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CHAPTER 5. Basic Principles of
Sampling

A. Introduction
What is sampling? A review of several dictionary definitions led to the following composite
definition:

The act or process of selecting a part of something with the intent of showing the quality,
style, or nature of the whole.

Monitoring does not always involve sampling techniques. Sometimes you can count or measure all
individuals within a population of interest. Other times you may select qualitative techniques that
are not intended to show the quality, style, or nature of the whole population (e.g., subjectively
positioned photoplots).

What about those situations where you have an interest in learning something about the entire
population, but where counting or measuring all individuals is not practical? This situation calls
for sampling. The role of sampling is to provide information about the population in such a way
that inferences about the total population can be made. This inference is the process of general-
izing to the population from the sample, usually with the inclusion of some measure of the
"goodness" of the generalization (McCall 1982).

Sampling will not only reduce the amount of work and cost associated with characterizing a
population, but sampling can also increase the accuracy of the data gathered. Some kinds of
errors are inherent in all data collection procedures, and by focusing on a smaller fraction of the
population, more attention can be directed toward improving the accuracy of the data collected.

This chapter includes information on basic principles of sampling. Commonly used sampling
terminology is defined and the principal concepts of sampling are described and illustrated. Even
though the examples used in this chapter are based on counts of plants in quadrats (density
measurements), most of the concepts apply to all kinds of sampling.

B. Populations and Samples
The term "population" has both a biological definition and a statistical definition. In this chapter
and in Chapter 7, we will be using the term "population" to refer to the statistical population or
the "sampling universe" in which monitoring takes place. The statistical population will some-
times include the entire biological population, and other times, some portion of the biological
population. The population consists of the complete set of individual objects about which you
want to make inferences. We will refer to these individual objects as sampling units. The sampling
units can be individual plants or they may be quadrats (plots), points, or transects. The sample is
simply part of the population, a subset of the total possible number of sampling units. These
terms can be clarified in reference to an artificial plant population shown in Figure 5.1. There
are a total of 400 plants in this population, distributed in 20 patches of 20 plants each. All the
plants are contained within the boundaries of a 20m x 20m "macroplot." The collection of plants
in this macroplot population will be referred to as the "400-plant population." A random
arrangement of ten 2m x 2m quadrats positioned within the 400-plant population is shown in
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Figure 5.1. Counts of plants within the individual quadrats are directed at the objective of
estimating the total number of plants in the 20m x 20m macroplot. The sampling unit in this
case is the 2m x 2m quadrat. The sample shown in Figure 5.1 is a set of 10 randomly selected
quadrats. The population in this case is the total collection of all possible 2m x 2m quadrats
that could be placed in the macroplot (N=100).

C. Population Parameters vs. Sample Statistics
Population parameters are descriptive measures which characterize the population and are
assumed to be fixed but unknown quantities that change only if the population changes. Greek
letters such as µ and σ are often used to denote parameters. If we count all the plants in all the
quadrats that make up the 400-plant population shown in Figure 5.1 (400 plants), and divide by
the total number of possible 2m x 2m quadrat locations in the macroplot (100 quadrats), we
obtain the true average number of plants per quadrat (4 plants/quadrat). This, assuming we have
made no errors, is the true population mean (µ). If we know how much each individual quadrat
differs from the true population mean, we can calculate another important population parame-
ter, the true population standard deviation (σ). The standard deviation is a measure of how similar
each individual observation is to the overall mean and is the most common measure of variability
used in statistics. Populations with a large amount of variation among possible sampling units
will have a larger standard deviation than populations with sampling units that are more similar
to one another.

Sample statistics are descriptive measures derived from a sample (e.g., 10 of the possible 100 2m
x 2m quadrats). Sample statistics provide estimates of population parameters. Sample statistics
will vary from sample to sample in addition to changing whenever the underlying population
changes. Roman letters such asX and s are usually used for sample statistics. Consider the
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FIGURE 5.1. Population of 400 plants distributed in 20 clumps of 20 plants.  This figure shows a simple random sample of
ten 2m x 2m quadrats, along with sample statistics and true population parameters.
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following simple example where a sample of three sampling units yields values of 9, 10, and 14
plants/quadrat:

The sample mean (X) = (9+10+14)/3 = 11 plants/quadrat

We could also calculate from this sample a sample standard deviation (s). The sample standard
deviation describes how similar each individual observation is to the sample mean. The derivation
of a standard deviation (in case you want to calculate one by hand) is provided in Appendix 8.
The standard deviation is easily calculated with a simple hand calculator using the "s" or "σn-1" key.

The standard deviation (s) for the simple example above is 2.65 plants/quadrat.

Consider another simple example with sampling unit values of 2, 10, and 21 plants/quadrat.

The mean (X) = (2+10+21)/3 = 11 plants/quadrat

The standard deviation (s) for this example is 9.54 plants/quadrat.

Thus, both examples have a sample mean of 11 plants/quadrat, but the second one has a higher
standard deviation (9.54 plants/quadrat) than the first (2.65 plants/quadrat), because the
individual quadrat values differ more from one another in the second example.

In the example shown in Figure 5.1, the true population mean is 4.00 plants/quadrat, whereas
the sample mean is 5.00 plants/quadrat. The true population standard deviation is 5.005
plants/quadrat, whereas the sample standard deviation is 6.146 plants/quadrat.

D. Accuracy vs. Precision
Accuracy is the closeness of a measured or computed value to its true value. Precision is the
closeness of repeated measurements of the same quantity. A simple example will help illustrate
the difference between these two terms. Two quartz clocks, equally capable of tracking time, are
sitting side-by-side on a table. Someone comes by and advances one of the clocks by 1 hour.
Both clocks will be equally "precise" at tracking time, but one of them will not be "accurate."

Efficient sampling designs try to achieve high precision. When we sample to estimate some popula-
tion parameter, our sample standard deviation gives us a measure of the repeatability, or preci-
sion of our sample; it does not allow us to assess the accuracy of our sample. If counts of plants
within different quadrats of a sample are similar to one another (e.g., the example above with a
mean of 11 and a standard deviation = 2.65) then it is likely that different independent samples
from the same population will yield similar sample means and give us high precision. When
quadrat counts within a sample are highly variable (e.g., the example above with a mean of 11
and a standard deviation of 9.54), individual sample means from separate independent samples
may be very different from one another giving us low precision. In either case, if the counting
process is biased (perhaps certain color morphs or growth forms of individuals are overlooked),
results may be inaccurate.
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E. Sampling vs. Nonsampling errors
In any monitoring study errors should be minimized. Two categories of errors are described next.

1. Sampling errors
Sampling errors result from chance; they occur when sample information does not reflect the
true population information. These errors are introduced by measuring only a subset of all
the sampling units in a population.

Sampling errors are illustrated in Figure 5.2, in which two separate, completely random sam-
ples (2A and 2B) are taken from the 400-plant population shown in Figure 5.1. In each case,
ten 2m x 2m quadrats are sampled and an estimate is made of the total number of plants
within the population. The sample shown in Figure 5.2A produces a population estimate of
only 80 plants, whereas the sample shown in Figure 5.2B yields an estimate of 960 plants.
Both estimates are poor because of sampling error (chance placement of the quadrats
resulted in severe under- or overestimates of the true population total).

You can imagine the problems that can arise if you monitor the same population two years
in a row and get sample information that indicates that the population shifted from 960
plants to 80 plants when it really didn't change at all. Sampling errors can lead to two kinds
of mistakes: (1) missing real changes (missed-change errors), and (2) detecting apparent
changes that don't really exist (false-change errors).

Sampling errors can be estimated from the sampling data. Some of the basic sampling design
tools covered in Chapter 7, enable you to evaluate the effectiveness of your monitoring study
by taking a closer look at the sampling data. This can be especially helpful when setting up
new projects; an evaluation of pilot sampling data can point out potential sampling error
problems, enabling an investigator to fix them at an early stage of the project. Good sampling
designs can reduce sampling errors without increasing the cost of sampling.

2. Nonsampling errors
Nonsampling errors are errors associated with human, rather than chance, mistakes.
Examples of nonsampling errors include:

� Using biased selection rules, such as selecting "representative samples" by subjectively
locating sampling units, or by substituting sampling units that are "easier" to measure.

� Using vegetation measurement or counting techniques within sampling units in which
attributes cannot be accurately counted or measured. For example, counts of grass stems
within a quadrat with counts in the hundreds may lead to numerous counting errors.

� Inconsistent field sampling effort. Nonsampling errors can be introduced if different inves-
tigators use different levels of effort (e.g., one investigator makes counts from "eye-level,"
whereas another counts by kneeling next to the quadrat).

� Transcription and recording errors. Nonsampling errors can be introduced if the data
recorder's "7's" look like "1's" to the person entering the data.

� Incorrect or inconsistent species identification. This category also includes biases introduced
by missing certain size classes or color morphs.
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Because sampling designs are based on the assumption that nonsampling errors are zero, the num-
ber of nonsampling errors needs to be minimized. Ensure that your sampling unit makes sense for
the type of vegetation measurement technique you have selected. When different personnel are
used in the same monitoring study, conduct rigorous training and testing to ensure consistency in
counts or measurements. Design field data forms (Chapter 9) that are easy to use and easy for
data transcribers to interpret. Proof all data entered into computer programs to ensure that entered
numbers are correct. In contrast to sampling errors, the probability of nonsampling errors occur-
ring cannot be assessed from pilot sample data.
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FIGURE 5.2. Examples of sampling errors from sampling the 400-plant population.  The population estimates of 80 plants
and 960 plants are far from the true population of 400 plants.
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F. Sampling Distributions
One way of evaluating the risk of obtaining a sample value that is vastly different than the true
value (such as population estimates of 80 or 960 plants when the true population is 400 plants)
is to sample a population repeatedly and look at the differences among the repeated population
estimates. If almost all the separate, independently derived population estimates are similar, then
you know you have a good sampling design with high precision. If many of the independent
population estimates are not similar, then you know your precision is low.

The 400-plant population can be resampled by erasing the 10 quadrats (as shown in either
Figure 5.1 or Figure 5.2) and putting 10 more down in new random positions. We can keep
repeating this procedure, each time writing down the sample mean. Plotting the results of a large
number of individual sample means in a simple histogram graph yields a sampling distribution. A
sampling distribution is a distribution of many independently gathered sample statistics (most
often a distribution of sample means). Under most circumstances, this distribution of sample
means fits a normal or bell-shaped curve.

A distribution of population size estimates from 10,000 separate random samples using ten 2m x
2m quadrats from the 400-plant population is shown in Figure 5.3A. The x-axis shows the range
of different population estimates, and the y-axis shows the relative and actual frequency of the
different population estimates. Think of this as the results of 10,000 different people sampling
the same population on the same day, each one setting out 10 randomly positioned 2m x 2m
quadrats (somehow without negatively impacting the population) and coming up with their own
independent population estimate. The highest population estimate out of the 10,000 separate
samples was 960 plants and the lowest population estimate was zero (four of the 10,000 sam-
ples yielded a population estimate of zero). The shape of this distribution indicates the magni-
tude of likely sampling errors. Wide distributions could yield population estimates that are "far"
from the true population value. A sampling design that led to the type of sampling distribution
depicted in Figure 5.3A would not be useful since few of the estimates approach the true popu-
lation size of 400 plants. One of the principal objectives in sampling design is to make the shape of
sampling distributions as narrow as possible.

Fortunately, you do not have to repeatedly sample your population and see how wide your sam-
pling distribution is to determine if you need to change anything. There are some simple statisti-
cal tools that provide a convenient shortcut for evaluating the precision of your sampling effort
from a single sample. These tools involve calculating standard errors and confidence intervals to
estimate sampling precision levels.

1. Standard error
A standard error is the standard deviation of a large number
of independent sample means. It is a measure of precision
that you derive from a single sample. The formula for
calculating a standard error is as follows:

To paraphrase the earlier statement regarding an important
objective of sampling design, one of the principal objectives in
sampling design is to reduce the size of the standard error.

This formula demonstrates that there are only two ways of minimizing standard errors,
either: (1) increase sample size (n), or (2) decrease the standard deviation (s).

Formula for standard error:

Where: SE = Standard error
s = Standard deviation
n = Sample size

SE =
s
n
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� Increase sample size. A new sampling distribution of 10,000 separate random samples
drawn from our example population is shown in Figure 5.3B. This distribution came from
randomly drawing samples of twenty 2m x 2m quadrats instead of the ten quadrats used to
create the sampling distribution in Figure 5.3A. This increase in sample size from 10 to 20
provides a 29.3% improvement in precision (as measured by the reduced size of the
standard error).

� Decrease sample standard deviation. Another sampling distribution of 10,000 separate
random samples drawn from our 400-plant population is shown in Figure 5.3C. The
sampling design used to create this distribution of population estimates is similar to
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FIGURE 5.3. Sampling distributions from three separate sampling designs used on the 400-plant
population. All distributions were created by sampling the population 10,000 separate
times. The smooth lines show a normal bell-shaped curve fit to the data. Figure 3A
shows a sampling distribution where ten 2m x 2m quadrats were used. Figure 3B
shows a sampling distribution where twenty 2m x 2m quadrats were used. Figure 3C
shows a sampling distribution where twenty 0.4m x 10m quadrats were used.
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the one used to create the sampling distribution in Figure 5.3B. The only difference
between the two designs is in quadrat shape. The sampling distribution shown in Figure
5.3B came from using twenty 2m x 2m quadrats; the sampling distribution shown in
Figure 5.3C came from using twenty 0.4m x 10m quadrats. This change in quadrat shape
reduced the true population standard deviation from 5.005 plants to 3.551 plants. This
change in quadrat shape led to a 29.0% improvement in precision over the 2m x 2m
design shown in Figure 5.3B (as measured by the reduced size of the standard error). This
29.0% improvement in precision came without changing the sampling unit size (4m2) or
the number of quadrats sampled (n=20); only the quadrat shape (from square to rectan-
gular) changed. When compared to the original sampling design of ten 2m x 2m quadrats,
the twenty 0.4m x 10m quadrat design led to a 49.8% improvement in precision. Details
of this method and other methods of reducing sample standard deviation are covered in
Chapter 7.

How is the standard error most often used to report the precision level of sampling data?
Sometimes the standard error is reported directly. You may see tables with standard errors
reported or graphs that include error bars that show ± 1 standard error. Often, however, the
standard error is multiplied by a coefficient that converts the number into something called a
confidence interval.

2. Confidence intervals
A confidence interval provides an estimate of precision around a sample mean, a sample pro-
portion, or an estimate of total population size that specifies the likelihood that the interval
includes the true value. The vertical lines marked with the "95%" in Figure 5.4 indicate that
95% of all the samples (9,500 out of the 10,000) fit between these two lines. Five percent of
the samples (2.5% in each tail of the distribution) fall outside the vertical lines. These lines
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are positioned equally from the center of the sampling distribution, approximately 320
plants away from the center of 400 plants. Thus, 95% of all samples are within ± 320 plants
of the true population size.

A confidence interval includes two
components: (1) the confidence inter-
val width (e.g., ± 320 plants); and (2)
the confidence level (e.g., 90%, 95%).
The confidence level indicates the
probability that the interval includes
the true value. Confidence interval
width decreases as the confidence
level decreases. This relationship is
shown in Figure 5.4 where three dif-
ferent confidence levels are graphed
on the sampling distribution obtained
by sampling the 400-plant population
with ten 2m x 2m quadrats. These
same three confidence intervals are
shown again in Figure 5.5A, where
they are graphed in a format com-
monly used to report confidence
intervals. There is no gain in precision
associated with the narrowing of con-
fidence interval width as you go from
left to right in Figure 5.5A (i.e., from
95% confidence, to 80% confidence,
to 50% confidence); only the proba-
bility that the confidence interval
includes the true value is altered.
Another set of three confidence inter-
vals is shown in Figure 5.5B. Like
Figure 5.5A, confidence intervals get
narrower as we move from left to
right in the graph, but this time the
confidence level is the same (95%)
and the narrower widths came from
using different sampling designs.
There is a gain in precision associated
with the narrowing of confidence
interval width as you go from left to
right in Figure 5.5B (i.e., from the ten
2m x 2m design to the twenty 2m x
2m design to the twenty 0.4m x 10m
design) because we have reduced the uncertainty of our population estimate by tightening
the confidence interval width at the same confidence level.

In order to calculate confidence intervals for sample means, we need two values: (1) the standard
error calculated according to the above formula (SE = s/√n), and (2) the corresponding value
from a table of critical values of the t distribution (see Appendix 8 for instructions on calculating
confidence intervals around proportions). The confidence interval half-width, extending an
equal distance on both sides of the mean, is the standard error × the critical t value (except
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when sampling from finite populations, see below). The appropriate critical value of t
depends on the level of confidence desired and the number of sampling units (n) in the sam-
ple. A table of critical values for the t distribution (Zar 1996) is found in Appendix 5. To use
this table, you must first select the appropriate confidence level column. If you want to be
95% confident that your confidence interval includes the true mean, use the column headed
α(2) = 0.05. For 90% confidence, use the column headed α(2) = 0.10. You use α(2) because
you are interested in a confidence interval on both sides of the mean. You then use the row
indicating the number of degrees of freedom (v), which is the number of sampling units
minus one (n-1).

For example, if we sample 20 quadrats and come up with a mean of 4.0 plants and a stan-
dard deviation of 5.005, here are the steps for calculating a 95% confidence interval around
our sample mean:

The standard error (SE = s/√n) =   5.005/4.472 = 1.119.

The appropriate t value from Appendix 5 for 19 degrees of freedom (v) is 2.093.

One-half of our confidence interval width is then SE × t-value = 1.119 × 2.093 = 2.342.

Our 95% confidence interval can then be reported as 4.0 ± 2.34 plants/quadrat or we can
report the entire confidence interval width from 1.66 to 6.34 plants/quadrat. This indicates a
95% chance that our interval from 1.66 plants/quadrat to 6.34 plants/quadrat includes the
true value.

Another way to think of 95% confidence intervals calculated from sampling data is that the
interval specifies a range that should include the true value 95% of the time. If you are calculat-
ing 95% confidence intervals and independently randomly sample a population 100 different
times, you should see that approximately 95 of the intervals will include the true mean and 5
will miss it. This relationship is shown in Figure 5.6 where 100 independent population estimates
are graphed with 95% confidence intervals from the 400-plant populations using samples of
twenty 0.4m x 10m quadrats. You will notice that the solid dots, used to show each of the 100
population estimates, fluctuate around the true population value of 400 plants. You will also
notice that 96 out of 100 confidence intervals shown in Figure 5.6 include the true value. If
the confidence level had been set at 80%, then approximately 20 of the intervals would have
failed to include the true value. A 99% confidence level would have led to approximately
only one interval out of the 100 that did not include the true population size (in order to
capture the true value more often, the individual confidence interval widths for a 99%
confidence level are wider than the confidence interval widths for a 95% confidence level).

G. Finite vs. Infinite Populations
If we are sampling with quadrats, there is a finite number of quadrats that can be placed in the
area to be sampled, assuming that no two quadrats overlap (this is called sampling without
replacement). If the sampled area is large, then the number of quadrats placed in the area may
be very large as well, but nonetheless finite. On the other hand, an infinite number of points or
lines could be placed in the area to be sampled. This is because points, at least theoretically, are
dimensionless, and lines are dimensionless in one direction. This means, at least for all practical
purposes, that a population of points or of lines is infinite.

=  5.005
  20
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If the area to be sampled is large relative to the area that is actually sampled, the distinction between
finite and infinite is of only theoretical interest. When, however, the area sampled makes up a signifi-
cant portion of the area to be sampled, we
can apply the finite population correction factor,
which reduces the size of the standard error.
The most commonly used finite population
correction factor is shown to the right:

When n is small relative to N, the equation
is close to 1, whereas when n is large relative to N, the value approaches zero. The standard error
(s/√n) is multiplied by the finite population correction factor to yield a corrected standard error
for the finite population.

Consider the following example. The density of plant species X is estimated within a 20m x 50m
macroplot (total area = 1000m2). This estimate is obtained by collecting data from randomly
selected 1m x 10m quadrats (10m2). Sampling without replacement, there are 100 possible
quadrat positions.

Thus, our population, N, is 100. Let’s say we take a random sample, n, of 30 of these quadrats and
calculate a mean of eight plants per quadrat and a standard deviation of four plants per quadrat.
Our standard error is thus: s/√n = 4/√30 = 0.73. Although our sample mean is an unbiased estimator
of the true population mean and needs no correction, the standard error should be corrected by the
finite population correction factor shown on the top of page 72:
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Formula for the finite population correction:

Where: N = total number of potential quadrat positions
n = number of quadrats sampled

FPC = N - n
N

total area 1000m2

quadrat area 10m2=
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Since the standard error is one of
the factors used to calculate con-
fidence intervals (the other is the
appropriate value of t from a t
table), correcting the standard
error with the finite population
correction factor makes the
resulting confidence interval

narrower. It does this, however, only if n is sufficiently large relative to N. A rule of thumb is that
unless the ratio n/N is greater than .05 (i.e., you are sampling more than 5% of the population
area), there is little to be gained by applying the finite population correction factor to your
standard error.

The finite population correction factor is also important in sample size determination (Chapter 7)
and in adjusting test statistics (Chapter 11). The finite population correction factor works, how-
ever, only with finite populations, which we will have when using quadrats, but will not have
when using points or lines.

H. False-Change Errors and Statistical Power Considerations
These terms relate to situations where two or more sample means or proportions are being com-
pared with some statistical test. This comparison may be between two or more places or the
same place between two or more time periods. These terms are pertinent to both planning and
interpretation stages of a monitoring
study. Consider a simple example
where you have sampled a popula-
tion in two different years and now
you want to determine whether a
change took place between the two
years. You usually start with the
assumption, called the null hypothe-
sis, that no change has taken place.
There are two types of decisions that
you can make when interpreting the
results of a monitoring study: (1) you
can decide that a change took place,
or (2) you can decide that no change
took place. In either case, you can
either be right, or you can be wrong (Figure 5.7).

1. The change decision and false-change errors 
The conclusion that a change took place may lead to some kind of action. For example, if a
population of a rare plant is thought to have declined, a change in management may be
needed. If a change did not actually occur, this constitutes a false-change error, a sort of false
alarm. Controlling this type of error is important because taking action unnecessarily can be
expensive (e.g., a range permittee is not going to want to change the grazing intensity if a
decline in a rare plant population really didn't take place). There will be a certain probability
of concluding that a change took place even if no difference actually occurred. The probability
of this occurring is usually labeled the P-value, and it is one of the types of information that
comes out of a statistical analysis of the data. The P-value reports the likelihood that the

no change has
taken place

monitoring for change — possible errors

there has been
a real change

false-change error
(Type I)

monitoring
system detects a

change

no error
(Power) 1 - 

no error
(1 -   )

monitoring
system detects no

change

missed-change error
(Type II)

FIGURE 5.7. Four possible outcomes for a statistical test of some null
hypothesis, depending on the true state of nature.

Example of applying the finite population correction factor:

Where: SE' = corrected standard error
SE = uncorrected standard error
N = total number of potential quadrat positions
n = number of quadrats sampled

SE' = (SE) N - n
N

SE' = (0.73) = 0.61100 - 30
100
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observed difference was due to chance alone. For example, if a statistical test comparing two
sample means yields a P-value of 0.24 this indicates that there is a 24% chance of obtaining
the observed result even if there is no true difference between the two sample means.

Some threshold value for this false-change error rate should be set in advance so that the
P-value from a statistical test can be evaluated relative to the threshold. P-values from a
statistical test that are smaller than or equal to the threshold are considered statistically
"significant," whereas P-values that are larger than the threshold are considered statistically
"nonsignificant." Statistically significant differences may or may not be ecologically significant
depending upon the magnitude of difference between the two values. The most commonly
cited threshold for false-change errors is the 0.05 level; however, there is no reason to arbi-
trarily adopt the 0.05 level as the appropriate threshold. The decision of what false-change
error threshold to set depends upon the relative costs of making this type of mistake and the
impact of this error level on the other type of mistake, a missed-change error (see below).

2. The no-change decision, missed-change errors, and statistical power
The conclusion that no change took place usually does not lead to changes in management
practices. Failing to detect a true change constitutes a missed-change error. Controlling this
type of error is important because failing to take action when a true change actually occurred
may lead to the serious decline of a rare plant population.

Statistical power is the complement of the missed-change error rate (e.g., a missed-change
error rate of 0.25 gives you a power of 0.75; a missed-change error rate of 0.05 gives you a
power of 0.95). High power (a value close to 1), is desirable and corresponds to a low risk of
a missed-change error. Low power (a value close to 0) is not desirable because it corresponds
to a high risk of a missed-change error.

Since power levels are directly related to missed-change error levels, either level can be
reported and the other level can be easily calculated. Power levels are often reported instead
of missed-change error levels, because it seems easier to convey this concept in terms of the
certainty of detecting real changes. For example, the statement "I want to be at least 90%
certain of detecting a real change of five plants/quadrat" (power is 0.90) is simpler to under-
stand than the statement "I want the probability of missing a real change of five plants/quadrat
to be 10% or less" (missed-change error rate is 0.10).

An assessment of statistical power or missed-change errors has been virtually ignored in the
field of environmental monitoring. A survey of over 400 papers in fisheries and aquatic sci-
ences found that 98% of the articles that reported nonsignificant results failed to report any
power results (Peterman 1990). A separate survey, reviewing toxicology literature, found high
power in only 19 out of 668 reports that failed to reject the null hypothesis (Hayes 1987).
Similar surveys in other fields such as psychology or education have turned up "depressingly
low" levels of power (Brewer 1972; Cohen 1988).

3. Minimum detectable change
Another sampling design concept that is directly related to statistical power and false-change
error rates is the size of the change that you want to be able to detect. This will be referred
to as the minimum detectable change or MDC. The MDC greatly influences power levels. A
particular sampling design will be more likely to detect a true large change (i.e., with high
power) than to detect a true small change (i.e., with low power).
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Setting the MDC requires the consideration of ecological information for the species being
monitored. How large of a change should be considered biologically meaningful? With a
large enough sample size, statistically significant changes can be detected for changes that
have no biological significance. For example, if an intensive monitoring design leads to the
conclusion that the mean density of a plant population increased from 10.0 plants/m2 to
10.1 plants/m2, does this represent some biologically meaningful change in population
density? Probably not.

Setting a reasonable MDC can be difficult when little is known about the natural history of a
particular plant species. Should a 30% change in the mean density of a rare plant population
be cause for alarm? What about a 20% change or a 10% change? The MDC considerations
are likely to vary when assessing vegetation attributes other than density, such as cover or
frequency (Chapter 8). The initial MDC, set during the design of a new monitoring study,
can be modified once monitoring information demonstrates the size and rate of population
fluctuations.

4. How to achieve high statistical power
Statistical power is related to four separate sampling design components by the following
function equation:

Power = a function of (s, n, MDC, and α)

where: s = standard deviation
n = number of sampling units

MDC = minimum detectable change 
α = false-change error rate

Power can be increased in the following four ways:

1. Reducing standard deviation. This means altering the sampling design to reduce the
amount of variation among sampling units (see Chapter 7).

2. Increasing the number of sampling units sampled. This method of increasing power is
straightforward, but keep in mind that increasing n has less of an effect than decreasing s
since the square root of sample size is used in the standard error equation (SE = s/√n).

3. Increasing the acceptable level of false-change errors (α).

4. Increasing the MDC.

Note that the first two ways of increasing power are related to making changes in the
sampling design, whereas the other two ways are related to making changes in the sampling
objective (see Chapter 6).

5. Graphical comparisons
As stated, power is driven by four different factors: standard deviation, sample size, mini-
mum detectable change size, and false-change error rate. In this section we take a graphical
look at how altering these factors changes power. The comparisons in this section are based
upon sampling a fictitious plant population where we are interested in assessing plant density
relative to an established threshold value of 25 plants/m2. Any true population densities less
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than 25 plants/m2 will trigger management action. We are only concerned with the question
of whether the density is lower than 25 plants/m2 and not whether the density is higher. In
this example, our null hypothesis (HO) is that the population density equals 25 plants/m2 and
our alternative hypothesis is that density is less than 25 plants/m2. The density value of 25
plants/m2 is the most critical single density value since it defines the lower limit of acceptable
plant density.

The figures in this section are all based upon sampling distributions where we happen to
know the true plant density. Recall that a sampling distribution is a bell-shaped curve that
depicts the distribution of a large number of independently gathered sample statistics. A
sampling distribution defines the range and relative probability of any possible sample mean.
You are more likely to obtain sample means near the middle of the distribution than you are
to obtain sample means near either tail of the distribution.

A sampling distribution based on sampling our fictitious population with a true mean densi-
ty of 25 plants/m2 is shown in Figure 5.8A. This distribution is based on a sampling design
using thirty 1m x 1m quadrats where the true standard deviation is ± 20 plants/quadrat. If
1,000 different people randomly sample and calculate a sample mean based upon their 30
quadrat values, approximately half the individually drawn sample means will be less than 25
plants/m2 and half will be greater than 25 plants/m2. Approximately 40% of the samples will
yield sample means less than or equal to 24 plants/m2. A few of our 1,000 individuals will
obtain estimates of the mean density that deviate from the true value by a large margin. One
of the individuals will likely stand up and say, "my estimate of the mean density is 13
plants/m2", even though the true density is actually 25 plants/m2. As interpreters of the
monitoring information, we would conclude that since 999 of the 1,000 people obtained
estimates of the density that were greater than 13, the true density is probably not 13. Our
best estimate of the true mean density will be the average of the 1,000 separate estimates
(this average is likely to be extremely close to the actual true value).

Now that we have the benefit of 1,000 independent estimates of the true mean density, we
can return to the population at a later time, take a single random sample of thirty 1m x 1m
quadrats, calculate the sample mean, and then ask the question, "what is the probability of
obtaining our sample mean value if the true population is still 25 plants/m2?" If our sample
mean density turns out to be 24 plants/m2, would this lead to the conclusion that the popu-
lation has crossed our threshold value? Seeing that our sample mean is lower than our target
value might raise some concerns, but we have no objective basis to conclude that the true
population is not, in fact, still actually 25 plants/m2. We learned in the previous paragraph
that a full 40% of possible samples are likely to yield mean densities of 24 plants/m2 or less if
the true mean is 25 plants/m2. Thus, the probability of obtaining a single sample mean of 24
plants/m2 or less when the true density is actually 25 plants/m2 is approximately 0.40.
Obtaining a sample mean of 24 plants/m2 is consistent with the hypothesis that the true
population density is actually 25 plants/m2.

How small a sample mean do we need to obtain to feel confident that the population has
indeed dropped below 25 plants/m2? What will our interpretation be if we obtained a sam-
ple mean of 22 plants/m2? Based upon our sampling distribution from the 1,000 people, the
probability of obtaining an estimate of 22 plants/m2 or less is around 20%, which represents
a 1-in-5 chance that the true mean is still actually 25 plants/m2. Based upon the sampling
distribution from our 1,000 separate samplers, we can look at the likelihood of obtaining
other different sample means. The probability of obtaining a sample of 20 plants/m2 is 8.5%,
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and the probability of obtaining a sample of 18 plants/m2 is 2.9% if the true mean density is
25 plants/m2.

Since in most circumstances we will only have the results from a single sample (and not the
benefit of 1,000 independently gathered sample means), another technique must be used to
determine whether the population density has dropped below 25 plants/m2. One method is
to run a statistical test that compares our sample mean to our density threshold value (25
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FIGURE 5.8. Example of sampling distributions for mean plant density in samples of 30 permanent
quadrats where the among-quadrat standard deviation is 20 plants/m2. Part A is the
sampling distribution for the case in which the null hypothesis, H0, is true and the true
population mean density is 25 plants/m2. The shaded area in part A is the critical
region for    = 0.05 and the vertical dashed line is at the critical sample mean value, 18.8.
Part B is the sampling distribution for the case in which the H0 is false and the true mean
is 20 plants/m2. In both distributions, a sample mean to the left of the vertical dashed
line would reject H0, and to the right of it, would not reject H0. Power and    values in
part B, in which H0 is false and the true mean = 20, are the proportion of sample
means that would occur in the region in which H0 was rejected or not rejected,
respectively (adapted from Peterman 1990).
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plants/m2). The statistical test will yield a P-value that defines the probability of obtaining
our sample mean if the true population density is actually 25 plants/m2. As interpreters of
our monitoring information, we will need to set some probability threshold P-value to guide
our interpretation of the results from the statistical test. This P-value threshold defines our
acceptable false-change error rate. If we run a statistical test that compares our sample mean
to our density threshold value (25 plants/m2) and the P-value from the test is lower than our
threshold value, then we conclude that the population density has, in fact, declined below 25
plants/m2. Thus, if we set our P-value threshold to 0.05 and the statistical test yields a P-
value of 0.40, then we fail to reject the null hypothesis that the true population density is 25
plants/m2. If, however, the statistical test yields a P-value of 0.022, this is lower than our
threshold P-value of 0.05, and we would reject the null hypothesis that the population is 25
plants/m2 in favor of our alternative hypothesis that the density is lower than 25 plants/m2.

The relationship between the P-value threshold of 0.05 and our sampling distribution based
upon sampling thirty 1m x 1m quadrats is shown in Figure 5.8A. The threshold density value
corresponding to our P-value threshold of 0.05 is 18.8 plants/m2, which is indicated on the
sampling distribution by the dashed vertical line. Thus, if we obtain a mean density of 18
plants/m2, which is to the left of the vertical line, we reject the null hypothesis that the
population density is 25 plants/m2 in favor of an alternative hypothesis that density is lower
than 25 plants/m2. If we obtain a mean density of 21 plants/m2, which is to the right of the
vertical line, then we fail to reject the null hypothesis that the population density is really 25
plants/m2.

So far we have been discussing the situation where the true population density is right at the
threshold density of 25 plants/m2. Let's look now at a situation where we know the true
density has declined to 20 plants/m2. What is the likelihood of our detecting this true density
difference of 5 plants/m2? Figure 5.8B shows a new sampling distribution based upon the
true density of 20 plants/m2 (standard deviation is still ± 20 plants/m2). We know from our
previous discussion that sample means to the right of the vertical line in Figure 5.8A lead to
the conclusion that we can't reject the null hypothesis that our density is 25 plants/m2. If our
new sample mean turns out to exactly match the new true population mean (i.e., 20
plants/m2), will we reject the idea that the sample actually came from a population with a
true mean of 25 plants/m2? No, at least not at our stated P-value (false-change error) thresh-
old of 0.05. A sample mean value of 20 plants/m2 falls to the right of our dashed threshold
line in the "do not reject HO" portion of the graph and we would have failed to detect the
true difference that actually occurred. Thus, we would have committed a missed-change error.

What is the probability of missing the true difference of five plants/m2 show in Figure 5.8B?
This probability represents the missed-change error rate (β) and it is defined by the nonshaded
area under the sampling distribution in Figure 5.8B, which represents 62% of the possible
sample mean values. Recall that the area under the whole curve defines the entire range of
possible values that you could obtain by sampling the population with the true mean = 20
plants/m2. If we bring back our 1,000 sampling people and have each of them sample thirty
1m x 1m quadrats in our new population, we will find that approximately 620 of them will
obtain estimates of the mean density that are greater than the 18.8 plants/m2 threshold value
that is shown by the vertical dashed line. What about the other 380 people? They will obtain
population estimates fewer than the critical threshold of 18.8 plants/m2 and they will reject
the null hypothesis that the population equals 25 plants per quadrat. This proportion of 0.38
(380 people out of 1,000 people sampling) represents the statistical power of our sampling
design and it is represented by the shaded area under the curve in Figure 5.8B. If the true
population mean is indeed 20 plants/m2 instead of 25 plants/m2, then we can be 38%
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(power = 0.38) sure that we will detect this true difference of five plants/m2. With this par-
ticular sampling design (thirty 1m x 1m quadrats) and a false-change error rate of α=0.05,
we run a 62% chance (β=0.62) that we will commit a missed-change error (i.e., fail to detect
the true difference of five plants/m2). If the difference of five plants/m2 is biologically impor-
tant, a power of only 0.38 would not be satisfactory.

We can improve the low-power situation in four different ways: (1) increase the acceptable
false-change error rate; (2) increase the acceptable MDC; (3) increase sample size; or (4)
decrease the standard deviation. New paired sampling distributions illustrate the influence of
making each of these changes.

a. Increasing the acceptable false-change error rate

In Figure 5.8B, a false-change error rate of α=0.05 resulted in a missed-change error rate of
β=0.62 to detect a difference of five plants/m2. Given these error rates, we are more than 12
times more likely to commit a missed-change error than we are to commit a false-change
error. What happens to our missed-change error rate if we specify a new, higher false-change
error rate? Shifting our false-change error rate from α=0.05 to α=0.10 is illustrated in Figure 5.9
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FIGURE 5.9. The critical region for the false-change error in the sampling distributions from Figure
5.8 has been increased from    = 0.05 to    = 0.10. Part B, in which the H0 is false and
the true mean = 20, shows that power is larger for    = 0.10 than for Figure 5.8 where
    = 0.05 (adapted from Peterman 1990).
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for the same sampling distributions shown in Figure 5.8. Our critical density threshold at the
P=0.10 level is now 20.21 plants/m2, and our missed-change error rate has dropped from
β=0.62 down to β=0.47 (i.e., the power to detect a true five plant/m2 difference went from
0.38 to 0.53). A sample mean of 20 plants/m2 will now lead to the correct conclusion that a
difference of five plants/m2 between the populations does exist. Of course, the penalty we
pay for increasing our false-change error rate is that we are now twice as likely to conclude
that a difference exists in situations when there is no true difference and our population
mean is actually 25 plants/m2. Changing the false-change error rate even more, to α=0.20,
(Figure 5.10) reduces the probability of making a missed-change error down to β=0.29 (i.e.,
giving us a power of 0.71 to detect a true difference of five plants/m2).

b. Increasing the acceptable MDC

Any sampling design is more likely to detect a true large difference than a true small differ-
ence. As the magnitude of the difference increases, we will see an increase in the power to
detect the difference. This relationship is shown in Figure 5.11B, where we see a sampling
distribution with a true mean density of 15 plants/m2, which is 10 plants/m2 below our
threshold density of 25 plants/m2. The false-change error rate is set at α=0.05 in this example.
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FIGURE 5.10. The critical region for the false-change error in the sampling distributions from
Figure 5.8 has been increased from    = 0.05 to    = 0.20. Part B, in which the
H0 is false and the true mean = 20, shows that power is larger for    = 0.20 than
for Figure 5.8 where    = 0.05 or Figure 5.9 where    = 0.10. Again, a sample
mean to the left of the vertical dashed line would reject H0, while one to the
right of it would not reject H0 (adapted from Peterman 1990).
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This figure shows that the statistical power to detect this larger difference of 10 plants/m2

(25 plants/m2 to 15 plants/m2) is 0.85 compared with the original power value of 0.38 to
detect the difference of five plants/m2 (25 plants/m2 to 20 plants/m2). Thus, with a false-
change error rate of 0.05, we can be 85% certain of detecting a difference from our 25
plants/m2 threshold of 10 plants/m2 or greater. If we raised our false-change error from
α=0.05 to α=0.10 (not shown in Figure 5.11), our power value would rise to 0.92, which
creates a sampling situation where our two error rates are nearly equal (α=0.10, β=0.08).

c. Increasing the sample size

The sampling distributions shown in Figures 5.8 to 5.11 were all created by sampling the
populations with n=30 1m x 1m quadrats. Any increase in sample size will lead to a subse-
quent increase in power to detect some specified minimum detectable difference. This
increase in power results from the sampling distributions becoming narrower. Sampling dis-
tributions based on samples of n=50 are shown in Figure 5.12 where the true difference
between the two populations is once again five plants/m2 with a false-change error rate
threshold of α=0.05. The increase in sample size led to an increase in power from
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instead of the 20 plants/m2 shown in Figure 5.8. Note that power increases
(and    decreases) when the new true population mean gets further from the original
true mean of 25 plants/m2. Again, a sample mean to the left of the vertical dashed
line would reject H0, while one to the right of it would not reject H0 (adapted from
Peterman 1990).
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power=0.38 with n=30 to power=0.54 with n=50. Note that the critical threshold density
associated with an α = 0.05 is now 20.3 plants/m2 as compared to the 18.8 plants/m2

threshold when n = 30.

d. Decreasing the standard deviation

The sampling distributions shown in Figures 5.8 to 5.12 all are based on sampling distributions
with a standard deviation of ±20 plants/m2. The quadrat size used in the sampling was a
square 1m x 1m quadrat. If individuals in the plant population are clumped in distribution,
then it is likely that a rectangular shaped quadrat will result in a lower standard deviation
(See Chapter 7 for a detailed description of the relationship between standard deviation and
sampling unit size and shape). Figure 5.13 shows sampling distributions where the standard
deviation was reduced from ±20 plants/m2 to ±10 plants/m2. Note that the critical threshold
density associated with an α = 0.05 is now 21.9 plants/m2 as compared to the 18.8 plants/m2

threshold when the standard deviation was ± 20 plants/m2. This reduction in the true stan-
dard deviation came from a change in quadrat shape from the 1m x 1m square shape to a
0.2m x 5m rectangular shape. Note that quadrat area (1m2) stayed the same so that the
mean densities are consistent with the previous sampling distributions shown in Figures 5.8
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FIGURE 5.12. The sample size was increased to n = 50 quadrats from the n = 30 quadrats shown in
Figure 5.8. Note that power increases (and    decreases) at larger sample sizes. Again,
a sample mean to the left of the vertical dashed line would reject H0, while one to the
right of it would not reject H0 (adapted from Peterman 1990).
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through 5.12. This reduction in standard deviation led to a dramatic improvement in power,
from 0.38 (with sd = 20 plants/m2) to 0.85 (with sd = 10 plants/m2). Reducing the standard
deviation has a more direct impact on increasing power than increasing sample size, because
the sample size is reduced by taking its square root in the standard error equation (SE = s/√n).
Recall that the standard error provides an estimate of sampling precision from a single sample
without having to enlist the support of 1,000 people who gather 1,000 independent sample
means.

e. Power curves

The relationship between power and the different sampling design components that influence
power can also be displayed in power curve graphs. These graphs typically show power values
on the y-axis and either sample size, MDC, or standard deviation values on the x-axis. Figure
5.14A shows statistical power graphed against different magnitudes of change for the same
hypothetical data set described above and shown in Figures 5.8 to 5.11. Four different power
curve lines are shown, one for each of the following four different false-change (α) error rates:
0.01, 0.05, 0.10, and 0.20. The power curves are based on sampling with a sample size of 30
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FIGURE 5.13. The standard deviation (s) of 20 plants/m2 shown in Figure 5.8 is reduced to ten
plants/m2. Note that power increases (and    decreases), as the standard deviation
decreases. Again, a sample mean to the left of the vertical dashed line would reject
H0, while one to the right of it would not reject H0 (adapted from Peterman 1990).
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quadrats and a standard deviation of 20 plants/m2. For any particular false-change error rate,
power increases as the magnitude of the minimum detectable change increases. When α=0.05,
the power to detect small changes is very low (Figure 5.14A). For example, we have only a
13% chance of detecting a difference of 2 plants/m2 (i.e., a density of 23 plants/m2 which is 2
plants/m2 below our threshold value of 25 plants/m2). In contrast, we can be 90% sure of
detecting a minimum difference of 11 plants/m2. We can also attain higher power by increasing
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FIGURE 5.14. Power curves showing power values for various magnitudes of minimum detectable change
and false-change error rates when the standard deviation is 20.  Part A shows power curves
with a sample size of 30.  Part B shows power curves with a sample size of 50.
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the false-change error rate. The power to detect a change of eight plants/m2 is only 0.41
when α=0.01, but it increases to 0.69 at α=0.05, to 0.81 at α=0.10, and to 0.91 at α=0.20.

A different set of power curves are shown in Figure 5.14B where the sample size is n=50 instead
of the n=30 shown in Figure 5.14A. This larger smaller sample size shifts all of the power curves
to the left, making it more likely that smaller changes will be detected. For example, with a false-
change error rate of α=0.10, the power to detect a seven plant/m2 difference is 0.88 with a
sample size of n=50 quadrats compared to the power of 0.73 with a sample size of n=30
quadrats.

Power curves that show the effect of reducing the standard deviation are shown in Figure
5.15. Figure 5.15A is the same as Figure 5.14A where the standard deviation is 20 plants/m2.
Figure 5.15B shows the same power curves except they are based on a standard deviation of
10 plants/m2. The smaller standard deviation shifts all of the power curves to the left and
results in much steeper slopes. The smaller standard deviation leads to substantially higher
power levels for any particular MDC value. For example, the power to detect a change of
five plants/m2 with a false change error rate of α=0.10 is only 0.53 in Figure 5.15A as
compared to the power of 0.92 in Figure 5.15B.

6. Setting false-change and missed-change error rates
Both false-change and missed-change error rates can be reduced by sampling design changes
that increase sample size or decrease sample standard deviations. Missed-change and false-
change error rates are inversely related, which means that reducing one will increase the
other (but not proportionately) if no other changes are made. The decision of which type of
error is more important should be based on the nature of the changes you are trying to
determine, and the consequences of making either kind of mistake.

Because false-change and missed-change error rates are inversely related to each other, and
because these errors have different consequences to different interest groups, there are differ-
ent opinions as to what the "acceptable" error rates should be. The following examples
demonstrate the conflict between false-change and missed-change errors.

� Testing for a lethal disease. When screening a patient for some disease that is lethal with-
out treatment, a physician is less concerned about making a false diagnosis error (analogous
to a false-change error) of concluding that the person has the disease when they do not
than failing to detect the disease (analogous to a missed-change error) and concluding that
the person does not have the disease when in fact they do.

� Testing for guilt in our judicial system. In the United States, the null hypothesis is that
the accused person is innocent. Different standards for making judgement errors are used
depending upon whether the case is a criminal or a civil case. In criminal cases, proof must
be "beyond a reasonable doubt." In these situations it is less likely that an innocent person
will be convicted (analogous to a false-change error), but it is more likely that a guilty per-
son will go free (analogous to a missed-change error). In civil cases, proof only needs to be
"on the balance of probabilities." In these situations, there is a greater likelihood of making
a false conviction (analogous to a false-change error), but a lower likelihood of making a
missed conviction (analogous to a missed-change) error.

� Testing for pollution problems. In pollution monitoring situations, the industry has an
interest in minimizing false-change errors and may desire a very low false-change error
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rate (e.g., α = 0.01 or 0.001). Companies do not want to be shut down or implement
expensive pollution control procedures if a real impact has not occurred. In contrast, an
organization concerned with the environmental impacts of some pollution activity will
likely want to have high power (low missed-change error rate) so that they do not miss
any real changes that take place. They may not be as concerned about occasional false-
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change errors (which would result in additional pollution control efforts even though real
changes did not take place).

Missed-change errors may be as costly or more costly than false-change errors in environ-
mental monitoring studies (Toft and Shea 1983; Peterman 1990; Fairweather 1991). A false-
change error may lead to the commitment of more time, energy, and people, but probably
only for the short period of time until the mistake is discovered (Simberloff 1990). In con-
trast, a missed-change error, as a result of a poor study design, may lead to a false sense of
security until the extent of the damages are so extreme that they show up in spite of a poor
study design (Fairweather 1991). In this case, rectifying the situation and returning the
system to its preimpact condition could be costly. For this reason, you may want to set equal
false-change and missed-change error rates or even consider setting the missed-change error
rate lower than the false-change error rate (Peterman 1990; Fairweather 1991).

There are many historical examples of costly missed-change errors in environmental moni-
toring. For example, many fish population monitoring studies have had low power to detect
biologically meaningful declines so that declines were not detected until it was too late and
entire populations crashed (Peterman 1990). Some authors advocate the use of something
they call the "precautionary principle" (Peterman and M'Gonigle 1992). They argue that, in
situations where there is low power to detect biologically meaningful declines in some envi-
ronmental parameter, management actions should be prescribed as if the parameter had actu-
ally declined. Similarly, some authors prefer to shift the burden of proof in situations where
there might be an environmental impact from environmental protection interests to indus-
try/development interests (Peterman 1990; Fairweather 1991). They argue that a conservative
management strategy of "assume the worst until proven otherwise" should be adopted. Under
this strategy, developments that may negatively impact the environment should not proceed
until the proponents can demonstrate, with high power, a lack of impact on the environment.

7. Why has statistical power been ignored for so long?
It is not clear why missed-change errors, power, and minimum detectable change size have
traditionally been ignored. Perhaps researchers have not been sufficiently exposed to the idea
of missed-change errors. Most introductory texts and statistics courses deal with the material
only briefly. Computer packages for power analysis have only recently become available.
Perhaps people have not realized the potentially high costs associated with making missed-
change errors. Perhaps researchers have not understood how understanding power can
improve their work.

The issue of power and missed-change errors has gained a lot of attention in recent years. A
literature review in the 1980’s would not have turned up many articles dealing with statistical
power issues. A literature review today would turn up dozens of articles in many disciplines
from journals all over the world (see Peterman 1990 and Fairweather 1991 for good review
papers on statistical power). Journal editors may soon start requiring that power analysis
information be reported for all nonsignificant results (Peterman 1990). There may also be
some departure from the strict adherence to the 0.05 significance level (Peterman 1990;
Fairweather 1991).

8. Use of prior power analysis during study design
Power analysis can be useful during both the design of monitoring studies and in the inter-
pretation of monitoring results. The former is sometimes called "prior power analysis,"
whereas the latter is sometimes called "post-hoc power analysis" (Fairweather 1991). Post-hoc
power analysis is covered in Chapter 11.
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The use of power analysis during the design and planning of monitoring studies provides
valuable information that can help avoid monitoring failures. Once some preliminary or pilot
data have been gathered, or if some previous years' monitoring data are available, power
analysis can be used to evaluate the adequacy of the sampling design. Prior power analysis can
be done in several different ways. All are based upon the power function described earlier:

Power = a function of (s, n, MDC, and α)

The power of a particular sampling design can be evaluated by plugging sample standard
deviation, sample size, the desired MDC, and an acceptable false-change error rate, into
equations or computer programs (Appendix 16) and solving for power. If the power to detect
a biologically important change turns out to be quite low (high probability of a missed-
change error), then the sampling design can be modified to try to achieve higher power.

Alternatively, a desired power level can be specified and the terms in the power function can
be rearranged to solve for sample size. This will give you assurance that your study design
will succeed in being able to detect a certain magnitude of change at the specified power and
false-change error rate. This is the format for the sample size equations that are discussed in
Chapter 7 and presented in Appendix 7.

Still another way to do prior power analysis is to specify a desired power level and a particu-
lar sample size and then rearrange the terms in the power function to solve for the MDC
(Rotenberry and Wiens 1985; Cohen 1988). If the MDC is unacceptably large, then attempts
should be made to improve the sampling design. If these efforts fail, then the decision must
be made to either live with the large MDC or to reject the sampling design and perhaps
consider an alternative monitoring approach.

The main advantage of prior power analysis is that it allows the adequacy of the sampling
design to be evaluated at an early stage in the monitoring process. It is much better to learn
that a particular design has a low power at a time when modifications can easily be made
than it is to learn of low power after many years of data have already been gathered. The
importance of specifying acceptable levels of false-change and missed-change errors along
with the magnitude of change that you want to be able to detect is covered in Chapter 6 the
next chapter, which introduces sampling objectives.
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CHAPTER 5. Basic Principles of
Sampling

A. Introduction
What is sampling? A review of several dictionary definitions led to the following composite
definition:

The act or process of selecting a part of something with the intent of showing the quality,
style, or nature of the whole.

Monitoring does not always involve sampling techniques. Sometimes you can count or measure all
individuals within a population of interest. Other times you may select qualitative techniques that
are not intended to show the quality, style, or nature of the whole population (e.g., subjectively
positioned photoplots).

What about those situations where you have an interest in learning something about the entire
population, but where counting or measuring all individuals is not practical? This situation calls
for sampling. The role of sampling is to provide information about the population in such a way
that inferences about the total population can be made. This inference is the process of general-
izing to the population from the sample, usually with the inclusion of some measure of the
"goodness" of the generalization (McCall 1982).

Sampling will not only reduce the amount of work and cost associated with characterizing a
population, but sampling can also increase the accuracy of the data gathered. Some kinds of
errors are inherent in all data collection procedures, and by focusing on a smaller fraction of the
population, more attention can be directed toward improving the accuracy of the data collected.

This chapter includes information on basic principles of sampling. Commonly used sampling
terminology is defined and the principal concepts of sampling are described and illustrated. Even
though the examples used in this chapter are based on counts of plants in quadrats (density
measurements), most of the concepts apply to all kinds of sampling.

B. Populations and Samples
The term "population" has both a biological definition and a statistical definition. In this chapter
and in Chapter 7, we will be using the term "population" to refer to the statistical population or
the "sampling universe" in which monitoring takes place. The statistical population will some-
times include the entire biological population, and other times, some portion of the biological
population. The population consists of the complete set of individual objects about which you
want to make inferences. We will refer to these individual objects as sampling units. The sampling
units can be individual plants or they may be quadrats (plots), points, or transects. The sample is
simply part of the population, a subset of the total possible number of sampling units. These
terms can be clarified in reference to an artificial plant population shown in Figure 5.1. There
are a total of 400 plants in this population, distributed in 20 patches of 20 plants each. All the
plants are contained within the boundaries of a 20m x 20m "macroplot." The collection of plants
in this macroplot population will be referred to as the "400-plant population." A random
arrangement of ten 2m x 2m quadrats positioned within the 400-plant population is shown in
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Figure 5.1. Counts of plants within the individual quadrats are directed at the objective of
estimating the total number of plants in the 20m x 20m macroplot. The sampling unit in this
case is the 2m x 2m quadrat. The sample shown in Figure 5.1 is a set of 10 randomly selected
quadrats. The population in this case is the total collection of all possible 2m x 2m quadrats
that could be placed in the macroplot (N=100).

C. Population Parameters vs. Sample Statistics
Population parameters are descriptive measures which characterize the population and are
assumed to be fixed but unknown quantities that change only if the population changes. Greek
letters such as µ and σ are often used to denote parameters. If we count all the plants in all the
quadrats that make up the 400-plant population shown in Figure 5.1 (400 plants), and divide by
the total number of possible 2m x 2m quadrat locations in the macroplot (100 quadrats), we
obtain the true average number of plants per quadrat (4 plants/quadrat). This, assuming we have
made no errors, is the true population mean (µ). If we know how much each individual quadrat
differs from the true population mean, we can calculate another important population parame-
ter, the true population standard deviation (σ). The standard deviation is a measure of how similar
each individual observation is to the overall mean and is the most common measure of variability
used in statistics. Populations with a large amount of variation among possible sampling units
will have a larger standard deviation than populations with sampling units that are more similar
to one another.

Sample statistics are descriptive measures derived from a sample (e.g., 10 of the possible 100 2m
x 2m quadrats). Sample statistics provide estimates of population parameters. Sample statistics
will vary from sample to sample in addition to changing whenever the underlying population
changes. Roman letters such asX and s are usually used for sample statistics. Consider the
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FIGURE 5.1. Population of 400 plants distributed in 20 clumps of 20 plants.  This figure shows a simple random sample of
ten 2m x 2m quadrats, along with sample statistics and true population parameters.
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following simple example where a sample of three sampling units yields values of 9, 10, and 14
plants/quadrat:

The sample mean (X) = (9+10+14)/3 = 11 plants/quadrat

We could also calculate from this sample a sample standard deviation (s). The sample standard
deviation describes how similar each individual observation is to the sample mean. The derivation
of a standard deviation (in case you want to calculate one by hand) is provided in Appendix 8.
The standard deviation is easily calculated with a simple hand calculator using the "s" or "σn-1" key.

The standard deviation (s) for the simple example above is 2.65 plants/quadrat.

Consider another simple example with sampling unit values of 2, 10, and 21 plants/quadrat.

The mean (X) = (2+10+21)/3 = 11 plants/quadrat

The standard deviation (s) for this example is 9.54 plants/quadrat.

Thus, both examples have a sample mean of 11 plants/quadrat, but the second one has a higher
standard deviation (9.54 plants/quadrat) than the first (2.65 plants/quadrat), because the
individual quadrat values differ more from one another in the second example.

In the example shown in Figure 5.1, the true population mean is 4.00 plants/quadrat, whereas
the sample mean is 5.00 plants/quadrat. The true population standard deviation is 5.005
plants/quadrat, whereas the sample standard deviation is 6.146 plants/quadrat.

D. Accuracy vs. Precision
Accuracy is the closeness of a measured or computed value to its true value. Precision is the
closeness of repeated measurements of the same quantity. A simple example will help illustrate
the difference between these two terms. Two quartz clocks, equally capable of tracking time, are
sitting side-by-side on a table. Someone comes by and advances one of the clocks by 1 hour.
Both clocks will be equally "precise" at tracking time, but one of them will not be "accurate."

Efficient sampling designs try to achieve high precision. When we sample to estimate some popula-
tion parameter, our sample standard deviation gives us a measure of the repeatability, or preci-
sion of our sample; it does not allow us to assess the accuracy of our sample. If counts of plants
within different quadrats of a sample are similar to one another (e.g., the example above with a
mean of 11 and a standard deviation = 2.65) then it is likely that different independent samples
from the same population will yield similar sample means and give us high precision. When
quadrat counts within a sample are highly variable (e.g., the example above with a mean of 11
and a standard deviation of 9.54), individual sample means from separate independent samples
may be very different from one another giving us low precision. In either case, if the counting
process is biased (perhaps certain color morphs or growth forms of individuals are overlooked),
results may be inaccurate.
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E. Sampling vs. Nonsampling errors
In any monitoring study errors should be minimized. Two categories of errors are described next.

1. Sampling errors
Sampling errors result from chance; they occur when sample information does not reflect the
true population information. These errors are introduced by measuring only a subset of all
the sampling units in a population.

Sampling errors are illustrated in Figure 5.2, in which two separate, completely random sam-
ples (2A and 2B) are taken from the 400-plant population shown in Figure 5.1. In each case,
ten 2m x 2m quadrats are sampled and an estimate is made of the total number of plants
within the population. The sample shown in Figure 5.2A produces a population estimate of
only 80 plants, whereas the sample shown in Figure 5.2B yields an estimate of 960 plants.
Both estimates are poor because of sampling error (chance placement of the quadrats
resulted in severe under- or overestimates of the true population total).

You can imagine the problems that can arise if you monitor the same population two years
in a row and get sample information that indicates that the population shifted from 960
plants to 80 plants when it really didn't change at all. Sampling errors can lead to two kinds
of mistakes: (1) missing real changes (missed-change errors), and (2) detecting apparent
changes that don't really exist (false-change errors).

Sampling errors can be estimated from the sampling data. Some of the basic sampling design
tools covered in Chapter 7, enable you to evaluate the effectiveness of your monitoring study
by taking a closer look at the sampling data. This can be especially helpful when setting up
new projects; an evaluation of pilot sampling data can point out potential sampling error
problems, enabling an investigator to fix them at an early stage of the project. Good sampling
designs can reduce sampling errors without increasing the cost of sampling.

2. Nonsampling errors
Nonsampling errors are errors associated with human, rather than chance, mistakes.
Examples of nonsampling errors include:

� Using biased selection rules, such as selecting "representative samples" by subjectively
locating sampling units, or by substituting sampling units that are "easier" to measure.

� Using vegetation measurement or counting techniques within sampling units in which
attributes cannot be accurately counted or measured. For example, counts of grass stems
within a quadrat with counts in the hundreds may lead to numerous counting errors.

� Inconsistent field sampling effort. Nonsampling errors can be introduced if different inves-
tigators use different levels of effort (e.g., one investigator makes counts from "eye-level,"
whereas another counts by kneeling next to the quadrat).

� Transcription and recording errors. Nonsampling errors can be introduced if the data
recorder's "7's" look like "1's" to the person entering the data.

� Incorrect or inconsistent species identification. This category also includes biases introduced
by missing certain size classes or color morphs.
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Because sampling designs are based on the assumption that nonsampling errors are zero, the num-
ber of nonsampling errors needs to be minimized. Ensure that your sampling unit makes sense for
the type of vegetation measurement technique you have selected. When different personnel are
used in the same monitoring study, conduct rigorous training and testing to ensure consistency in
counts or measurements. Design field data forms (Chapter 9) that are easy to use and easy for
data transcribers to interpret. Proof all data entered into computer programs to ensure that entered
numbers are correct. In contrast to sampling errors, the probability of nonsampling errors occur-
ring cannot be assessed from pilot sample data.
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FIGURE 5.2. Examples of sampling errors from sampling the 400-plant population.  The population estimates of 80 plants
and 960 plants are far from the true population of 400 plants.
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F. Sampling Distributions
One way of evaluating the risk of obtaining a sample value that is vastly different than the true
value (such as population estimates of 80 or 960 plants when the true population is 400 plants)
is to sample a population repeatedly and look at the differences among the repeated population
estimates. If almost all the separate, independently derived population estimates are similar, then
you know you have a good sampling design with high precision. If many of the independent
population estimates are not similar, then you know your precision is low.

The 400-plant population can be resampled by erasing the 10 quadrats (as shown in either
Figure 5.1 or Figure 5.2) and putting 10 more down in new random positions. We can keep
repeating this procedure, each time writing down the sample mean. Plotting the results of a large
number of individual sample means in a simple histogram graph yields a sampling distribution. A
sampling distribution is a distribution of many independently gathered sample statistics (most
often a distribution of sample means). Under most circumstances, this distribution of sample
means fits a normal or bell-shaped curve.

A distribution of population size estimates from 10,000 separate random samples using ten 2m x
2m quadrats from the 400-plant population is shown in Figure 5.3A. The x-axis shows the range
of different population estimates, and the y-axis shows the relative and actual frequency of the
different population estimates. Think of this as the results of 10,000 different people sampling
the same population on the same day, each one setting out 10 randomly positioned 2m x 2m
quadrats (somehow without negatively impacting the population) and coming up with their own
independent population estimate. The highest population estimate out of the 10,000 separate
samples was 960 plants and the lowest population estimate was zero (four of the 10,000 sam-
ples yielded a population estimate of zero). The shape of this distribution indicates the magni-
tude of likely sampling errors. Wide distributions could yield population estimates that are "far"
from the true population value. A sampling design that led to the type of sampling distribution
depicted in Figure 5.3A would not be useful since few of the estimates approach the true popu-
lation size of 400 plants. One of the principal objectives in sampling design is to make the shape of
sampling distributions as narrow as possible.

Fortunately, you do not have to repeatedly sample your population and see how wide your sam-
pling distribution is to determine if you need to change anything. There are some simple statisti-
cal tools that provide a convenient shortcut for evaluating the precision of your sampling effort
from a single sample. These tools involve calculating standard errors and confidence intervals to
estimate sampling precision levels.

1. Standard error
A standard error is the standard deviation of a large number
of independent sample means. It is a measure of precision
that you derive from a single sample. The formula for
calculating a standard error is as follows:

To paraphrase the earlier statement regarding an important
objective of sampling design, one of the principal objectives in
sampling design is to reduce the size of the standard error.

This formula demonstrates that there are only two ways of minimizing standard errors,
either: (1) increase sample size (n), or (2) decrease the standard deviation (s).

Formula for standard error:

Where: SE = Standard error
s = Standard deviation
n = Sample size

SE =
s
n
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� Increase sample size. A new sampling distribution of 10,000 separate random samples
drawn from our example population is shown in Figure 5.3B. This distribution came from
randomly drawing samples of twenty 2m x 2m quadrats instead of the ten quadrats used to
create the sampling distribution in Figure 5.3A. This increase in sample size from 10 to 20
provides a 29.3% improvement in precision (as measured by the reduced size of the
standard error).

� Decrease sample standard deviation. Another sampling distribution of 10,000 separate
random samples drawn from our 400-plant population is shown in Figure 5.3C. The
sampling design used to create this distribution of population estimates is similar to
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FIGURE 5.3. Sampling distributions from three separate sampling designs used on the 400-plant
population. All distributions were created by sampling the population 10,000 separate
times. The smooth lines show a normal bell-shaped curve fit to the data. Figure 3A
shows a sampling distribution where ten 2m x 2m quadrats were used. Figure 3B
shows a sampling distribution where twenty 2m x 2m quadrats were used. Figure 3C
shows a sampling distribution where twenty 0.4m x 10m quadrats were used.
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the one used to create the sampling distribution in Figure 5.3B. The only difference
between the two designs is in quadrat shape. The sampling distribution shown in Figure
5.3B came from using twenty 2m x 2m quadrats; the sampling distribution shown in
Figure 5.3C came from using twenty 0.4m x 10m quadrats. This change in quadrat shape
reduced the true population standard deviation from 5.005 plants to 3.551 plants. This
change in quadrat shape led to a 29.0% improvement in precision over the 2m x 2m
design shown in Figure 5.3B (as measured by the reduced size of the standard error). This
29.0% improvement in precision came without changing the sampling unit size (4m2) or
the number of quadrats sampled (n=20); only the quadrat shape (from square to rectan-
gular) changed. When compared to the original sampling design of ten 2m x 2m quadrats,
the twenty 0.4m x 10m quadrat design led to a 49.8% improvement in precision. Details
of this method and other methods of reducing sample standard deviation are covered in
Chapter 7.

How is the standard error most often used to report the precision level of sampling data?
Sometimes the standard error is reported directly. You may see tables with standard errors
reported or graphs that include error bars that show ± 1 standard error. Often, however, the
standard error is multiplied by a coefficient that converts the number into something called a
confidence interval.

2. Confidence intervals
A confidence interval provides an estimate of precision around a sample mean, a sample pro-
portion, or an estimate of total population size that specifies the likelihood that the interval
includes the true value. The vertical lines marked with the "95%" in Figure 5.4 indicate that
95% of all the samples (9,500 out of the 10,000) fit between these two lines. Five percent of
the samples (2.5% in each tail of the distribution) fall outside the vertical lines. These lines
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curve fit to the data.
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are positioned equally from the center of the sampling distribution, approximately 320
plants away from the center of 400 plants. Thus, 95% of all samples are within ± 320 plants
of the true population size.

A confidence interval includes two
components: (1) the confidence inter-
val width (e.g., ± 320 plants); and (2)
the confidence level (e.g., 90%, 95%).
The confidence level indicates the
probability that the interval includes
the true value. Confidence interval
width decreases as the confidence
level decreases. This relationship is
shown in Figure 5.4 where three dif-
ferent confidence levels are graphed
on the sampling distribution obtained
by sampling the 400-plant population
with ten 2m x 2m quadrats. These
same three confidence intervals are
shown again in Figure 5.5A, where
they are graphed in a format com-
monly used to report confidence
intervals. There is no gain in precision
associated with the narrowing of con-
fidence interval width as you go from
left to right in Figure 5.5A (i.e., from
95% confidence, to 80% confidence,
to 50% confidence); only the proba-
bility that the confidence interval
includes the true value is altered.
Another set of three confidence inter-
vals is shown in Figure 5.5B. Like
Figure 5.5A, confidence intervals get
narrower as we move from left to
right in the graph, but this time the
confidence level is the same (95%)
and the narrower widths came from
using different sampling designs.
There is a gain in precision associated
with the narrowing of confidence
interval width as you go from left to
right in Figure 5.5B (i.e., from the ten
2m x 2m design to the twenty 2m x
2m design to the twenty 0.4m x 10m
design) because we have reduced the uncertainty of our population estimate by tightening
the confidence interval width at the same confidence level.

In order to calculate confidence intervals for sample means, we need two values: (1) the standard
error calculated according to the above formula (SE = s/√n), and (2) the corresponding value
from a table of critical values of the t distribution (see Appendix 8 for instructions on calculating
confidence intervals around proportions). The confidence interval half-width, extending an
equal distance on both sides of the mean, is the standard error × the critical t value (except
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when sampling from finite populations, see below). The appropriate critical value of t
depends on the level of confidence desired and the number of sampling units (n) in the sam-
ple. A table of critical values for the t distribution (Zar 1996) is found in Appendix 5. To use
this table, you must first select the appropriate confidence level column. If you want to be
95% confident that your confidence interval includes the true mean, use the column headed
α(2) = 0.05. For 90% confidence, use the column headed α(2) = 0.10. You use α(2) because
you are interested in a confidence interval on both sides of the mean. You then use the row
indicating the number of degrees of freedom (v), which is the number of sampling units
minus one (n-1).

For example, if we sample 20 quadrats and come up with a mean of 4.0 plants and a stan-
dard deviation of 5.005, here are the steps for calculating a 95% confidence interval around
our sample mean:

The standard error (SE = s/√n) =   5.005/4.472 = 1.119.

The appropriate t value from Appendix 5 for 19 degrees of freedom (v) is 2.093.

One-half of our confidence interval width is then SE × t-value = 1.119 × 2.093 = 2.342.

Our 95% confidence interval can then be reported as 4.0 ± 2.34 plants/quadrat or we can
report the entire confidence interval width from 1.66 to 6.34 plants/quadrat. This indicates a
95% chance that our interval from 1.66 plants/quadrat to 6.34 plants/quadrat includes the
true value.

Another way to think of 95% confidence intervals calculated from sampling data is that the
interval specifies a range that should include the true value 95% of the time. If you are calculat-
ing 95% confidence intervals and independently randomly sample a population 100 different
times, you should see that approximately 95 of the intervals will include the true mean and 5
will miss it. This relationship is shown in Figure 5.6 where 100 independent population estimates
are graphed with 95% confidence intervals from the 400-plant populations using samples of
twenty 0.4m x 10m quadrats. You will notice that the solid dots, used to show each of the 100
population estimates, fluctuate around the true population value of 400 plants. You will also
notice that 96 out of 100 confidence intervals shown in Figure 5.6 include the true value. If
the confidence level had been set at 80%, then approximately 20 of the intervals would have
failed to include the true value. A 99% confidence level would have led to approximately
only one interval out of the 100 that did not include the true population size (in order to
capture the true value more often, the individual confidence interval widths for a 99%
confidence level are wider than the confidence interval widths for a 95% confidence level).

G. Finite vs. Infinite Populations
If we are sampling with quadrats, there is a finite number of quadrats that can be placed in the
area to be sampled, assuming that no two quadrats overlap (this is called sampling without
replacement). If the sampled area is large, then the number of quadrats placed in the area may
be very large as well, but nonetheless finite. On the other hand, an infinite number of points or
lines could be placed in the area to be sampled. This is because points, at least theoretically, are
dimensionless, and lines are dimensionless in one direction. This means, at least for all practical
purposes, that a population of points or of lines is infinite.

=  5.005
  20
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If the area to be sampled is large relative to the area that is actually sampled, the distinction between
finite and infinite is of only theoretical interest. When, however, the area sampled makes up a signifi-
cant portion of the area to be sampled, we
can apply the finite population correction factor,
which reduces the size of the standard error.
The most commonly used finite population
correction factor is shown to the right:

When n is small relative to N, the equation
is close to 1, whereas when n is large relative to N, the value approaches zero. The standard error
(s/√n) is multiplied by the finite population correction factor to yield a corrected standard error
for the finite population.

Consider the following example. The density of plant species X is estimated within a 20m x 50m
macroplot (total area = 1000m2). This estimate is obtained by collecting data from randomly
selected 1m x 10m quadrats (10m2). Sampling without replacement, there are 100 possible
quadrat positions.

Thus, our population, N, is 100. Let’s say we take a random sample, n, of 30 of these quadrats and
calculate a mean of eight plants per quadrat and a standard deviation of four plants per quadrat.
Our standard error is thus: s/√n = 4/√30 = 0.73. Although our sample mean is an unbiased estimator
of the true population mean and needs no correction, the standard error should be corrected by the
finite population correction factor shown on the top of page 72:
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FIGURE 5.6. Population estimates from 100 separate random samples from the 400-plant population.
Each sample represents the population estimate from sampling twenty 0.4m x 10m
quadrats. The horizontal line through the graph indicates the true population of 400
plants. Vertical bars represent 95% confidence intervals. Four of the intervals miss the
true population size.

Formula for the finite population correction:

Where: N = total number of potential quadrat positions
n = number of quadrats sampled

FPC = N - n
N

total area 1000m2

quadrat area 10m2=
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Since the standard error is one of
the factors used to calculate con-
fidence intervals (the other is the
appropriate value of t from a t
table), correcting the standard
error with the finite population
correction factor makes the
resulting confidence interval

narrower. It does this, however, only if n is sufficiently large relative to N. A rule of thumb is that
unless the ratio n/N is greater than .05 (i.e., you are sampling more than 5% of the population
area), there is little to be gained by applying the finite population correction factor to your
standard error.

The finite population correction factor is also important in sample size determination (Chapter 7)
and in adjusting test statistics (Chapter 11). The finite population correction factor works, how-
ever, only with finite populations, which we will have when using quadrats, but will not have
when using points or lines.

H. False-Change Errors and Statistical Power Considerations
These terms relate to situations where two or more sample means or proportions are being com-
pared with some statistical test. This comparison may be between two or more places or the
same place between two or more time periods. These terms are pertinent to both planning and
interpretation stages of a monitoring
study. Consider a simple example
where you have sampled a popula-
tion in two different years and now
you want to determine whether a
change took place between the two
years. You usually start with the
assumption, called the null hypothe-
sis, that no change has taken place.
There are two types of decisions that
you can make when interpreting the
results of a monitoring study: (1) you
can decide that a change took place,
or (2) you can decide that no change
took place. In either case, you can
either be right, or you can be wrong (Figure 5.7).

1. The change decision and false-change errors 
The conclusion that a change took place may lead to some kind of action. For example, if a
population of a rare plant is thought to have declined, a change in management may be
needed. If a change did not actually occur, this constitutes a false-change error, a sort of false
alarm. Controlling this type of error is important because taking action unnecessarily can be
expensive (e.g., a range permittee is not going to want to change the grazing intensity if a
decline in a rare plant population really didn't take place). There will be a certain probability
of concluding that a change took place even if no difference actually occurred. The probability
of this occurring is usually labeled the P-value, and it is one of the types of information that
comes out of a statistical analysis of the data. The P-value reports the likelihood that the
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FIGURE 5.7. Four possible outcomes for a statistical test of some null
hypothesis, depending on the true state of nature.

Example of applying the finite population correction factor:

Where: SE' = corrected standard error
SE = uncorrected standard error
N = total number of potential quadrat positions
n = number of quadrats sampled

SE' = (SE) N - n
N

SE' = (0.73) = 0.61100 - 30
100
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observed difference was due to chance alone. For example, if a statistical test comparing two
sample means yields a P-value of 0.24 this indicates that there is a 24% chance of obtaining
the observed result even if there is no true difference between the two sample means.

Some threshold value for this false-change error rate should be set in advance so that the
P-value from a statistical test can be evaluated relative to the threshold. P-values from a
statistical test that are smaller than or equal to the threshold are considered statistically
"significant," whereas P-values that are larger than the threshold are considered statistically
"nonsignificant." Statistically significant differences may or may not be ecologically significant
depending upon the magnitude of difference between the two values. The most commonly
cited threshold for false-change errors is the 0.05 level; however, there is no reason to arbi-
trarily adopt the 0.05 level as the appropriate threshold. The decision of what false-change
error threshold to set depends upon the relative costs of making this type of mistake and the
impact of this error level on the other type of mistake, a missed-change error (see below).

2. The no-change decision, missed-change errors, and statistical power
The conclusion that no change took place usually does not lead to changes in management
practices. Failing to detect a true change constitutes a missed-change error. Controlling this
type of error is important because failing to take action when a true change actually occurred
may lead to the serious decline of a rare plant population.

Statistical power is the complement of the missed-change error rate (e.g., a missed-change
error rate of 0.25 gives you a power of 0.75; a missed-change error rate of 0.05 gives you a
power of 0.95). High power (a value close to 1), is desirable and corresponds to a low risk of
a missed-change error. Low power (a value close to 0) is not desirable because it corresponds
to a high risk of a missed-change error.

Since power levels are directly related to missed-change error levels, either level can be
reported and the other level can be easily calculated. Power levels are often reported instead
of missed-change error levels, because it seems easier to convey this concept in terms of the
certainty of detecting real changes. For example, the statement "I want to be at least 90%
certain of detecting a real change of five plants/quadrat" (power is 0.90) is simpler to under-
stand than the statement "I want the probability of missing a real change of five plants/quadrat
to be 10% or less" (missed-change error rate is 0.10).

An assessment of statistical power or missed-change errors has been virtually ignored in the
field of environmental monitoring. A survey of over 400 papers in fisheries and aquatic sci-
ences found that 98% of the articles that reported nonsignificant results failed to report any
power results (Peterman 1990). A separate survey, reviewing toxicology literature, found high
power in only 19 out of 668 reports that failed to reject the null hypothesis (Hayes 1987).
Similar surveys in other fields such as psychology or education have turned up "depressingly
low" levels of power (Brewer 1972; Cohen 1988).

3. Minimum detectable change
Another sampling design concept that is directly related to statistical power and false-change
error rates is the size of the change that you want to be able to detect. This will be referred
to as the minimum detectable change or MDC. The MDC greatly influences power levels. A
particular sampling design will be more likely to detect a true large change (i.e., with high
power) than to detect a true small change (i.e., with low power).
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Setting the MDC requires the consideration of ecological information for the species being
monitored. How large of a change should be considered biologically meaningful? With a
large enough sample size, statistically significant changes can be detected for changes that
have no biological significance. For example, if an intensive monitoring design leads to the
conclusion that the mean density of a plant population increased from 10.0 plants/m2 to
10.1 plants/m2, does this represent some biologically meaningful change in population
density? Probably not.

Setting a reasonable MDC can be difficult when little is known about the natural history of a
particular plant species. Should a 30% change in the mean density of a rare plant population
be cause for alarm? What about a 20% change or a 10% change? The MDC considerations
are likely to vary when assessing vegetation attributes other than density, such as cover or
frequency (Chapter 8). The initial MDC, set during the design of a new monitoring study,
can be modified once monitoring information demonstrates the size and rate of population
fluctuations.

4. How to achieve high statistical power
Statistical power is related to four separate sampling design components by the following
function equation:

Power = a function of (s, n, MDC, and α)

where: s = standard deviation
n = number of sampling units

MDC = minimum detectable change 
α = false-change error rate

Power can be increased in the following four ways:

1. Reducing standard deviation. This means altering the sampling design to reduce the
amount of variation among sampling units (see Chapter 7).

2. Increasing the number of sampling units sampled. This method of increasing power is
straightforward, but keep in mind that increasing n has less of an effect than decreasing s
since the square root of sample size is used in the standard error equation (SE = s/√n).

3. Increasing the acceptable level of false-change errors (α).

4. Increasing the MDC.

Note that the first two ways of increasing power are related to making changes in the
sampling design, whereas the other two ways are related to making changes in the sampling
objective (see Chapter 6).

5. Graphical comparisons
As stated, power is driven by four different factors: standard deviation, sample size, mini-
mum detectable change size, and false-change error rate. In this section we take a graphical
look at how altering these factors changes power. The comparisons in this section are based
upon sampling a fictitious plant population where we are interested in assessing plant density
relative to an established threshold value of 25 plants/m2. Any true population densities less
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than 25 plants/m2 will trigger management action. We are only concerned with the question
of whether the density is lower than 25 plants/m2 and not whether the density is higher. In
this example, our null hypothesis (HO) is that the population density equals 25 plants/m2 and
our alternative hypothesis is that density is less than 25 plants/m2. The density value of 25
plants/m2 is the most critical single density value since it defines the lower limit of acceptable
plant density.

The figures in this section are all based upon sampling distributions where we happen to
know the true plant density. Recall that a sampling distribution is a bell-shaped curve that
depicts the distribution of a large number of independently gathered sample statistics. A
sampling distribution defines the range and relative probability of any possible sample mean.
You are more likely to obtain sample means near the middle of the distribution than you are
to obtain sample means near either tail of the distribution.

A sampling distribution based on sampling our fictitious population with a true mean densi-
ty of 25 plants/m2 is shown in Figure 5.8A. This distribution is based on a sampling design
using thirty 1m x 1m quadrats where the true standard deviation is ± 20 plants/quadrat. If
1,000 different people randomly sample and calculate a sample mean based upon their 30
quadrat values, approximately half the individually drawn sample means will be less than 25
plants/m2 and half will be greater than 25 plants/m2. Approximately 40% of the samples will
yield sample means less than or equal to 24 plants/m2. A few of our 1,000 individuals will
obtain estimates of the mean density that deviate from the true value by a large margin. One
of the individuals will likely stand up and say, "my estimate of the mean density is 13
plants/m2", even though the true density is actually 25 plants/m2. As interpreters of the
monitoring information, we would conclude that since 999 of the 1,000 people obtained
estimates of the density that were greater than 13, the true density is probably not 13. Our
best estimate of the true mean density will be the average of the 1,000 separate estimates
(this average is likely to be extremely close to the actual true value).

Now that we have the benefit of 1,000 independent estimates of the true mean density, we
can return to the population at a later time, take a single random sample of thirty 1m x 1m
quadrats, calculate the sample mean, and then ask the question, "what is the probability of
obtaining our sample mean value if the true population is still 25 plants/m2?" If our sample
mean density turns out to be 24 plants/m2, would this lead to the conclusion that the popu-
lation has crossed our threshold value? Seeing that our sample mean is lower than our target
value might raise some concerns, but we have no objective basis to conclude that the true
population is not, in fact, still actually 25 plants/m2. We learned in the previous paragraph
that a full 40% of possible samples are likely to yield mean densities of 24 plants/m2 or less if
the true mean is 25 plants/m2. Thus, the probability of obtaining a single sample mean of 24
plants/m2 or less when the true density is actually 25 plants/m2 is approximately 0.40.
Obtaining a sample mean of 24 plants/m2 is consistent with the hypothesis that the true
population density is actually 25 plants/m2.

How small a sample mean do we need to obtain to feel confident that the population has
indeed dropped below 25 plants/m2? What will our interpretation be if we obtained a sam-
ple mean of 22 plants/m2? Based upon our sampling distribution from the 1,000 people, the
probability of obtaining an estimate of 22 plants/m2 or less is around 20%, which represents
a 1-in-5 chance that the true mean is still actually 25 plants/m2. Based upon the sampling
distribution from our 1,000 separate samplers, we can look at the likelihood of obtaining
other different sample means. The probability of obtaining a sample of 20 plants/m2 is 8.5%,
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and the probability of obtaining a sample of 18 plants/m2 is 2.9% if the true mean density is
25 plants/m2.

Since in most circumstances we will only have the results from a single sample (and not the
benefit of 1,000 independently gathered sample means), another technique must be used to
determine whether the population density has dropped below 25 plants/m2. One method is
to run a statistical test that compares our sample mean to our density threshold value (25
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FIGURE 5.8. Example of sampling distributions for mean plant density in samples of 30 permanent
quadrats where the among-quadrat standard deviation is 20 plants/m2. Part A is the
sampling distribution for the case in which the null hypothesis, H0, is true and the true
population mean density is 25 plants/m2. The shaded area in part A is the critical
region for    = 0.05 and the vertical dashed line is at the critical sample mean value, 18.8.
Part B is the sampling distribution for the case in which the H0 is false and the true mean
is 20 plants/m2. In both distributions, a sample mean to the left of the vertical dashed
line would reject H0, and to the right of it, would not reject H0. Power and    values in
part B, in which H0 is false and the true mean = 20, are the proportion of sample
means that would occur in the region in which H0 was rejected or not rejected,
respectively (adapted from Peterman 1990).
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plants/m2). The statistical test will yield a P-value that defines the probability of obtaining
our sample mean if the true population density is actually 25 plants/m2. As interpreters of
our monitoring information, we will need to set some probability threshold P-value to guide
our interpretation of the results from the statistical test. This P-value threshold defines our
acceptable false-change error rate. If we run a statistical test that compares our sample mean
to our density threshold value (25 plants/m2) and the P-value from the test is lower than our
threshold value, then we conclude that the population density has, in fact, declined below 25
plants/m2. Thus, if we set our P-value threshold to 0.05 and the statistical test yields a P-
value of 0.40, then we fail to reject the null hypothesis that the true population density is 25
plants/m2. If, however, the statistical test yields a P-value of 0.022, this is lower than our
threshold P-value of 0.05, and we would reject the null hypothesis that the population is 25
plants/m2 in favor of our alternative hypothesis that the density is lower than 25 plants/m2.

The relationship between the P-value threshold of 0.05 and our sampling distribution based
upon sampling thirty 1m x 1m quadrats is shown in Figure 5.8A. The threshold density value
corresponding to our P-value threshold of 0.05 is 18.8 plants/m2, which is indicated on the
sampling distribution by the dashed vertical line. Thus, if we obtain a mean density of 18
plants/m2, which is to the left of the vertical line, we reject the null hypothesis that the
population density is 25 plants/m2 in favor of an alternative hypothesis that density is lower
than 25 plants/m2. If we obtain a mean density of 21 plants/m2, which is to the right of the
vertical line, then we fail to reject the null hypothesis that the population density is really 25
plants/m2.

So far we have been discussing the situation where the true population density is right at the
threshold density of 25 plants/m2. Let's look now at a situation where we know the true
density has declined to 20 plants/m2. What is the likelihood of our detecting this true density
difference of 5 plants/m2? Figure 5.8B shows a new sampling distribution based upon the
true density of 20 plants/m2 (standard deviation is still ± 20 plants/m2). We know from our
previous discussion that sample means to the right of the vertical line in Figure 5.8A lead to
the conclusion that we can't reject the null hypothesis that our density is 25 plants/m2. If our
new sample mean turns out to exactly match the new true population mean (i.e., 20
plants/m2), will we reject the idea that the sample actually came from a population with a
true mean of 25 plants/m2? No, at least not at our stated P-value (false-change error) thresh-
old of 0.05. A sample mean value of 20 plants/m2 falls to the right of our dashed threshold
line in the "do not reject HO" portion of the graph and we would have failed to detect the
true difference that actually occurred. Thus, we would have committed a missed-change error.

What is the probability of missing the true difference of five plants/m2 show in Figure 5.8B?
This probability represents the missed-change error rate (β) and it is defined by the nonshaded
area under the sampling distribution in Figure 5.8B, which represents 62% of the possible
sample mean values. Recall that the area under the whole curve defines the entire range of
possible values that you could obtain by sampling the population with the true mean = 20
plants/m2. If we bring back our 1,000 sampling people and have each of them sample thirty
1m x 1m quadrats in our new population, we will find that approximately 620 of them will
obtain estimates of the mean density that are greater than the 18.8 plants/m2 threshold value
that is shown by the vertical dashed line. What about the other 380 people? They will obtain
population estimates fewer than the critical threshold of 18.8 plants/m2 and they will reject
the null hypothesis that the population equals 25 plants per quadrat. This proportion of 0.38
(380 people out of 1,000 people sampling) represents the statistical power of our sampling
design and it is represented by the shaded area under the curve in Figure 5.8B. If the true
population mean is indeed 20 plants/m2 instead of 25 plants/m2, then we can be 38%
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(power = 0.38) sure that we will detect this true difference of five plants/m2. With this par-
ticular sampling design (thirty 1m x 1m quadrats) and a false-change error rate of α=0.05,
we run a 62% chance (β=0.62) that we will commit a missed-change error (i.e., fail to detect
the true difference of five plants/m2). If the difference of five plants/m2 is biologically impor-
tant, a power of only 0.38 would not be satisfactory.

We can improve the low-power situation in four different ways: (1) increase the acceptable
false-change error rate; (2) increase the acceptable MDC; (3) increase sample size; or (4)
decrease the standard deviation. New paired sampling distributions illustrate the influence of
making each of these changes.

a. Increasing the acceptable false-change error rate

In Figure 5.8B, a false-change error rate of α=0.05 resulted in a missed-change error rate of
β=0.62 to detect a difference of five plants/m2. Given these error rates, we are more than 12
times more likely to commit a missed-change error than we are to commit a false-change
error. What happens to our missed-change error rate if we specify a new, higher false-change
error rate? Shifting our false-change error rate from α=0.05 to α=0.10 is illustrated in Figure 5.9
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5.8 has been increased from    = 0.05 to    = 0.10. Part B, in which the H0 is false and
the true mean = 20, shows that power is larger for    = 0.10 than for Figure 5.8 where
    = 0.05 (adapted from Peterman 1990).
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for the same sampling distributions shown in Figure 5.8. Our critical density threshold at the
P=0.10 level is now 20.21 plants/m2, and our missed-change error rate has dropped from
β=0.62 down to β=0.47 (i.e., the power to detect a true five plant/m2 difference went from
0.38 to 0.53). A sample mean of 20 plants/m2 will now lead to the correct conclusion that a
difference of five plants/m2 between the populations does exist. Of course, the penalty we
pay for increasing our false-change error rate is that we are now twice as likely to conclude
that a difference exists in situations when there is no true difference and our population
mean is actually 25 plants/m2. Changing the false-change error rate even more, to α=0.20,
(Figure 5.10) reduces the probability of making a missed-change error down to β=0.29 (i.e.,
giving us a power of 0.71 to detect a true difference of five plants/m2).

b. Increasing the acceptable MDC

Any sampling design is more likely to detect a true large difference than a true small differ-
ence. As the magnitude of the difference increases, we will see an increase in the power to
detect the difference. This relationship is shown in Figure 5.11B, where we see a sampling
distribution with a true mean density of 15 plants/m2, which is 10 plants/m2 below our
threshold density of 25 plants/m2. The false-change error rate is set at α=0.05 in this example.
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FIGURE 5.10. The critical region for the false-change error in the sampling distributions from
Figure 5.8 has been increased from    = 0.05 to    = 0.20. Part B, in which the
H0 is false and the true mean = 20, shows that power is larger for    = 0.20 than
for Figure 5.8 where    = 0.05 or Figure 5.9 where    = 0.10. Again, a sample
mean to the left of the vertical dashed line would reject H0, while one to the
right of it would not reject H0 (adapted from Peterman 1990).
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This figure shows that the statistical power to detect this larger difference of 10 plants/m2

(25 plants/m2 to 15 plants/m2) is 0.85 compared with the original power value of 0.38 to
detect the difference of five plants/m2 (25 plants/m2 to 20 plants/m2). Thus, with a false-
change error rate of 0.05, we can be 85% certain of detecting a difference from our 25
plants/m2 threshold of 10 plants/m2 or greater. If we raised our false-change error from
α=0.05 to α=0.10 (not shown in Figure 5.11), our power value would rise to 0.92, which
creates a sampling situation where our two error rates are nearly equal (α=0.10, β=0.08).

c. Increasing the sample size

The sampling distributions shown in Figures 5.8 to 5.11 were all created by sampling the
populations with n=30 1m x 1m quadrats. Any increase in sample size will lead to a subse-
quent increase in power to detect some specified minimum detectable difference. This
increase in power results from the sampling distributions becoming narrower. Sampling dis-
tributions based on samples of n=50 are shown in Figure 5.12 where the true difference
between the two populations is once again five plants/m2 with a false-change error rate
threshold of α=0.05. The increase in sample size led to an increase in power from
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instead of the 20 plants/m2 shown in Figure 5.8. Note that power increases
(and    decreases) when the new true population mean gets further from the original
true mean of 25 plants/m2. Again, a sample mean to the left of the vertical dashed
line would reject H0, while one to the right of it would not reject H0 (adapted from
Peterman 1990).
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power=0.38 with n=30 to power=0.54 with n=50. Note that the critical threshold density
associated with an α = 0.05 is now 20.3 plants/m2 as compared to the 18.8 plants/m2

threshold when n = 30.

d. Decreasing the standard deviation

The sampling distributions shown in Figures 5.8 to 5.12 all are based on sampling distributions
with a standard deviation of ±20 plants/m2. The quadrat size used in the sampling was a
square 1m x 1m quadrat. If individuals in the plant population are clumped in distribution,
then it is likely that a rectangular shaped quadrat will result in a lower standard deviation
(See Chapter 7 for a detailed description of the relationship between standard deviation and
sampling unit size and shape). Figure 5.13 shows sampling distributions where the standard
deviation was reduced from ±20 plants/m2 to ±10 plants/m2. Note that the critical threshold
density associated with an α = 0.05 is now 21.9 plants/m2 as compared to the 18.8 plants/m2

threshold when the standard deviation was ± 20 plants/m2. This reduction in the true stan-
dard deviation came from a change in quadrat shape from the 1m x 1m square shape to a
0.2m x 5m rectangular shape. Note that quadrat area (1m2) stayed the same so that the
mean densities are consistent with the previous sampling distributions shown in Figures 5.8
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FIGURE 5.12. The sample size was increased to n = 50 quadrats from the n = 30 quadrats shown in
Figure 5.8. Note that power increases (and    decreases) at larger sample sizes. Again,
a sample mean to the left of the vertical dashed line would reject H0, while one to the
right of it would not reject H0 (adapted from Peterman 1990).
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through 5.12. This reduction in standard deviation led to a dramatic improvement in power,
from 0.38 (with sd = 20 plants/m2) to 0.85 (with sd = 10 plants/m2). Reducing the standard
deviation has a more direct impact on increasing power than increasing sample size, because
the sample size is reduced by taking its square root in the standard error equation (SE = s/√n).
Recall that the standard error provides an estimate of sampling precision from a single sample
without having to enlist the support of 1,000 people who gather 1,000 independent sample
means.

e. Power curves

The relationship between power and the different sampling design components that influence
power can also be displayed in power curve graphs. These graphs typically show power values
on the y-axis and either sample size, MDC, or standard deviation values on the x-axis. Figure
5.14A shows statistical power graphed against different magnitudes of change for the same
hypothetical data set described above and shown in Figures 5.8 to 5.11. Four different power
curve lines are shown, one for each of the following four different false-change (α) error rates:
0.01, 0.05, 0.10, and 0.20. The power curves are based on sampling with a sample size of 30
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quadrats and a standard deviation of 20 plants/m2. For any particular false-change error rate,
power increases as the magnitude of the minimum detectable change increases. When α=0.05,
the power to detect small changes is very low (Figure 5.14A). For example, we have only a
13% chance of detecting a difference of 2 plants/m2 (i.e., a density of 23 plants/m2 which is 2
plants/m2 below our threshold value of 25 plants/m2). In contrast, we can be 90% sure of
detecting a minimum difference of 11 plants/m2. We can also attain higher power by increasing
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the false-change error rate. The power to detect a change of eight plants/m2 is only 0.41
when α=0.01, but it increases to 0.69 at α=0.05, to 0.81 at α=0.10, and to 0.91 at α=0.20.

A different set of power curves are shown in Figure 5.14B where the sample size is n=50 instead
of the n=30 shown in Figure 5.14A. This larger smaller sample size shifts all of the power curves
to the left, making it more likely that smaller changes will be detected. For example, with a false-
change error rate of α=0.10, the power to detect a seven plant/m2 difference is 0.88 with a
sample size of n=50 quadrats compared to the power of 0.73 with a sample size of n=30
quadrats.

Power curves that show the effect of reducing the standard deviation are shown in Figure
5.15. Figure 5.15A is the same as Figure 5.14A where the standard deviation is 20 plants/m2.
Figure 5.15B shows the same power curves except they are based on a standard deviation of
10 plants/m2. The smaller standard deviation shifts all of the power curves to the left and
results in much steeper slopes. The smaller standard deviation leads to substantially higher
power levels for any particular MDC value. For example, the power to detect a change of
five plants/m2 with a false change error rate of α=0.10 is only 0.53 in Figure 5.15A as
compared to the power of 0.92 in Figure 5.15B.

6. Setting false-change and missed-change error rates
Both false-change and missed-change error rates can be reduced by sampling design changes
that increase sample size or decrease sample standard deviations. Missed-change and false-
change error rates are inversely related, which means that reducing one will increase the
other (but not proportionately) if no other changes are made. The decision of which type of
error is more important should be based on the nature of the changes you are trying to
determine, and the consequences of making either kind of mistake.

Because false-change and missed-change error rates are inversely related to each other, and
because these errors have different consequences to different interest groups, there are differ-
ent opinions as to what the "acceptable" error rates should be. The following examples
demonstrate the conflict between false-change and missed-change errors.

� Testing for a lethal disease. When screening a patient for some disease that is lethal with-
out treatment, a physician is less concerned about making a false diagnosis error (analogous
to a false-change error) of concluding that the person has the disease when they do not
than failing to detect the disease (analogous to a missed-change error) and concluding that
the person does not have the disease when in fact they do.

� Testing for guilt in our judicial system. In the United States, the null hypothesis is that
the accused person is innocent. Different standards for making judgement errors are used
depending upon whether the case is a criminal or a civil case. In criminal cases, proof must
be "beyond a reasonable doubt." In these situations it is less likely that an innocent person
will be convicted (analogous to a false-change error), but it is more likely that a guilty per-
son will go free (analogous to a missed-change error). In civil cases, proof only needs to be
"on the balance of probabilities." In these situations, there is a greater likelihood of making
a false conviction (analogous to a false-change error), but a lower likelihood of making a
missed conviction (analogous to a missed-change) error.

� Testing for pollution problems. In pollution monitoring situations, the industry has an
interest in minimizing false-change errors and may desire a very low false-change error
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rate (e.g., α = 0.01 or 0.001). Companies do not want to be shut down or implement
expensive pollution control procedures if a real impact has not occurred. In contrast, an
organization concerned with the environmental impacts of some pollution activity will
likely want to have high power (low missed-change error rate) so that they do not miss
any real changes that take place. They may not be as concerned about occasional false-
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change errors (which would result in additional pollution control efforts even though real
changes did not take place).

Missed-change errors may be as costly or more costly than false-change errors in environ-
mental monitoring studies (Toft and Shea 1983; Peterman 1990; Fairweather 1991). A false-
change error may lead to the commitment of more time, energy, and people, but probably
only for the short period of time until the mistake is discovered (Simberloff 1990). In con-
trast, a missed-change error, as a result of a poor study design, may lead to a false sense of
security until the extent of the damages are so extreme that they show up in spite of a poor
study design (Fairweather 1991). In this case, rectifying the situation and returning the
system to its preimpact condition could be costly. For this reason, you may want to set equal
false-change and missed-change error rates or even consider setting the missed-change error
rate lower than the false-change error rate (Peterman 1990; Fairweather 1991).

There are many historical examples of costly missed-change errors in environmental moni-
toring. For example, many fish population monitoring studies have had low power to detect
biologically meaningful declines so that declines were not detected until it was too late and
entire populations crashed (Peterman 1990). Some authors advocate the use of something
they call the "precautionary principle" (Peterman and M'Gonigle 1992). They argue that, in
situations where there is low power to detect biologically meaningful declines in some envi-
ronmental parameter, management actions should be prescribed as if the parameter had actu-
ally declined. Similarly, some authors prefer to shift the burden of proof in situations where
there might be an environmental impact from environmental protection interests to indus-
try/development interests (Peterman 1990; Fairweather 1991). They argue that a conservative
management strategy of "assume the worst until proven otherwise" should be adopted. Under
this strategy, developments that may negatively impact the environment should not proceed
until the proponents can demonstrate, with high power, a lack of impact on the environment.

7. Why has statistical power been ignored for so long?
It is not clear why missed-change errors, power, and minimum detectable change size have
traditionally been ignored. Perhaps researchers have not been sufficiently exposed to the idea
of missed-change errors. Most introductory texts and statistics courses deal with the material
only briefly. Computer packages for power analysis have only recently become available.
Perhaps people have not realized the potentially high costs associated with making missed-
change errors. Perhaps researchers have not understood how understanding power can
improve their work.

The issue of power and missed-change errors has gained a lot of attention in recent years. A
literature review in the 1980’s would not have turned up many articles dealing with statistical
power issues. A literature review today would turn up dozens of articles in many disciplines
from journals all over the world (see Peterman 1990 and Fairweather 1991 for good review
papers on statistical power). Journal editors may soon start requiring that power analysis
information be reported for all nonsignificant results (Peterman 1990). There may also be
some departure from the strict adherence to the 0.05 significance level (Peterman 1990;
Fairweather 1991).

8. Use of prior power analysis during study design
Power analysis can be useful during both the design of monitoring studies and in the inter-
pretation of monitoring results. The former is sometimes called "prior power analysis,"
whereas the latter is sometimes called "post-hoc power analysis" (Fairweather 1991). Post-hoc
power analysis is covered in Chapter 11.
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The use of power analysis during the design and planning of monitoring studies provides
valuable information that can help avoid monitoring failures. Once some preliminary or pilot
data have been gathered, or if some previous years' monitoring data are available, power
analysis can be used to evaluate the adequacy of the sampling design. Prior power analysis can
be done in several different ways. All are based upon the power function described earlier:

Power = a function of (s, n, MDC, and α)

The power of a particular sampling design can be evaluated by plugging sample standard
deviation, sample size, the desired MDC, and an acceptable false-change error rate, into
equations or computer programs (Appendix 16) and solving for power. If the power to detect
a biologically important change turns out to be quite low (high probability of a missed-
change error), then the sampling design can be modified to try to achieve higher power.

Alternatively, a desired power level can be specified and the terms in the power function can
be rearranged to solve for sample size. This will give you assurance that your study design
will succeed in being able to detect a certain magnitude of change at the specified power and
false-change error rate. This is the format for the sample size equations that are discussed in
Chapter 7 and presented in Appendix 7.

Still another way to do prior power analysis is to specify a desired power level and a particu-
lar sample size and then rearrange the terms in the power function to solve for the MDC
(Rotenberry and Wiens 1985; Cohen 1988). If the MDC is unacceptably large, then attempts
should be made to improve the sampling design. If these efforts fail, then the decision must
be made to either live with the large MDC or to reject the sampling design and perhaps
consider an alternative monitoring approach.

The main advantage of prior power analysis is that it allows the adequacy of the sampling
design to be evaluated at an early stage in the monitoring process. It is much better to learn
that a particular design has a low power at a time when modifications can easily be made
than it is to learn of low power after many years of data have already been gathered. The
importance of specifying acceptable levels of false-change and missed-change errors along
with the magnitude of change that you want to be able to detect is covered in Chapter 6 the
next chapter, which introduces sampling objectives.
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