	53.2	20.3			
2CN (7)	9.5	10.8	16.2	4.4	9.2	32.0			
2BVN(11)	28.5	13.2	0.0	12.4	0.0	0.0			
See Horr	he and Gar	ton, 2006	Ecology						

A Movement Model Based on Brownian Motion

• Floyd Bullard (1999)

 "Estimating the Home Range of an Animal: A Brownian Bridge Approach"

Brownian Motion Conditioned On..

- A starting AND ending location (location data divided into successive pairs)
 - DistanceTime
 - Time
 - Animal mobility

Building on Bullard's Work

- We derived a Brownian bridge model assuming normally distributed location error
- We developed a maximum likelihood approach for parameter estimation

Brownian Bridge Applications

- Estimate movement paths
 - Fine-scale estimation of home range
 - Migration routes
 - Resource utilization/selection at fine scale (Johnson's fourth order)

Advantages of Brownian Bridge Movement Model as Null Model

- ASSUMES serially correlated data
- Models the movement path
- Location error explicitly incorporated

Caribou Migration

- Fall migration in southwestern Alaska
- 11 female caribou with GPS collars
- Locations every 7 hours

• 7. State the ideas (hypotheses) in form of multiple parametric (synoptic) models where parameters express effects of key ecological factors or processes, are feasible to estimate with maximum likelihood methods and these competing models can be compared using information theoretic methods.

Example: 3rd Order Space Use of Male White Rhinos Location Data: 3 Adult Males, Matobo National Park, Zimbabwe

Habitat: -Topography flat with granite outcrops -Prefer grass forage -Bourdary fence encloses NP Social behavior: -Adult males territorial -Females often in groups where grass is most lush

Interesting Questions (Hypotheses)

- Males defend fixed territories within boundary fence
- Exponential power model within boundary
- Steep terrain energetically demanding
- Preferred forage in grassland or open forest
- Males optimize breeding opportunities by spending most time where females concentrate

Candidate Models... Hypotheses Null model: no environmental covariates

- Exponential Power + Park boundary
- Habitat model:
 Null + open covertype + percent slope
- Social model:
 Null + female density
- Combined model:
- Null + habitat + social
- AIC Model Selection

Model Fitting and Selection

- Parameters governing both the null model and the selection coefficients (Betas) are estimated by maximizing likelihood of observed locations
- Information-theoretic approaches are used for both model construction and selection

Model Selection Results									
Rhino ID	Model	K	-2*ln(L)	AIC	ΔAIC_c	w _i			
M05	ExpPower	4	1237.52	1246.81	12.28	0.002			
(n = 36)	ExpPower*PB	4	1237.18	1246.81	11.94	0.003			
	ExpPower*PB*FemDens	5	1226.83	1246.47	4.30	0.098			
	ExpPower*PB*OPEN*PS	6	1225.15	1238.83	5,53	0.053			
	ExpPower*PB*FemDens*OPEN*PS	7	1216.53	1230.05	0	0.844			

Rhino ID	Model	К	-2*ln(L)	AIC _c	ΔAIC_c	w
M05	ExpPower	4	1237.52	1246.81	12.28	0.002
(n = -36)	ExpPower*PB	4	1237.18	1246.81	11.94	0.003
	ExpPower*PB*FemDens	5	1226.83	1246.47	4.30	0.098
	ExpPower*PB*OPEN*PS	6	1225.15	1238.83	5.53	0.053
	ExpPower*PB*FemDens*OPEN*PS	7	1216.53	1230.05	0	0.844
M09 (n=44)	ExpPower	4	1559.08	1568.10	74.58	0.000
(11-44)	ExpPower*PB	4	1540.78	1549.80	56.28	0.000
	ExpPower*PB*FemDens	5	1487.09	1498.67	5.14	0.071
	ExpPower*PB*OPEN*PS	6	1516.91	1531.18	37.66	0.000
	ExpPower*PB*FemDens*OPEN*PS	7	1476.41	1493.53	0	0.929
M25	ExpPower	4	2016.55	2025.31	52.46	0.000
(n - 37)	ExpPower*PB	4	1983.31	1992.08	19.22	0.000
	ExpPower*PB*FemDens	5	1976.51	1987.69	14.83	0.000
	ExpPower*PB*OPEN*PS	6	1959.24	1972.92	0.06	0.492
	ExpPower*PB*FemDens*OPEN*PS	7	1956.57	1972.88	0	0.507

	Ра	rameter Estir	nate (<i>β</i>)
Male ID	Female Density	Percent Slope	OPEN
M05	8.77	-0.99	2.00
M09	47.58	-0.53	1.36
M25 – gained territory	1.48	-0.98	0.66

Parameter Estimates								
Rhino ID	μ_x	μ_y	а	С	PS^b	OPEN ^b	FD ^b	
M05	646309	7729348	2831	.53	0.010	3.02	6.78	
M09	638919	7722865	6184	.63	0.468	2.36	41.38	
M25	649985	7724209	4292	.10	0.023	1.58	2.48	
Example: M05 is ~3 times as likely to be in an area with 2% slope, 0.5 relative female density, and in the open covertype versus 10% slope, 0.7 relative female density, and not in the open								
Probability ratios representing the proportional change in the utilization distribution tributable to each variable.								

Interpretation of Best Model

• Best Model Can Be Used to:

- Estimate space use as a pdf
- Define home range
- Determine factors affecting space use
- Infer importance of these factors
- Answers not only "Where?" but "Why?"

•Summer use concentrates along high elevation ridges

Interesting Ideas (Hypotheses)

- During late summer (July & August) mountain goats select high elevations but are steeper slopes and locations of escape terrain (steep ridges) and hiking trails important?
- Are patterns same for males and females?
 Note males are hunted from trails in fall

Synoptic Model Selection Coefficients for 32 Mountain Goats in Late Summer

Sex	Statistic	Dist to Escape Terrain	Slope	Elevation	Distance to Trails
Male	Average	9.8*	5.3**	6.4**	20.3*
	SE	4.1	1.0	1.5	10.0
Female	Average	-19.5**	-3.1**	-2.2	-20.6
	SE	4.9	1.2	1.8	11.9

Synoptic Model Selection Coefficients for 32 Mountain Goats in Late Summer

Statistic	Dist to Escape Terrain	Slope	Elevation	Distance to Trails
Average	9.8*	5.3**	6.4**	20.3*
SE	4.1	1.0	1.5	10.0
Average	-19.5**	-3.1**	-2.2	-20.6
SE	4.9	1.2	1.8	11.9
	Statistic Average SE Average SE	Statistic Dist to Escape Terrain Average 9.8* SE 4.1 Average -19.5** SE 4.9	Statistic Escape TerrainDist to Escape TerrainSlope 	Statistic Escape TerrainDist to Escape TerrainSlope

Synoptic Model Selection Coefficients for 32 Mountain Goats in Late Summer

Sex	Statistic	Dist to Escape Terrain	Slope	Elevation	Distance to Trails		
Male	Average	9.8*	5.3**	6.4**	20.3*		
	SE	4.1	1.0	1.5	10.0		
Female	Average	-19.5**	-3.1**	-2.2	-20.6		
	SE	4.9	1.2	1.8	11.9		

- •Overall: Slope, Elevation & D2et were significant
- Significant differences by sex (Synoptic) including distance to trails
- Females; flatter areas closer to trails and escape terrain
- Males; steeper areas further from trails & escape terrain

New Philosophy Cascade N • 10. Re-evaluate original strata by evaluating /testing differences and collapsing strata where feasible. MODEL Wilks' & • Logistic 0.95342 • BBSM 0.9701 • WN Synoptic 0.6414 • EXP Synoptic 0.6946

Case	E)				
MODEL	Wilks' λ	F	df	Probability	
Logistic	0.95342	0.67	4,55	0.6142	
BBSM	0.9701	0.42	4,55	0.7913	

• 11. Refit models, if necessary, with collapsed strata.

Selecting the Best Model

- What Is the "Best" Model?
 - Closest to true distribution
 - Smallest Kullback-Leibler distance

• Selection Criteria

- Akaike's Information Criteria (AIC)
 Equals: model log likelihood + 2 * number of parameters
- Begin by selecting the best null model and then use this approach for best synoptic models

Caribou Space Use and Alaskan North Slope Oil Transportation

 Using caribou locations gathered with VHF collars irregularly over 4 years to assess the impacts of the oil transportation corridor from North Slope, Alaska

Caribou in central Alaska

- Covariates, $\mathbf{H}(x)$: • Elevation Slope • Vegetation type(s)
- Roads

S(x) = BVN*(elevation, distroads, slope, shrub cover)

Population-level

Prob. of use = $Exp(\overline{\boldsymbol{\beta}}'\mathbf{H}(x))$ $\int Exp(\overline{\boldsymbol{\beta}}'\mathbf{H}(x))$ where β 'H(x) = 19.2 Elev - 22.7 Elev2 + 2.2 DistRoad

- 12.0 WetCover

Temporally Varying Covariates The probability density of being at location x at time t is... Relationship is constant

Winter Space Use of Females Important Covariates

• Important

- Snow
- Topographic roughness
- Forest
- Wolf use

• Less Important

- Elk use
- Road density

