## Worksheet for Calculating a Regression Line

$1^{\text {st }}$ Fill in the following table with information from shrubs estimated (column 1) and actual or clipped weight (column 3). You can use your "Direct Weight Estimate", "Reference Unit Method" or "Dimension Analysis" as your estimate.

|  | Estima 1 |  | Actu 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plot | $\underline{X}$ | $\underline{X^{2}}$ | $\underline{Y}$ | $\mathrm{Y}^{2}$ | $X Y$ |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |
| 5 |  |  |  |  |  |
| 6 |  |  |  |  |  |
| 7 |  |  |  |  |  |
| 8 |  |  |  |  |  |
| 9 |  |  |  |  |  |
| 10 |  |  |  |  |  |
| Total | $\sum x$ | $\mathrm{X}^{2}$ | YY K | K | $\begin{aligned} & \text { KXY } \\ & \text { \& } \end{aligned}$ |

Column 1, Enter weight estimated in field Column 2*, Square each value in column 1

Column 3, Enter actual clipped weight
Column 4*, Square each value in column 3
Column 5, Multiply each value in column 1 with its corresponding value in column 3
$2^{\text {nd }}$ Calculate the following values:

$$
\begin{aligned}
& n=\text { number of shrubs clipped }= \\
& \bar{X}=\frac{\sum X}{n}=\text { average of all estimates }= \\
& \bar{Y}=\frac{\sum Y}{n}=\text { average of actual weights }=
\end{aligned}
$$

$$
S S_{X Y}=\sum X Y-\frac{\left(\sum X\right)\left(\sum Y\right)}{n}=
$$



$$
\begin{aligned}
& S S_{V}=\Gamma X^{2}-\frac{\left(\sum X\right)^{2}}{\left(\sum Y\right)^{2}}=\{\text { mamm }\} \\
& S S_{Y}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{n}=
\end{aligned}
$$

$3^{\text {rd }}$ Calculate slope of line:

$$
m=\frac{S S_{X y}}{S S_{x}}=?^{m}
$$

$4^{\text {th }}$ Calculate $y$-intercept of line:

$$
b=\bar{Y}-(m * \bar{X})=\text {, }
$$

$5^{\text {th }}$ calculate correlation value or $r$ (yes $\mathrm{r}^{2}$ or $\mathrm{R}^{2}$ really is just $r$ squared or $r$ * $r$ )

$$
r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}
$$

$6^{\text {th }}$ Line equation is:

$$
\mathrm{y}=(\text { slope } * \mathrm{x})+\text { intercept, or, } \quad y=(m * x)+b
$$

