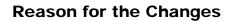


Result

- Alters Ca influx
- Decreases the amount of NT that is released
- Decreases transmission speed of all neurons
 - Slows down stimulatory neurons

Behavioral Bi-Phasic Effects

- At low levels (<.05 BAC)</p>
- Alcohol causes you to feel good, makes you euphoric, loosens inhibitions etc.
 - Usually occurs on the ascending portion of the BAC curve
- Higher levels (>.05 BAC)
 - Euphoric feelings go away
- Feel depressed


-44

5

Descending portion of the BAC curve

4

6 🐗

Lower levels

• Get increased levels of Dopamine in MFB

Higher levels

• Begin to sedate the brain, levels of dopamine decrease. Etc.

7 🐗

Effects on Receptors

GABA

NDMA

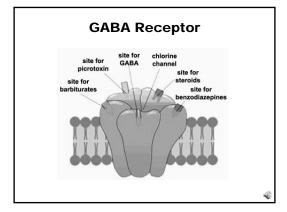
Glutamate

Opiate

GABA A Receptor

Is an Axoaxonic receptor

- Binds on presynaptic elements of stimulatory neurons
- Designed to shut down stimulatory neurons


Normally needs lots of GABA to work

• High Affinity State

8 🐗

11 🐗

9 🐗

Has Many Binding Sites

- GABA site
 - Site for GABA to bind
- BZ site
 - Site where BZ (α 1, α 2, α 3, α 5) and Alcohol (α 4, α 6) binds
 - Many types (some more sedative, others more anxiolytic)
- Barbiturate site
 - Site where Barbiturates bind
- Picrotoxin
- Blocks effects of Barbiturates
- Neuroactive steroid site

Alcohol

- Alters GABA Receptors
- Binds on the BZ site ($\alpha 4, \alpha 6$)
- Changes affinity for GABA from High to Low
- Increases the amount of CI influx into most stimulatory neurons
- Further decreases the amount of Ca influx
- Decreases the amount of NT

æ

NDMA Receptor *N*-methyl *D*-aspartate)

- Is a specific type of lonotropic glutamate receptor
- Is important for synaptic plasticity and memory
- Requires both glutamate or aspartate and glycine
- When activated, lets Ca into the cell

13 🐗

Alcohol and NDMA Receptors

- Acts as an antagonist
- Inhibits the function of NDMA receptors
- Decreases the responsiveness of NDMA receptors to glutamate
- Have enhanced stimulation when the person withdrawals from alcohol
- Can get agitation, have elieptform seizures, etc

14 📲

Opiate Receptors

- Alcohol triggers release of endogenous opiates (β-endorphin)
 - Causes a release of dopamine in MFB
 - Makes you feel good
 - Use antagonists to reduce craving
 - Naltrexone

Serotonin Receptors

- Serotonin receptors
 - Alcohol use increases serotoninergic activity.
 - Increases secretion of dopamine from nucleus accumbens.
 - · Makes you feel good
- SSRI's
 - Are effective in reducing drinking in lower-risk alcohol males.

Cannabinoid Receptors

- Chronic alcohol use stimulates formation of endogenous cannabinoid transmitter *anandamide* (an-an'dă-mīd .
 - Leads to down regulation of cannabinoid receptors, disinhibiting nucleus accumbens.
- Cessation of drinking
- Get hyperactive endocannabinoid reaction
- Results in alcohol craving

Summary

- Affects the entire neuron
 - Alcohol decreases transmission speed
 - Alcohol decreases NT release
 - Alcohol increases Cl in post synaptic elements
- Shuts down structures that inhibit neurons of medial forebrain bundle
 - Get more firing in MFB
- Feel good

18 🐗

4

Withdrawal Management

Benzodiazepines

- · e.g., Chlordiazepoxide (Librium), Diazepam (Valium)
- Increase GABA activity.
- Decreases withdrawal symptoms; prevent seizures and DTs.
- Long-acting, prevent withdrawal symptoms (either maintained or slowly withdrawn), allowing person to function.
- Drawbacks: sedation, psychomotor deficits, additive interactions with alcohol, abuse and dependence liabilities.

4

úŘ,

Anticonvulsant Mood Stabilizers

- Fewer limitations than benzodiazepines
- Older anticonvulsants effective, but have side effects (e.g., liver and pancreatic problems).
 - e.g., Carbamazepine (Tegretol), Valproic Acid (Depakote)
- Newer anticonvulsants are less toxic and have significant potential.
 - e.g., Gabapentin (Neurontin), Oxcarbazepine (Trileptal)

4

23 📲

Acamprosate

Acamprosate (Campral)

- First pharmacological agent designed to maintain abstinence in alcoholics after detoxification.
- Both GABA-agonistic and NMDA-inhibitory, similar to ethanol.
- Comparably effective to Naltrexone; combination of both drugs may be additively effective.

4

Dopaminergic Drugs

- Bupropion (Wellbutrin)
- Works on both positive reward and withdrawal
- Seems to involve dopaminergic reward system.

Conclusions

- Alcohol has many impacts on Neurons
- Creates lots of problems
- Has lots of implications for pharmacologic interventions