

Quadrat Size?

- Variability is the key
- Small plots are quicker to read But - -
- Small plots tend to have higher variability (A lot of difference from plot to plot)
- The greater the variability among plots = The more plots you needs to read
- Trade-off between number of plots needed, and plot size

Terminology

Quadrat $=$ Plot $=$ Sampling Unit

Rules of thumb

- Quadrat too large if the two most abundant species are found in every plot
- Plot too small if the most abundant species are not found in a majority of the plots

Distribution in community. . .

- Large plots have lower variance, but may be more difficult to uniformly cover the sampling area
It would be easier to place 100 plots evenly across a landscape study area than if you just placed 20 plots.
- For rare species, may need large plots and stratified sampling

Plant size. . .

Larger the average-sized plant the larger the sampling frame needed

- Rules of Thumb:
- Plot should be larger than average-sized plant, and larger than average space between plants.
- Plot is too small if $>10 \%$ of plot do not contain the plants of interest

Sampling different life forms

- Difficult to sample different life forms (moss, grass, forbs, shrubs, trees, etc.

Savane boisée Savanna Woodland

Bottom line

- Sparse vegetation requires larger plots or transects than dense vegetation
- Uniform vegetation requires fewer and smaller plots than diverse/variable vegetation

Shape of Sample Unit

- Number and size of sample units are the first and most important considerations
- However, shape of quadrat or frame is also important and can reduce variation in the sample

Square

- Greater perimeter:area ratio than circles, but less than rectangles.
- Most frequently used to estimate frequency because presence/absence is easy to estimate.
- Squares are easier to estimate \% cover, than circles but not as easy as rectangles.

Circle

- Less perimeter per area than square or rectangle
- Perimeter decisions are difficult to make when clipping vegetation, so circles are often used
- Reduced perimeter: area ratio is also good in communities with large clonal plants

Rectangles

- More likely to cut across plants rather than be completely occupied by plants
- Rarely completely occupied by bare spaces
- Often has lower variance than square or circles
- Can reduce variability in sparsely vegetated communities
- Easier to estimate \% cover than circles or squares

