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Abstract 

Resource-selection modeling techniques take either a deductive or inductive approach. 

Deductive methods are a “bottom-up” approach, where individual wildlife-resource 

relationships are the building blocks that define the suitability of a landscape.  

Conversely, inductive models imply a “top-down approach”; the suitability of a 

landscape is predefined by animal use, and statistics are used to identify wildlife-resource 

relationships.  Current modeling caters towards the inductive approach even though a 

proper comparison between inductive and deductive techniques has yet to identify the 

superior method. 

 

The Ontario elk restoration project re-introduced 104 elk (Cervus elaphus) to the Lake of 

the Woods (LOW) region in 2000 and 2001.  The population diminished substantially 

over the following four years bringing concern to the successful re-establishment of elk 

in northwestern Ontario.  At present, explanations for this decline are speculative in 

nature, but one possibility is that the landscape does not contain the resources required to 

support a viable population.  To address this concern, I investigated the ability of the 

landscape to support elk by creating a series of deductive (HSI) models for the summer 

season based on published elk-resource relationships.  I also created an inductive (RUF) 

model based on radio-telemetry location data collected weekly throughout 2000-2005 in 

an effort to improve upon the initial deductive model.  Finally, I compared the two 

modeling approaches to address the growing disparity between modeling methods.  

Models were validated by comparing model suitability to elk resource use using weighted 
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overlap (WO) and average overlap (AO) indices, and by comparing model suitability to 

elk space use, utilization distributions (UDs), using the deviation from a ‘no selection’ 

pattern (DVI Index), a modification of the Volume of Intersection (VI) Index.  

Comparison to a null model was also used to benchmark each index.  I also calculated the 

VI Index between the predicted suitability’s of RUF and HSI models to compare their 

overall similarity. 

 

The landscape surrounding the elk release site showed a reasonable suitability, ranging 

(on a scale of 0 to 1) from 0.57 to 0.69 for the series of HSI models and 0.69 for the RUF 

model.  Predicted HSI relationships for road density and cover width were markedly 

different than elk use, whereas relationships using the RUF model were similar to elk use.  

Average elk use ranged in suitability from 0.61 to 0.74 (WO Index) and 0.59 to 0.72 (AO 

Index) for the HSI models, where 6 of the 7 models performed significantly better than 

the null model.  Average suitability of elk use was 0.77 and 0.86 (AO and WO Indices, 

respectively) for the RUF model, which performed significantly better than the null 

model.  The HSI model increasingly reflected elk UDs as the relationship between the 

distance to a forage-cover edge was accentuated.  The RUF model identified the 

proximity to a forage-cover edge as the main factor driving elk selection in northwestern 

Ontario.  

 

The RUF model showed the greatest predictive ability, as the difference between elk and 

random W.O. Index scores was greater than for the HSI models.  Neither modeling 

technique predicted elk space use better, but the RUF model showed the greatest 
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difference between elk and the null DVI Indices.  Although the RUF model appeared to 

out-perform the HSI models, the similar DVI pattern for all models and high similarity 

between predicted suitability of RUF and HSI models suggests that the apparent success 

of the RUF may be a function of the underlying assumptions of the technique and not an 

actual improvement on predictive ability.   
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General Introduction 

Species do not use all resources equally. Different species require a specific set of 

resources within an environment to survive and reproduce. Because resources are not 

dispersed equally upon the landscape, organisms seek out areas that have the appropriate 

combination of resources required; this is termed differential resource selection, and is 

the basic ecological principle that allows species to coexist (Rosenzweig 1981). Resource 

selection is generally implied when resources are used in greater proportion than their 

availability on the landscape (White and Garrott 1990, Garshelis 2000, Manly et al. 2002) 

and understanding this process aims to explain one aspect of ecology’s fundamental 

question; what determines the distribution and abundance of organisms upon the 

landscape (Krebs 1985)?  

 

Modeling wildlife-resource relationships gives us insight into the process of resource 

selection.  Models are tools that help us better understand relationships between predictor 

and response variables (Garton et al. 2001). They can aid in testing our current 

understanding of wildlife-resource relationships (Morrison et al. 1992) and in predicting 

the future of wildlife populations in a changing environment.  There are many different 

types of wildlife resource-selection models (see review by Morrison et al. 1992, chapter 

6), but they all function with similar underlying assumptions: 1) animal distribution and 

abundance is related to environmental attributes (Marcot et al. 1983); 2) similar spatial or 

temporal patterns in environmental attributes will reflect similar patterns in animal 

abundance (Flather and Hoekstra 1985); 3) animal abundance is positively associated 

with resource quality (Van Horne 1983);  4) the selection of higher quality resources 
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results in higher fitness (Rosenzweig and Abramsky 1986, Garshelis 2000); and 5) 

species will select the highest quality resources available to them (Manly et al. 2002).  

 

Resource-selection modeling techniques take either a deductive or inductive approach 

(Corsi et al. 1986, Stoms et al. 1992). Deductive methods are a “bottom-up” approach to 

wildlife-resource modeling, where individual wildlife-resource relationships are the 

building blocks that define the suitability of a landscape. Conversely, inductive models 

imply a “top-down approach”; the suitability of a landscape is predefined by animal use, 

and the wildlife-resource relationships are statistically teased out from landscape 

characteristics.  

 

Deductive models are the simplest form of resource-selection modeling. They are based 

on a compilation of known or hypothesized relationships between an organism and its 

environment and are often presented mathematically (Corsi et al. 1986, Morisson et al. 

1992). Specifically, layers of environmental variables relevant to a model are merged 

using a mathematical relationship, often within a Geographic Information System (GIS), 

with the goal of producing the best estimate of landscape suitability from the combined 

effects of all environmental variables (Corsi et al. 1986).   

 

An example of a deductive approach to resource-selection modeling is the Habitat 

Suitability Index (HSI) model, formulated by the United States Department of 

Agriculture Fish and Wildlife Service (USFWS; 1981). A HSI model is a compilation of 

a priori and empirically derived wildlife-resource relationships that are compiled by an 
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expert (Marcot et al. 1983). These relationships describe the predicted use of an area, 

generally expressed as the relative proportion of time that the area is used relative to 

optimal use (Marcot et al. 1994). The simplest form of this type of model estimates the 

overall landscape suitability by taking the geometric mean of n environmental variables 

that are thought to affect species abundance, distribution or presence (Morisson et al. 

1992). The individual wildlife-resource relationships (e.g. effects of road density on 

animal resource use or effects of quality of nesting sites on bird use) are usually studied 

independently and their individual relationship to animal resource use (suitability) is well 

understood, but the cumulative effect of all variables on suitability is not empirically 

derived from field data.   

 

Habitat capability (HC) and habitat effectiveness (HE) models are additional deductive 

techniques, and are similar to HSI models, but can vary in their structure. Generally, HC 

models incorporate an estimate of the total area that has suitable landscape (often denoted 

as habitat units) or rank an area based on its potential for supporting a given species 

(Morrison et al. 1998). They do not necessarily represent current habitat conditions, as 

does the HSI.  HE models rank an area based on the degree to which it can support a 

species to its environmental carrying capacity (Morrison et al. 1998) or cultural carrying 

capacity (McClafferty 2000), the latter defined as the tolerance level of the local human 

population to a nuisance situation brought on by the study species.   

 

An inductive modeling approach is used when the wildlife-resource relationships are not 

known a priori (Corsi et al. 1986) but field observations of the animal’s landscape use are 

 3



available.  In this case, environmental predictor variables are chosen based on the known 

ecology of the organism (Burnham and Anderson 2001), while the cumulative effect of 

all variables on the animal’s landscape use is derived statistically. Because these models 

do not test explicit independent hypotheses about resource use, they provide little 

information on the underlying ecology driving the relationship between the predictor 

variables and resource use (Morrison et al.1992). However, they can give insight into the 

relative importance of the predictor variables on an individual’s or population’s use of a 

landscape (Dettki et al. 2003). 

 

Resource selection function (RSF) models are constructed using an inductive modeling 

approach. A RSF model is a compilation of resource selection functions; being any 

function that is proportional to the probability of use by an organism (Manly et al. 1993) 

that can predict the relative probability of occurrence of an individual (or population) 

upon a landscape (Johnson 1980). Therefore, areas with higher resource suitability values 

should have a higher degree of animal usage than areas of lower resource suitability.   

RSF’s are often estimated from relocation point data (e.g. Nielson et al. 2003,  Johnson et 

al. 2004) using a multivariate analysis (Boyce et al. 2002). RSF models can follow either 

multiple regression or binary logistic regression models, where a set of environmental 

variables are often used to describe variation in an animals’ space use, distribution or 

abundance. When data are in the form of used/available or used/unused resource units, 

then RSF models are created with binary logistic regression (Boyce et al. 2002). Used 

resources are often represented in the form of telemetry or GPS animal relocation points 

upon a landscape, whereas unused/available resources are represented by a set of random 
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relocation points upon the landscape.  Binary logistic regression is used to differentiate 

between used and available sites based on the presence or absence of the suite of 

predictor variables.  

 

When data are in the form of probability of space use, such as a utilization distribution 

(Silverman 1986), then multiple regression can be employed to calculate RSFs (Marzluff 

et al. 2004).  The resulting model is termed a resource utilization function (RUF) model. 

The utilization distribution is draped over a landscape and a set of predictor variables are 

measured throughout the landscape and used to explain variation in animal space use.  

 

Deductive models have been used extensively throughout the United States and Canada 

since the 1980s but they are seldom validated. Specifically, many habitat and resource 

models have been developed for elk (Cervus elaphus) in North America (Leege 1984, 

Wisdom et al. 1986, Edge et al. 1987, Roloff 1998, TAEM consultants 1998, Thomas et 

al. 1988, Buckmaster et al. 1999, Benkobi et al. 2004) but only a few of these models 

have been validated (Roloff et al. 2001, Jones et al. 2002, Benkobi et al. 2004). Many 

assumptions made in un-validated HSI models have been questioned and often proven 

false (Laymon and Barrett 1986), such as the typical assumption of linear relationships 

between wildlife density and environmental parameters (Meents et al. 1983), or that 

density is an appropriate measure of habitat quality (Van Horne 1983). Validation of a 

model is extremely important as it initiates the process of adaptive management; 

specifically, to pinpoint weaknesses in a model, compensate for the weaknesses and 

adjust the model to a particular environment (Roloff et al. 2001).  
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A model is most useful when it can accurately predict the locations of wildlife (Marcot et 

al. 1983, Boyce et al. 2002), but that rarely happens. Validation helps to assess how well 

a model fits the data (reliability), and how well it can predict the distribution and 

abundance of a species in other places and times (robustness:  Marcot et al. 1983, Boyce 

et al. 2002). Untested models are of little use because they simply lack credibility 

(Laymon and Barrett 1986), as do management decisions made using unvalidated models 

(Roloff et al. 2001). 

 

In recent years, the advancement in both data analysis techniques and computational 

power has led to a proliferation of species-environment modeling techniques (Guisan and 

Zimmermann 2000). As a result, traditional deductive modeling techniques that rely on a 

bottom-up approach have become less desirable than statistical-based (top-down) 

inductive models. There has been little effort to compare deductive and inductive 

resource selection modeling techniques. Currently, it appears as though the scientific 

community has fully embraced high powered statistical analysis and GIS-based modeling 

approaches (Corsi et al. 1986, Boyce and McDonald 1999, Boyce et al. 2002, Manly et 

al. 2002, Marzluff et al. 2004) without comparing the limitations and benefits of both 

techniques.   

 

Elk Restoration in Ontario 

Elk (Cervus elaphus) were once the most widespread member of the deer family 

(Cervidae), occupying most of North America, Europe, Scandinavia and Asia, and were 

also present in North Africa and South America (O’Gara and Dundas 2002).  However, 
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overhunting, settlement and habitat destruction in North America are thought to be the 

main reasons for the reduction in numbers and extirpation throughout much of their 

historic range (Peterson 1957, Bryant and Masser 1982).  At present, there are four 

subspecies of elk in North America: Manitoban; C.e.manitobensis (Millais 1915), Rocky 

mountain; C.e. nelsoni (Bailey 1935), Roosevet elk C.e. roosevelti and Tule; C.e. 

nannodes (Merriam 1905), although genetic studies do not differentiate between the 

Manitoban and Rocky Mountain subspecies (Polziehn et al. 1998). Two subspecies, the 

Eastern Elk (C. e canadensis Erxelben 1777) and the Merriam elk (C.e. merriami Nelson 

1902), are considered extinct (Bryant and Masser 1982).  The current natural distribution 

of elk in North America ranges from the central to the western states and provinces. 

There have been many successful re-introduction programs in the United States and 

Canada, mainly due to the availability of large areas containing suitable habitat and low 

human densities (McClafferty 2000). 

 

Elk were present during the 1700s between lakes Huron and Erie, and sub-fossil evidence 

shows early elk distribution from Ottawa, central Ontario to Sudbury (O’Gara and 

Dundas 2002). The cause of elk extirpation from Ontario is speculative; however they 

were gone by the early 1800s (Peterson 1957, Bosveld 1996).  During the 1930s a 

number of translocations occurred, introducing about 200 Rocky Mountain elk from 

Alberta to southern Ontario (O’Gara and Dundas 2002).  The population increased to 

approximately 300 animals by the 1940s, but the threat of giant liver fluke (Fascioloides 

magna) infestation brought the program under scrutiny and attempts were made to 

eliminate the herd; approximately 1000 elk were killed over the next decade (O’Gara and 
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Dundas 2002). A remnant population of approximately 50 animals persisted until the late 

1990s in the Burwash-French River area (south of Sudbury).  Recently, the province of 

Ontario undertook an elk restoration program, relocating a total of 443 western elk (C.e. 

manitobensis; Polziehn et al. 1998, Polziehn et al. 2000) from Elk Island National Park, 

Alberta, to four regions throughout the province.   

 

Site assessment for the Ontario elk reintroduction program was completed at the scale of 

1km. It was based on a weighted suitability of a combination of variables including the 

predicted historic range of elk, the mean maximum snow depth, the amount of 

agricultural and urban areas, human population density, white-tailed deer (Odocoileus 

virginianus) density and the amount of open foraging and cover areas. Open foraging and 

cover areas were determined using a classified vegetation cover from 1km advanced very 

high resolution radiometer (AVHRR) satellite imagery (Hutchinson et al. 2003). The 

classification of AVHRR data was based on 15 major global vegetation coverages such 

as evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest, 

deciduous broadleaf forests, wetland and cropland among others. (Loveland et al. 1999). 

The accuracy assessment for the classified AVHRR satellite data had a global average of 

73.5% and varied from 63 to 83%, with an average North American accuracy of 63% 

(Loveland et al. 1999).   

 

Based on the initial site assessments,  a total of 172 elk were introduced to the Sudbury 

area in 1998-2001, 120 to Bancroft and 104 near Kenora in 2000-2001, and 47 to the 

Blind River area in 2001 (Rosatte et al. 2002a, Rosatte et al. 2002b). Since the 

 8



introductions, the Bancroft and Blind River herds have shown a steady growth of 

approximately 40-67% and 28-38%, respectively (Young et al. 2004). The Sudbury herd 

has decreased overall by 24-36%, but during 2004-2005 the herd has shown a small 

increase.  The Kenora herd decreased considerably (56-66%) to an estimated population 

of 35-45 animals in 2004.  

 

Average calving success ranged from 16% over 5 years for the Sudbury herd, 42% over 4 

years for the Bancroft herd, 21% over 4 years for the Kenora herd and 33% over 3 years 

for the Blind River herd (Young et al. 2004). 

  

Lake of the Woods Elk Restoration Initiative  

The Lake of the Woods (LOW) elk restoration initiative introduced a total of 104, 

including 70 radio-collared elk, south of Kenora, northwestern Ontario (Figure 1) in 2000 

and 2001.  Two years after the release, 70% of the collared elk remained within 20km of 

the initial release site (north site) while 30% (10 bulls and 12 cows) of the collared elk 

dispersed approximately 90km south of the release site (south site) (McIntosh 2003).  

 

Non-random resource use patterns based on forest type, stand age and elevation were 

observed in the reintroduced elk (McIntosh 2003). Resource use patterns were based on a 

binary use versus available resource approach, where use was modeled on fine (50% 

adaptive kernel) and coarse (95% adaptive kernel) scales (McIntosh 2003).  Forest stands 

used by elk from the north site in decreasing importance included red pine/ white pine 

and mixed conifer, cedar lowland, mixed hardwood and poplar (McIntosh 2003). Elk 
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used stands ranging in age from 1 to 25 years, and use of older stands declined (McIntosh 

2003). At the fine scale, elk used areas ranging in elevation from 340m to 400m above 

sea level (a.s.l.) in greater proportion than available, whereas at the coarse scale, elk used 

areas ranging from 400m-420m a.s.l. more often than other elevations (McIntosh 2003).  

 

There were 23 recorded mortalities of radio-collared elk from January 2000 to June 2002 

(McIntosh 2003). The causes of mortality were translocation injury (26%), unknown 

causes (22%), predation (17%), illegal shooting (17%), road kill (9%), trauma (4%) and 

drowning (4%) (McIntosh 2003). 

 

A total of 69 of the original elk were estimated to be alive at the end of June 2002 

(McIntosh 2003). An additional 8 calves in 2001 and 8 calves in 2002 were thought to 

have survived, resulting in a total of 85 elk present on the landscape at the end June 2002 

(McIntosh 2003).  Using McIntosh’s (2003) dispersal data, where 30% of the elk 

dispersed to the south site, the estimated population in the south site was 25 animals 

while 60 elk remained in the north site with a total of 36 animals accounted for by radio-

collars.  

 

By the end of 2003 the number of radio-collared elk had decreased substantially to 16 

because of dropped collars and elk mortality. The elk restoration program proposed re-

collaring and newly collaring 25 to 40 additional elk residing in the northern portion of 

the study area at the beginning of my study.  Unfortunately, only 6 additional mature 

uncollared elk were located by helicopter in January 2004, 4 of which were collared for 
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the first time, and two of which were re-collared as they had previously shed their 

original collar.  Helicopter flights in March 2005 and December 2005 sighted only 29 and 

24 elk, respectively, furthering the possibility that elk survival and recruitment was 

poorer than originally estimated by McIntosh (2003).  

 

The decline in the LOW elk population is a concern for those interested in the successful 

re-establishment of elk in Northwestern Ontario. At present, explanations for this decline 

are speculative in nature, but one concern is that the landscape does not contain the 

resources required to support a viable population, contrary to the original deductive 

model (Hutchinson et al. 2003).   

 

Hypotheses and Objectives 

To address the resource suitability concerns of the declining LOW reintroduced elk 

population, I hypothesized that the landscape suitability surrounding the north site was 

not as good as was originally estimated. Therefore, the first objective of this study was to 

investigate the general resource suitability of the landscape by creating and validating a 

summer elk HSI model for northwestern Ontario, specific to the north site where the 

majority of collared elk resided in 2004.  I constructed the HSI solely for the summer 

season because I did not have enough data to validate a winter model.  The deductive 

model is a compilation of elk-variable relationships outlined in previous models created 

for elk residing in Canada and the United States. As a second objective, I created a 

resource suitability model using an inductive approach, expecting to improve upon the 

deductive model. The aim of the inductive approach was to develop and validate a 
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summer RUF model based on telemetry locations of radio-collared elk released in 

northwestern Ontario.  I also hypothesized that the inductive approach would provide a 

more accurate model for predicting elk landscape suitability.  Therefore, my third 

objective was to compare inductive and deductive resource selection modeling techniques 

for elk in northwestern Ontario, Canada. 

 

To accomplish all objectives, I: (1) created separate resource selection models using 

inductive and deductive techniques, as above, using the same predictor variables for both; 

(2) validated both resource selection models; and (3) compared the ability of each 

approach to predict resource selection of reintroduced elk in northwestern Ontario. 
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Study Area 

The spatial extent of the study area is defined by the furthest North, South, East and West 

locations of collared elk residing in the northern study site.  This area spans 

approximately 1,300km2 and is located 20km South-East of Sioux Narrows and 20km 

northeast of Nestor Falls in northwestern Ontario, Canada (49o16’N, 93 o 42’W; Figure 

1).  The study area is underlain by Precambrian Shield bedrock and the canopy is 

dominated by pure or mixed stands of conifers: black spruce (Picea mariana), white 

spruce (Picea glauca), balsam fir (Abies balsamea), jack pine (Pinus banksiana) and 

tamarack (Larix larcinia) (Rowe 1972).  Also present in the region are hardwoods, 

including white birch (Betula papyrifera), trembling aspen (Populus tremuloides) and 

large tooth aspen (Populus grandidentata) (Rowe 1972, McIntosh 2003). Soil deposits 

are thin and very coarse in texture (Rowe 1972).  The terrain is irregular in nature, 

ranging from lowland peat bogs to exposed elevated bedrock (McIntosh 2003) and is 

reflected by a large number of rock-rimmed lakes (Rowe 1972).  The range in elevation 

varies from 100m above sea level (a.s.l.) to 490m a.s.l. on hills and ridges, with a mean 

elevation of 356±10m a.s.l. (McIntosh 2003).  The region supports ongoing forestry 

activities (both harvesting and forest fire suppression), resulting in a patchwork of 

different aged stands.  The regeneration initiatives are both artificial and natural, and 

consist of red pine (Pinus resinosa), white pine (Pinus strobes), spruce and aspen. 
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Figure 1. Map of the study area showing the province of Ontario, Canada (A), the greater study area (B) which encompasses the 
southern site between Rainy River and Fort Frances and extending north to the northern study site (C) in the Cameron Lake 
area.  Filled stars represent towns and the open star in (C) marks the release site. 
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General Methods 

Some data collection, preparation and model validation techniques follow the same 

methods for both types of models developed in this study.  To avoid repetition, this 

‘general methods’ section outlines methods used in the development and validation of 

both modeling approaches.  This section does not need to be read from start to finish, but 

can be referred to as these techniques are applied in subsequent sections.  

 

1. Telemetry data acquisition 

Telemetry data were collected by McIntosh (2003) using vehicle, snowmobile and on 

foot from 2000-2002 on a weekly basis throughout the spring and summer months and 

biweekly throughout the fall.  Tracking continued on a biweekly basis from the fall of 

2002 until the spring of 2003, at which point weekly spring and summer tracking and 

biweekly fall and winter tracking resumed.  Thirty elk were radio-collared and tracked 

beginning in the winter of 2000 and an additional 43 elk were radio-collared and 

subsequently tracked in the winter of 2001 (McIntosh 2003).  In January 2004, an 

additional 4 animals were radio-collared, and 2 animals re-collared. 

 

Elk locations were obtained by manual remote triangulation.  A four-element directional 

antenna and portable receiver (Model TRX-2000S, Wildlife Materials Inc., Carbondale, 

Illinois and Model STR-1000, Lotek Engineering Inc., Newmarket, Ontario) were used to 

detect elk radio-signals.  Bearings in the direction of elk radio-signals were taken using a 
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compass. A hand-held Global Positioning System (GPS) was used to determine the 

location at which bearings were taken.  Locations and bearings were plotted and 

triangulated on 1:50,000 national topographic maps and within the triangulation program 

Locate II (Nams 2001) to obtain animal location estimates and associated 95% error 

polygons.  A minimum of 3 bearings were collected for each elk to complete 

triangulation and obtain an animal location estimate.  Thirty-five test collars were thrown 

at random throughout the study area during the first study period from 2000-2002 

(McIntosh 2003) and 58 test collars during the second study period from 2003-2005 to 

provide an accuracy assessment of triangulation.  Average distance between triangulated 

locations and GPS-determined locations were 157m (±11m) for the first study period and 

134m (±35m) for the second.  

 

Within approximately 605m (±78m, n=251) of an animal, radio-signals are loud and can 

be heard on an “attenuation” level.  Attenuated signals were used during the fall of 2002, 

when in close proximity to radio-collared elk, to estimate elk locations.  

 

2. Light Intensity 

I used a measure of canopy openness to delineate open forage and closed forage areas for 

both HSI and RUF models.  Canopy openness was measured using a canopy-scope; a 

Plexiglass square marked by a 5 x 5 grid of dots situated 3cm apart with a 20cm string 

attached to one corner (Brown et al. 2000).  The observer held the string of the canopy 

scope eye-level and extended the plexiglass grid in the direction of the largest canopy gap 

until the string became taught.  The number of dots within the canopy gap was recorded.  
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I recorded canopy openness at 3 sites within 232 forest stands ranging in age from 0 to 

120 years.  Average canopy openness significantly decreased when stands reached 45 

years of age (ANOVA; P<0.05, n=232). 

 

3. GIS layers used in model building  

The study area spans two administrative districts; Kenora and Fort Frances.  Forestry 

sectors in each district compile a forest resource inventory (FRI) of their forest 

management units.  These FRIs are based on ground truthing and aerial photography, 

where forested stands are delineated and classified based on age, height and species 

composition. Non-forested areas are categorized into different landforms such as lakes, 

wetlands, roads and private land.  I used the 2004 FRI data for the Kenora district and the 

1997 FRI for the Fort Frances district.  I updated the stand ages of the Fort Frances FRI 

in ArcView 3.2 (ESRI 2000) to correspond with the 2004 FRI data from Kenora.  I used 

the FRI as the major data layer to calculate and summarize vegetation and road cover 

variables used in both models.  

 

4. Landscape Scripting Language 

Landscape Scripting Language (LSL) is a proprietary geographic information system 

(GIS) developed by the Ontario Ministry of Natural Resources (OMNR) (Kushneriuk and 

Rempel 2004).  The program uses multiple attribute data to specify spatially explicit 

wildlife-resource models.  The basic unit of LSL is the hexagon.  LSL overlays a 
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landscape with a grid of hexagons within which spatial metrics are calculated and 

summarized.   

 

LSL has a fundamental data type called the parcel. Parcels are portions of a GIS polygon 

that intersect a hexagon (Figure 2).  Metrics are calculated at the parcel level and can be 

rolled up to the hexagon level using either:  1) a weighted average, where metrics for 

individual parcels are weighted by the area of the hexagon it occupies, then averaged 

across all parcels, or 2) a majority rule, where only the metrics for the parcel occupying 

the largest area of a hexagon (over 50% of the hexagon area) are rolled up.  

 

I calculated landscape metrics within hexagonal units of 1/7th of a hectare. This 

particular hexagon size was recommended by Rob Kushneriuk at the OMNR and is 

currently being used within the OMNR Landscape Guide Science teams as the hexagon 

size for 16 HSI models for the Great-Lakes Saint Lawrence region (e.g. pileated 

woodpecker (Dryocopus pileatus), moose(Alces alces), white-tailed deer).  This hexagon 

size is considered a good compromise between accuracy when calculating distance 

metrics and keeping computer files within a reasonable size.  
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Figure 2. Centre hexagon contains three parcels; A, B and C.  If using the majority rule 
where the three parcels represent different stand ages (A= 30 years, B=75 
years and C=5 years) then the stand age for the hexagon would be 30 years.  If 
using the weighted average rule where each parcel is weighted according to 
the proportion of the hexagon in occupies (A=0.8, B=0.15, C=0.5) then the 
stand age for the hexagon would be approximately 38 years.  
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I calculated stand age for each hexagon using the majority rule, and assigned stands that 

did not have an associated age (wetlands, bush-alder and rocky-outcrops) as 0.  I defined 

“cover” as parcels with a stand age equal to or older than 15 years and “open forage” as 

parcels with stands younger than 45 years.  Edge was defined on a per hexagon basis as 

the length of shared edge between forage and cover parcels.  The distance to a forage-

cover edge was calculated as the distance from the centre of a hexagon to the centre of 

the nearest hexagon containing edge.  The proportion of deciduous trees in the canopy 

was calculated using the weighted average.  Road density was summarized for each 

hexagon as the length of primary and secondary roads per circular km2 surrounding the 

hexagon. 

 

The width of cover was calculated using a multi-step process.  All hexagons were first 

defined as cover or non-cover.  Six lines were drawn through the centre of each cover 

hexagon, 3 through the paired edges and 3 through the paired corners (Figure 3).  These 

lines project outwards until they hit a non-cover hexagon.  Cover width was calculated 

using a weighted average of the 3 shortest lines;  

Cover width = 
( )

077.1

4/2 21 xxr ++
           (Equation 1) 

Where, r represents the shortest distance to a non-cover hexagon and x1 and x2 represent 

the 2nd and 3rd shortest distances. The denominator of Equation 1 (1.077) is a correction 

factor that aims to offset the normally longer 2nd and 3rd shortest lines (Figure 4) using a 

weighted average.  It is based on an ideal scenario where r is equal to 1 and the interface 

of the edge creates a hypotenuse triangle with lines x1 and r or x2 and r (Figure 4).  When 

r is equal to 1, x1 and x2 are calculated by; 
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   xi  = r / cos30o = 1/0.866 = 1.1547    (Equation 2) 

And all three lines are weighted accordingly; 

077.1
4

3094.4
4

1547.11547.1)1(2
4

2 21 ==
++

+
++ xxr        (Equation 3)  

Twenty-five smoothing passes throughout the landscape were then done to remove the 

effect of small edge irregularities that may result in a shorter calculated width than 

expected (Figure 5).  Smoothing passes calculate average cover width for a hexagon 

using the centre hexagon and the surrounding 6 hexagons.   

 

 

Figure 3. A hexagon with six paired lines projecting outward, where numbers represent 
pairs.  
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30o

rx1 x2

Figure 4. Using a weighted average of the shortest (r), 2nd and 3rd shortest lines (x1 and 
x2) to obtain the width of cover.  The calculation is based on an ideal scenario 
where the interface of the edge creates a hypotenuse triangle with the lines r 
and x1, as well as r and x2.  The length of line xi is calculated using Equation 2, 
and the three lines are weighted using Equation 3. 
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Figure 5. Grey hexagons represent open forage, and white hexagons represent cover. 
Arrowed lines extend outward until they reach a non-cover hexagon.  
Hexagon “A” represents a small edge irregularity that would result in an 
underestimated width.  
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5. Model validation technique 

5.1 Estimating utilization distributions from kernel analysis 
Model validation initially required the calculation of summer utilization distributions 

(UD) (Silverman 1986) for each elk using relocation data.  I first defined summer and 

winter seasons explicitly using temperature and snow depth.  Specifically, temperatures 

including and below -20oC, as well as snowdepths greater or equal to 40cm normally 

induce elk to seek shelter for thermoregulation or change normal summer foraging habits, 

respectively (Skovlin et al. 2002, Sweeney and Sweeney 1984).  Therefore, “winter” was 

defined as the period when elk temperature regulation begins at -20oC or when snow 

depths exceed 40cm. I used the average daily minimum temperatures and “snow on the 

ground” from three weather stations (Kenora, Mine Centre and Dryden) surrounding the 

study site (Environment Canada) from 2000 to 2005 to delimit the seasons (Table 1).  

 

Table 1. Summer season start and end dates from 2000 to 2005. 

Summer Start Date Summer End Date 
March 17, 2000 November 21, 2000 
March 26, 2001 December 27, 2001 
March 26, 2002 December 17, 2002 
March 11, 2003 December 1, 2002 
April 5, 2004 December 1, 2004 
April 4, 2005 October 31, 2005* 

* End date is seasonally premature because data collection stopped. 
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I calculated the summer 99% UD for individual elk using the fixed kernel analysis 

function in the Home Range Extension (HRE) for ArcView GIS 3.2 (Rodgers and Carr 

1998, ESRI 2000).  I chose the fixed kernel analysis method because it is robust with 

respect to sample size, autocorrelation, centre of activity and outliers (Kernohan et al. 

2001).  The fixed kernel has a constant bandwidth that is applied to the whole area under 

evaluation and results in a more accurate representation of the outer contours of the home 

range (Kernohan et al. 2001).  Because a kernel analysis estimates an animal’s 

probability of occurrence in a particular area, it will never describe an animal’s total 

(100%) use of an area.  Therefore, I used the 99% probability of occurrence as a best 

estimate of total area use.  I employed Least Squares Cross Validation (LSCV) 

(Kernohan et al. 2001) to estimate bandwidth for each set of animal locations.  The kernel 

estimator of the UD is calculated as follows (Kernohan et al. 2001): 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

= ∑∫
=

∧

h
XxK

nh
x i

n

i 1
2

1       (Equation 4) 

Where is the utilization distribution (UD), ( )∫
∧

x

       n is the number of locations 

 h is the smoothing parameter/bandwidth 

 Xi contains a matrix of x and y coordinates 

 x is the point at which the kernel is positioned 

 K is the kernel function (probability density function) 

 

Although, fixed kernel estimation with sample sizes greater than 30-50 relocation points 

are reported to perform well, particularly at the outer boundaries (Seaman et al. 1999), I 

 25



did not have that many relocations for most of the radio-collared elk in my study.  So, I 

investigated the minimum sample size required to give the best estimates of the area of a 

99% fixed kernel UD as denoted by the whole summer season radio-telemetry data set, to 

determine the point at which the effects of small sample size levelled off.  To do so, I 

calculated the 99% UD and its respective area after each relocation point was added to an 

animal’s data set.  I calculated the proportion of each 99% UD area relative to an 

animal’s final (containing all of an animal’s relocation points) 99% UD.  I plotted the 

proportions for each animal, beginning with 3 relocation points and up to a maximum of 

83 relocation points (Figure 6).  In doing so I determined that the proportion of the final 

99% UD area levelled off at 18 radio-telemetry fixes.  Therefore, I included all animals 

with a summer sample size greater than 18 telemetry fixes in the development or 

validation of models (Appendix 1). 

 

The HRE kernel analysis output provides a set of embedded polygons where the 

outermost isopleth denotes the area within which an animal will be located 99% of the 

time, and the innermost isopleth represents the area within which an animal will be 

located 10% of the time (Figure 7). I calculated 99, 90, 80, 70, 60, 50, 40, 30, 20, and 

10% isopleths for each UD.  I transformed the embedded kernel polygons into a single 

grid using LSL.  Within LSL, I clipped the 90% isopleth out from the 99% isopleth, and 

the 80% from the 90% (and so on) until all isopleths represented spatially independent 

“bands”.  Each band corresponded to a relative proportion of time that the animal spent 

within its respective boundaries.  For example, the outermost band (99%) was used 1% of 

the time (where its relative space use density was 0.01), and the innermost band (10%)  
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Figure 6.  The effect of successive relocation fixes on the proportion of the last relocation fix area.  The proportion of last fix area 
begins to level off when the average across all collars crossed 1.0 (dotted horizontal line) after 18 telemetry fixes (hatched 
vertical line).  Bars represent 95% confidence intervals of the mean (solid line). 

 27



was used 90% of the time (where its relative space use density was 0.9).  Each UD was 

then considered to be made up of ten density bands ranging from 0.01 for the outer 

polygon to 0.9 for the innermost polygon (Figure 7).  In order to relate the density of 

space use to landscape suitability, I standardized the UD to range from 0 to 1.0, by 

dividing each space use density band by 0.9.  Consequently, a standardized suitability of 

0 represents relatively poor suitability and 1.0 represents relatively high suitability.  This 

“suitability distribution” is represented in 3 dimensions by plotting the spatial location of 

the standardized bands (easting and northing coordinates) along the x and y axes, and the 

suitability (standardized relative space use density from the UD) along the z axis (Figure 

8). 
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Figure 7. UD based on fixed kernel analysis.  Outermost band (grey) represents the 
lowest probability of use (1%), where 99% of the animal’s space use occurred 
within the outer isopleth of this band.  The innermost band represents highest 
probability of use (90%).
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Figure 8. Suitability distribution constructed from a kernel analysis. X and Y axis 
represent the easting and northing coordinates, whereas the Z axis represents 
the suitability.
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5.2 Volume of Intersection Index and the derivation of the DVI Index 
I used the Volume of Intersection (VI) Index (Seidel 1992) to validate and compare the 

predictive ability of both the HSI and RUF models.  This index assesses the degree to 

which the habitat model reflects an animal’s perceived value of the landscape (i.e. from 

its relative space use or UD).  For instance, does the suitability from the model increase 

as an animal’s relative use of the same area increases?  The VI Index does not assess 

whether a model is “good” or “bad” but whether it mimics animal use intensity.  The VI 

Index provides a measure of the degree of overlap between two utilization distributions 

or, as used in this study, two suitability distributions (two volumes), and is computed by: 

VI Index = ∫ ∫ min (ƒˆ1 (x,y), ƒˆ2(x,y))dxdy                    (Equation 5) 

Where ƒˆ1 is the standardized suitability from the radio-telemetry locations (kernel 

analysis) at hexagon x, y and ƒˆ2 is the predicted suitability from a resource suitability 

(HSI or RUF) model at hexagon x, y.  Each SD is first standardized to 1, so the suitability 

values of all hexagons within each SD sum to 1.  The VI Index sums the minimum 

standardized suitability (either ƒˆ1 or ƒˆ2) for all hexagons where both SDs overlap.  The 

VI Index ranges from 0 to 1, where 0 denotes no overlap between the two volumes and 1 

denotes a total overlap between the two volumes (Millspaugh et al. 2000, Seidel 1992).  I 

also directly compared the two suitability distributions from the RUF and HSI models 

(Chapter 3) using the VI Index (where ƒˆ1 is the predicted suitability distribution from 

the HSI and ƒˆ2 is the predicted suitability distribution from the RUF) to determine the 

similarity between models.  
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When using the VI Index to compare a suitability distribution derived from a UD (which 

always ranges from 0.01 to 1.0) to a resource map (does not necessarily range from 0.01 

to 1.0), the VI Index does not represent the true overlap between volumes of two 

distributions because of standardization.  The VI Index has a tendency to artificially 

inflate or deflate resource suitability when volumes are standardized to 1 (Figure 9).  

Therefore, VI Index scores from different models cannot be directly compared. 

 

To eliminate this problem, instead of comparing absolute overlap (from VI Index scores) 

between a resource model and an animal’s SD, I compared the deviation of the VI Index 

(calculated between the resource model and an animal’s SD) from a pattern of ‘no 

selection’, or a completely flat resource model (Figure 10), henceforth referred to as the 

deviation from the volume of intersection (DVI) index: 

DVI Index= (True VI Index) – (VI Index ‘no selection’)  (Equation 6) 

The VI Index of ‘no selection’ is calculated using equation 5, where ƒˆ1 is the 

standardized suitability from the radio-telemetry locations (kernel analysis) at hexagon x, 

y, as before. The suitability values for all hexagons in a model SD representing ‘no 

selection’ are identical and can be assigned any arbitrary value greater than 0 before 

being standardized.  Regardless of the value chosen, following standardization, the 

suitability value of each hexagon is equal to 1 divided by the total number of hexagons.  

Subsequently, ƒˆ2 is the standardized suitability from a ‘no selection’ pattern (see 

Appendix 2 for sample calculations). 
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The resulting DVI Index compares the relative shape of the resource model to the 

animal’s SD and provides an assessment of whether the model shows a similar pattern of 

suitability to animal space use.  When the DVI Index is positive, the model shows a 

similar trend in animal space use (approaching Figure 10c). When the DVI Index is 

negative, the model does not follow a similar pattern of animal space use (approaching 

Figure 10b).  As the DVI Index approaches zero, it becomes closer to a scenario of ‘no 

selection’ (Figure 10a).  The magnitude of difference between DVI Index scores can be 

compared between models.  To provide a benchmark of how well the model mimics 

animal use intensity, I compared the DVI scores against a null model.  If the DVI score of 

the resource model is greater than the DVI score of a null model, the resource model is 

better at predicting animal use intensity than by random chance.  
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Figure 9. Each suitability distribution must be standardized to 1 to calculate the volume of intersection index. By standardizing a 
resource model and suitability distribution, the non-overlapping portions of the resource model (portions A and B of the 
bottom figure) become equal to the non-overlapping portion of the suitability distribution (portion C of the bottom figure).  
This process can artificially inflate the importance of a poor resource model (top left figure) or deflate the importance of a 
good resource model (top right) so that both situations, when standardized, result in the same VI Index, or overlap (grey 
portion of bottom figure).  Y axis represents resource suitability on a scale of 0 to 1.
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Figure 10. Selection patterns relative to no selection.  The top figure (A) represents a 
resource model with no selection pattern, meaning that it is a flat suitability 
distribution.  The middle figure (B) shows an opposite selection pattern to that 
of an animal’s home range use intensity (suitability distribution) whereas the 
bottom figure (C) represents a resource model that is in complete agreement 
with animal use intensity.  The grey area represents a relative estimate of the 
VI Index between the resource model and suitability distribution. 
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5.3 Average overlap index and Weighted overlap index 
I used an Average Overlap (AO ) Index between the HSI or RUF model and the UD to 

assess the quality of resources (as predicted by the HSI or RUF models) within the spatial 

extent of an animal’s 99% UD. The AO Index is calculated by: 

AO Index  =  
n

HSI
n

i
i∑

=1   or  
n

RUF
n

i
i∑

=1      (Equation 7) 

where n is the number of hexagons within the 99% UD and HSIi or RUFi refers to the 

value of the resource model for that individual hexagon. 

 

The weighted overlap (WO) Index is similar to the AO Index as it is also a measure of the 

quality of resources (as predicted by the HSI or RUF models) within the spatial extent of 

the 99% UD, but it weights the importance of each hexagon according to its relative use 

by an animal. This results in an index that weights areas of high use intensity more than 

areas at the outer boundaries (lower use intensity) of an animal’s 99% UD.  The WO 

Index is calculated as follows: 

SSD =         (Equation 8) ∑
=

n

i
SD

1

where SD is the suitability value within a hexagon of the suitability distribution derived 

from a 99% UD and SSD represents the sum of all suitability values within the suitability 

distribution; 

WO Index =  or     (Equation 9) ( )[ ]∑
=

×÷
n

i
ii HSISSDSD

1

( )[ ]∑ ×÷ ii RUFSSDSD

where HSIi and RUFi represent the resource suitability values in each hexagon. 
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CHAPTER 1.  

Development and validation of a Habitat Suitability Index 

model for elk (Cervus elaphus) reintroduced to the Lake 

of the Woods region, Ontario. 
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Introduction 

Habitat suitability index models are popular deductive models used extensively by the 

USDA Fish and Wildlife Service (Morrison et al. 1998) to make predictions from cause-

effect relationships (Guisan and Zimmermann 2000).  A HSI model is defined as a 

numerical index that represents the ability of a suite of resources to support a particular 

wildlife species (USFWS 1981).  Such models describe and quantify the major 

environmental factors using resource structure, composition and spatial arrangements 

(USFWS 1981, Buckmaster et al. 1999) that have an effect on the occurrence and 

abundance of individual species (Morisson et al. 1992).  

 

HSI models are based on the assumption that a species or population will select areas 

upon a landscape that are most able to satisfy its life requisites.  Thus, areas of better 

resource quality and quantity should result in greater use by the species (Van Horne 

1983, Schamberger and O’Neil 1986).  HSI models assume there is a direct linear 

relationship between carrying capacity and specific HSI values (USFWS 1981), that 

represent the final response of a species to overall environmental conditions of a suite of 

resources (Morrison et al. 1998).  HSI models are not capable of providing information 

pertaining to population sizes or trends and cannot portray an individual’s behavioural 

response to a change in resources (Morrison et al. 1998).  Essentially, HSIs are 

hypotheses of species-resource relationships that can be tested and improved 

(Schamberger et al. 1982).  HSI models are applied appropriately when used to compare 

the effects of alternative management plans on individual species (Morrison et al. 1998).  
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HSI models are not directly derived using statistical techniques.  They are based on 

wildlife-resource relationships that have been previously tested in an area or within a 

separate system.  Where species-resource relationships are unknown or cannot be 

determined, hypothesized resource-species relationships, developed by expert opinion, 

can also be used. 

 

Habitat suitability is traditionally expressed as the geometric mean of n environmental 

variables (V) that are known or thought to be an important component of one or more life 

requisites (Morrison et al. 1998).  Thus, the general formula for a HSI model is: 

HSI = (V1 x V2 x V3….Vn) 1/n    (Equation 10) 

where V1…Vn are the environmental variables or resources.  However, various weighting 

and averaging methods may be applied to a HSI model to best describe the overall 

relationship of a suite of environmental variables to the quality of a landscape patch (Cole 

and Smith 1983, Laymon and Barrett 1986).  For example, different life requisites may 

require calculation of more than one environmental variable and overall resource 

suitability may be best described when life requisites are weighted differently;   

Forage = (V1 + V2)/2                      (Equation 11) 

Cover = (V3 x V4 x V5) 1/3        (Equation 12) 

HSI = ((4 x Forage) + Cover) /5   (Equation 13) 

HSI values are expressed on a scale of 0.0 to 1.0, from low to high resource suitability, 

respectively.   

 

It is important to note problems associated with developing deductive models such as: 
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1) deductive models can be biased because they often apply causal relationships 

developed from site-specific population and resource data to a different system 

(Schamberger et al. 1982, Dettki et al. 2003), 2) expert knowledge is used to develop the 

hypothesized wildlife-resource relationships and/or the mathematical relationship 

between model components. Models that are based on expert knowledge are, by 

definition, biased, 3)  HSI models that use hypothesized wildlife-resource relationships 

can be sensitive to variation in expert opinion (Johnson and Gillingham 2004), 4) 

mathematical models may lead to a greater understanding of the behaviour behind the 

mathematics than the true biological behaviour behind the system (Morisson et al. 1992), 

especially when models are not validated. 

 

On the other hand, deductive models such as HSIs provide benefits: 

1) They model general resource-species relationships and although they are not precise, 

they model a theoretical predicted response (Pickett et al. 1994 as cited in Guissan and 

Zimmermann 2000).  As a result, when precision is not necessary, these models may be 

applied over a wider environmental and spatial range.  They can also form the basis of a 

more specific model when model evaluation and subsequent adjustments to improve the 

model are made, 2) they are based on general relationships, so it is not necessary to study 

site-specific species-resource relationships, and therefore are relatively cheap to 

construct.  

 

I compiled elk-resource relationships based on previously published material into a 

summer HSI model.  The variables deemed important to elk in previous studies are 
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forage, cover, roads and the spatial interactions between forage and cover (Wisdom et al. 

1986, Thomas et al. 1988, Roloff et al. 1998, Benkobi et al. 2004).  
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Methods 

Forage 

Elk occupy many diverse ecosystems throughout North America and, as a result, their 

food habits vary greatly from region to region (Skovlin et al. 2002).  Elk are adapted to 

both forested and open plain habitats but their feeding strategies are primarily geared 

towards graminoids (Geist 1982).  Elk prefer to graze, and will feed in open areas 

including clear-cut areas, natural forest openings and burned areas (Nelson and Leege 

1982, Unsworth et al. 1998): these are early successional communities that provide high 

volumes of suitable forage biomass (Parker 1990, Skovlin et al. 2002).  

 

During the spring, Rocky Mountain elk typically graze on plant species that have an early 

green up, such as grasses.  They will then switch their feeding to mainly shrubs and forbs 

for the summer (Marcum 1979, Parker 1990, Unsworth et al. 1998), and switch to browse 

(woody vegetation) during the fall (Marcum 1979).  Historical evidence of elk in Ontario 

suggests that elk preferred open grassy habitats, such as the prairie ecosystems of 

southern Ontario, and grassy marshlands and wetlands (Bellhouse and Broadfoot 1998, 

Jost et al. 1999).  They were also associated with deciduous and mixed-wood forests but 

avoided dense conifer stands (Bellhouse and Broadfoot 1998). 

 

Manitoban Elk residing within the boundaries of Riding Mountain National Park would 

likely serve as the best example for predictions of diet selection in the northwestern 

portion of Ontario.  These elk select woody browse as their annual mainstay diet (53%), 
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whereas grasses make up an annual diet of 22-54% and are of major importance during 

the spring and early winter (Blood 1966).  The dominant browse species is Rosa sp., but 

aspen and saskatoon (Amelanchier alnifolia) are also of importance (Blood 1966).  

 

Forage potential, the interaction of forage quantity and quality (quantity meaning the 

amount of forage and quality meaning the relative nutritional value of forage), is 

recognized as an important factor that influences elk reproductive performance and 

resource selection (Irwin and Peek 1983b, Cook et al. 1996, Roloff 1998, Cook 2002).   

Higher sunlight intensities may provide the most palatable and nutritious browse leaves 

(Blair et al. 1983), greater opportunity for grass growth (Beall 1976) and the production 

of leaf biomass increases with increasing light intensity (Blair 1969).  As a result, plants 

grown in open areas are expected to be of a higher quantity and quality than those grown 

in the shade. Northwestern Ontario is composed primarily of a forested landscape that is 

continuously disturbed by fire and timber harvesting.  Early successional stages likely 

provide the best foraging opportunities for elk in the region (Irwin and Peek 1983a). 

 

Light intensity analysis (General Methods 2) suggests that the early successional stage in 

the Cameron Lake region lasts until a stand is approximately 45 years of age, at which 

point canopy openness (light intensity) decreases significantly.  Therefore, I defined a 

stand as being “forested” when it reaches 45 years of age.  Figure 1.1a shows the 

relationship between stand age and predicted forage suitability.  Forage suitability is the 

highest in early successional stages but declines after a stand reaches 45 years.  

Suitability increases slightly after a stand becomes overmature at the approximate age of 
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120 years.  Forage located in forested stands is of better quantity and quality when there 

is a higher proportion of deciduous trees in the canopy (Figure 1.1b) relative to primarily 

coniferous stands (Buckmaster et al. 1999).   

 

Cover 

Hiding cover is of primary concern to elk during the non-winter months.  It is used to 

evade predators and human disturbances (Lyon and Christensen 1992) and usually takes 

the form of vegetation or a topographic feature (Skovlin et al. 2002).  Disturbance 

activities (logging, hunting) and associated features (such as roads and outpost camps) 

can negatively affect use of an area by elk. For example, logging activities may displace 

elk within 500-1000m of the disturbance (Edge and Marcum 1985), where elk resource 

use is affected more when the availability of appropriate hiding cover is unavailable 

(Lyon 1979). 

 

Thomas et al. (1979) defined hiding cover as vegetation capable of hiding 90% of a 

standing adult elk from view of a human at a distance equal to or less than 61m.  

Coniferous trees will provide adequate hiding cover when they are at heights between 2-

6m (Canfield et al. 1986), as will understory shrubs and trees with 1-2m high branches 

(Abbot 1991 as cited in Buckmaster et al. 1999).  In the Cameron Lake region, coniferous 

stands above 2m in height or 15 years in age provide these characteristics of hiding cover 

and I considered these areas optimal (Figure 1.1c).   
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Forage and cover interactions 

Ecotones, areas where there is a high juxtaposition of different vegetation types or stand 

ages, are an important habitat requirement for elk because they support a high diversity of 

forage (Sklovin et al. 2002) and provide security cover within close proximity.  The key 

to elk use of forested habitats is the spatial interaction between forage areas and security 

cover (Thomas et al. 1979, Thomas et al. 1988), and is not solely a function of forage 

quantity and quality (Roloff 1998).  

 

Elk are an “edge-loving” species and will select forested habitats within 274m of open 

foraging areas and open habitats within 90m of forest cover (Irwin and Peek 1983a, 

Witmer et al. 1985).  As a forage area becomes larger than 90m in diameter or a cover 

area larger than 274m in diameter, elk will use less of the total area (Wisdom et al. 1986). 

A recent validation by Benkobi et al. (2004) of an HE model for elk in Custer State Park 

recommended a modification to these previous forage-cover interactions.  They suggest 

using the same measure of elk use for distance to forage edge and distance to cover edge 

where optimal use is within 100m of a forage-cover edge, moderate use between 100-

200m, low use between 200-500m and little or no use beyond 500m (Figure 1.1d; 

Benkobi et al. 2004).  When the total width of cover associated with a forage-cover edge 

is less than 230m, it is not considered wide enough to provide optimal cover (Witmer et 

al. 1985) and will receive a suitability of less than 1 according to its width from the 

cover-forage edge (Figure 1.1e). 
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Roads 

The presence, density, spatial distribution and human use of roads affect elk habitat use 

(Thomas et al. 1979, Lyon 1983, Cooper and Millspaugh 1999, Rowland et al. 2000, 

Benkobi et al. 2004). Roads remove land for forage and add a disturbance factor, 

reducing the landscape suitability of areas adjacent to roads.  Rowland et al. (2000) found 

that female elk selected habitats away from roads consistently throughout the spring and 

summer months.  Elk are known to minimize the effects of disturbance by using areas 

closer to roads disproportionately at night when traffic is minimal (Millspaugh 1999).  

Because we do not know the effects of roads on landscape suitability for elk in 

northwestern Ontario, I included the predicted effects of open road (primary and 

secondary) density as a precaution.  Suitability rapidly declines as road density increases 

up to 1km of open primary and secondary road per km2, after which suitability decreases 

moderately with increasing road density (Figure 1.1f). I defined primary roads in the 

study area as year-round gravel or paved roads open to the public for recreation (hunting, 

fishing, camping, etc.), or used extensively for forestry activities, mining, trapping, elk 

tracking, and by local residents.  Secondary roads are not open year round, are 

maintained to a lesser degree than primary roads and have a lower volume of traffic use. 
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Figure 1.1. (a) Summer forage suitability based on stand age; (b) effects of the 
proportion of deciduous trees on the suitability of forested stands; (c) effects 
of stand age on suitability of hiding cover; (d) effects of distance from forage-
cover edge on suitability; (e) the effect of hiding cover width on suitability; (f) 
the effects of road density on suitability.  

 47



Model Compilation 

I compiled individual elk-resource relationships into their effects on forage, cover, 

forage-cover association (FCA) and roads, henceforth referred to as the model 

components (Equations 14-17).  I used an additive function when variables were 

mutually exclusive (i.e., Forage, equation 14) and the geometric mean of n variables 

when variables were not mutually exclusive (i.e., FCA, equation 16). 

Forage = (SFOSFC + SF)    (Equation 14) 

Cover = SCSFC     (Equation 15) 

FCA = (CW  x  Prox)1/2    (Equation 16) 

Roads = SR      (Equation 17) 

Where; SFOSFC is the suitability of forage in non-forested area (stands under 45 years; 

Figure 1.1a); SF was calculated in stands equal to and over 45 years and is the suitability 

of forage based on stand age from Figure 1.1a multiplied by the suitability of deciduous 

trees in the canopy (Figure 1.1b); SCSFC is the suitability of cover (Figure 1.1c); CW  is 

the suitability of the width of cover associated with the closest forage-cover edge (Figure 

1.1d); Prox is the suitability based on the distance to the closest forage-cover edge 

(Figure 1.1e) and SR represents the suitability of road density per km2 (Figure 1.1f). 

 

I used digital vegetation data layers compiled by two provincial government 

administrative districts as my primary source of vegetation coverage for subsequent 

analysis (General Methods 3).  I used Landscape Scripting Language (LSL) (Kushneriuk 

and Rempel 2004) as a geographic information system wherein I quantified variables 

(General Methods 4) and calculated HSI values. 
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I calculated an overall HSI value using an additive mean of all model components;  

HSIA= (Forage + FCA + Cover + Roads) / 4  (Equation 18) 

An overall geometric mean was not used because the cover and forage components could 

be mutually exclusive but still very beneficial to elk; i.e. these areas would be given an 

HSI value of zero, which is counterintuitive to predicted elk use. 

 

Elk are known to use foraging areas more heavily than cover areas (Benkobi et al. 2004), 

so I investigated the effects of weighting forage more heavily than cover. Benkobi et al. 

(2004) suggested weighting the forage component 3 times greater than the cover 

component.  But the degree of weighting likely varies with a landscape’s distribution of 

forage and cover, as well as the amount of disturbance in the area.  So, I also tested 

higher and lower forage component weightings and evaluated which weighting best 

predicted elk use; 

HSIB= ((2 x Forage) + FCA + Cover + Roads) / 5  (Equation 19) B

HSIC= ((3 x Forage) + FCA + Cover + Roads) / 6   (Equation 20) 

HSID = ((4 x Forage) + FCA + Cover + Roads) / 7   (Equation 21) 

I hypothesized that the FCA component is more important than the Forage component for 

elk in northwestern Ontario, so I conducted a similar analysis of different weighting 

schemes, this time manipulating the weighting of the FCA component;  

HSIE = (Forage + (2 x FCA) + Cover + Roads) / 5  (Equation 22) 

HSIF  = (Forage + (3 x FCA) + Cover + Roads) / 6   (Equation 23) 

HSIG = (Forage) + (4 x FCA) + Cover + Roads) / 7   (Equation 24) 
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The overall HSI value was calculated for each hexagon throughout the study area in LSL.  

The deductive model output is a map of the landscape with corresponding suitability 

values, where the abscissa and ordinate represent the landscape coordinates and the 

resource suitability is denoted by the colour (Figure 1.2).  
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Figure 1.2. Example of a HSI model of part of the Cameron Lake area in northwestern 
Ontario showing resource suitability for elk within hexagons.  Lighter shaded 
hexagons indicate better quality resources than darker shades. 
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Model Validation 

I used a data set consisting of 19 elk suitability distributions (SD) based on radio-

telemetry locations (General Methods 1) to validate the HSI models.  SDs are based on 

utilization distributions, which are estimated from kernel analysis (General Methods 5.1).  

I measured how good each model was by using both an average (AO Index) and a 

weighted average (WO Index) of all hexagons within each animal’s SD (General 

Methods 5.3).  I also used the deviation from ‘no selection’ as calculated using the VI 

Index (referred to as the DVI Index) to compare the relative ability of each model to 

predict animal space use (General Methods 5.2).  I calculated these indices between the 

HSI map and each of the 19 individual elk SDs, as well as the associated mean and 

confidence intervals.  I further compared index means using one-way analysis of variance 

(ANOVA) to test for significant differences among model indices.  

 

To help benchmark model performance, I compared WO, AO  and DVI Indices against a 

null model.  The null model was created by taking individual validation SDs and 

randomly rotating them, then randomly distributing them throughout the study area. To 

ensure that the placement of each “random” SD mimicked an actual animal’s use of the 

landscape, I ensured that the SD peak was not covered by a lake.  For each of the 19 true 

elk SDs used for validation, I created five “random” SDs for a total of 95 randomly 

placed SDs. I compared elk and random SDs for each model using a 2-tailed t-test. I 

calculated the difference between elk and random DVI Indices for each model and 

compared the magnitude of the differences using a one-way ANOVA. 
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In addition to WO and AO Indices, I graphed the mean of each variable in relation to elk 

use (each suitability band) and visually compared the regression line of actual resource 

use to hypothesized resource use.  Relationships were not expected to be identical to 

those postulated for the HSI (Figure 1.1a-f) because use expressed in the form of a SD 

represents an animal’s response to the overall suite of variables, as opposed to the 

relationships of independent variables as modeled in the HSI.  Despite this, the graphs 

can help identify any general relationships that warrant further site-specific investigation. 
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Results 

All HSI models predicted landscape suitability slightly better than by random chance.  

The poorest predictive ability was noted for HSIA which had only a 1.3% higher WO 

Index than by random chance and the best predictive ability for model HSIG which had an 

8% higher WO Index than by random chance.  Model HSIG also showed the highest 

increase in space use predictive ability over the random SDs.  

 

Average suitability of the study area ranged from 0.565 (±0.194, n=404,889) for HSID to 

0.694 (±0.123, n=404,889) for HSIA (Figure 1.3a-g, Table 1.1).  Average suitability and 

weighted average suitability of elk SDs was lowest for HSID (mean AO Index=0.592, 

SE=0.005; WO Index = 0.614, SE=.008; n=19) and highest for HSIG (AO Index =0.720, 

SE=0.006; WO Index=0 .749, SE=0.009; n=19; Table 1.2).  Model HSID demonstrated 

the lowest average suitability of random SDs (mean AO Index=0.558, SE=0.006; mean 

WO Index= 0.568, SE=0.007; n=95) whereas model HSIA had the largest average 

suitability of random SDs (mean AO Index = 0.695, SE=0.004; WO Index=0.694, 

SE=0.005; n=95; Table 1.3). 

 

Mean WO Index scores and AO Index scores were significantly different among models 

(ANOVA: P<0.01, df =6;126; Table 1.2 and Figure 1.4).  The AO Index did not differ 

among models HSIA, HSIE, HSIF and HSIG and was significantly greater than the AO 

Index for models HSIB, HSIB C and HSID.  The WO Index did not differ between models 

HSIE, HSIF and HSIG and was significantly greater than the WO Index for models HSIA, 
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HSIBB, HSIC and HSID.  Only model HSIA did not have significantly higher AO and WO 

Indices as compared to random SDs  (HSIA 2 tailed t-test; P=0.169 and P=0.173, 

respectively; Figure 1.5, Table 1.4).  

 

There was no difference among elk DVI Index scores of different models (ANOVA: 

P=0.224, df =6; 126; Figure 1.6).  Models HSIC, HSIE, HSIF and HSIG predicted animal 

space use patterns significantly better than by random chance (Figure 1.6, Table 1.5) 

whereas the magnitude of difference between actual elk and random use patterns was 

significantly greater than HSIA (ANOVA: P<0.001, df = 6; 658) for models HSID, HSIF 

and HSIG (Figure 1.7). 

 

Elk use decreased substantially at distances greater than 100m from a forage-cover edge 

(ANOVA: P<0.001, df = 2; 176; Figure 1.8) and the distance to a forage-cover edge was 

negatively correlated with elk use (r=-0.68, R2 = 0.46, n=190; Figure 1.9a).  Road density 

was positively correlated with elk use (r=0.45, R2=0.21, n=190; Figure 1.9b) and stand 

age was negatively correlated with elk use (r= -0.56, R2 =0.31, n=190; Figure 1.9c).  

Cover width and the proportion of deciduous trees in the canopy showed non-linear 

relationships (r= 0.37, R2 = 0.13, n=190 and r=0.48, R2= 0.23, n=190, respectively; 

Figure 1.9d-e).  All correlation and regression relationships were significant (Pearson 

Correlation (2-tailed): P<0.001 and ANOVA: P<0.001, df = 1;188, respectively). 
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Figure 1.3. Frequency (in thousands) of suitability index scores for each hexagon within 
the study area, for HSI models A to G.  Mean is approximated by arrow. 
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Table 1.1. Mean HSI values across the study area for each of the seven models. Number 
of hexagons in the landscape is 404,889. 

 
Model Mean HSI Standard Deviation 
HSIA 0.694 0.123 
HSIB 0.634 0.145 
HSIC 0.594 0.172 
HSID 0.565 0.194 
HSIE 0.688 0.151 
HSIF 0.684 0.176 
HSIG 0.682 0.195 

 

Table 1.2. Average WO Index and AO Index calculated between each HSI model and 19 
elk suitability distributions. 

 
Model WO Index Standard Error 

for WO Index 
AO Index Standard Error 

for AO Index 
HSIA 0.705c 0.006 0.703d 0.004 
HSIB 0.662b 0.007 0.651c 0.005 
HSIC 0.634a 0.007 0.617b 0.005 
HSID 0.614a 0.008 0.592a 0.005 
HSIE 0.725cd 0.007 0.711d 0.005 
HSIF 0.739d 0.008 0.716d 0.005 
HSIG 0.749d 0.009 0.720d 0.006 

 *Different superscripted letters represent significantly different means at P<0.05 
(Tukey HSD and Games-Howell). 

 

Table 1.3. Average WO Index and AO Index calculated between each HSI model and 95 
random suitability distributions. 

 
Model WO Index Standard Error 

for WO Index 
AO Index Standard Error 

for AO Index 
HSIA 0.694 0.005 0.695 0.004 
HSIB 0.633 0.006 0.636 0.004 
HSIC 0.596 0.006 0.596 0.005 
HSID 0.568 0.007 0.558 0.006 
HSIE 0.692 0.006 0.691 0.005 
HSIF 0.692 0.007 0.691 0.005 
HSIG 0.692 0.007 0.692 0.006 
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Figure 1.4. Weighted overlap (filled squares) and average overlap (open squares) indices 
between each HSI model and 19 elk utilization distributions. Open squares 
represent mean, bars represent 95% confidence intervals of the mean. 
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Figure 1.5. Weighted overlap index between 19 elk suitability distributions and each HSI 
model (filled squares) as well as 95 random utilization distributions and each 
HSI model (open squares).  Squares represent mean, bars represent 95% 
confidence intervals of the mean. 
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Figure 1.6. DVI Indices calculated for 19 true elk SDs (filled squares) and 95 random 
SDs (open squares) for all seven HSI models. Squares represent mean, bars 
represent 95% confidence intervals of the mean. 
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Figure 1.7. Mean absolute difference between elk and random DVI Index scores. Open 
circles represent mean, bars represent 95% confidence intervals of the mean. 
Italicized letters represent membership to significantly different means (Tukey 
HSD and Games-Howell).  
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Table 1.4. Comparison between elk SDs and random SDs for WO and AO Indices. 
 

Weighted Overlap Index Average Overlap Index  
Model 

t d.f. 2-tailed 
Sig. 

t d.f. 2-tailed 
Sig. 

HSIA 1.385 45.327 0.173 1.395 52.908 0.169 
HSIB 3.167 51.180 0.003 2.417 56.346 0.019 
HSIC 3.885 48.801 0.000 2.892 59.461 0.005 
HSID 4.387 50.673 0.000 4.116 74.024 0.000 
HSIE 3.607 46.719 0.001 2.899 64.687 0.005 
HSIF 4.475 47.868 0.000 3.432 62.811 0.001 
HSIG 5.009 49.310 0.000 3.476 63.586 0.001 

 

Table 1.5. Comparison of DVI Index for elk SDs and random SDs. 

D.VI Index  
Model 

t d.f. 2-tailed Sig. 

HSIA -0.269 112 0.788 
HSIB 1.503 112 0.136 
HSIC 3.227 50.05 0.002 
HSID 3.834 52.65 0.000 
HSIE 3.346 48.08 0.002 
HSIF 2.753 112 0.007 
HSIG 3.105 112 0.002 
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Figure 1.8. Suitability associated with three categories of average distance to nearest 
edge (Prox). Open circles represent mean, bars represent 95% confidence 
intervals of the mean. 
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Figure 1.9. Relationship between elk use and A) distance to nearest forage-cover edge 
(Prox), B) road density (Roads),  C) stand age (Age), D) cover width 
associated with the nearest forage-cover edge (CW2) and E) proportion of 
deciduous trees in the canopy (Deciduous2). Bars represent the 95% 
confidence intervals of the mean (squares) and regression line is denoted by 
the solid line.  
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Discussion 

A simple modification of the mathematical formula of an HSI can often ameliorate its 

predictive ability.  This was found in the elk habitat effectiveness model validated by 

Benkobi et al. (2004) for elk residing in Custer State Park, South Dakota.  They modified 

the original geometric mean formula to an arithmetic mean, and weighted the forage 

component 3 times heavier than other model components.  Similar changes in the 

weighting of forage actually decreased model performance in northwestern Ontario HSI 

models, suggesting that higher resource value here is not placed on forage alone.  Most 

HSI relationships are based upon relationships within the western states and provinces of 

North America where there are many open grassy meadows. The foraging opportunities 

are quite different in the Cameron Lake region as there are no such meadows. The most 

similar natural landscape feature to grassy meadows are wetlands, which elk do not select 

as habitat in northwestern Ontario (McIntosh 2003).  Elk seem to be influenced to a 

greater extent by forage-cover interactions rather than forage alone.  An increase in the 

weighting of the forage-cover interaction component improved the weighted average 

model performance (WO Index) as compared to no weighting, but the average model 

(AO Index) performance was not significantly improved. 

 

Models that weighted FCA interactions (HSIE, HSIF, and HSIG) predicted the highest 

resource suitability and performed better than random resource suitability assessments.  

These models also portrayed actual resource use intensity better than random.  There was 

no significant difference among these three models with respect to WO, AO and DVI 

Indices and as a result, I considered all three as being equal and the most powerful out of 
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the suite of HSI models that I tested.  Although a trend towards increased suitability was 

evident as weighting of the FCA component increased, I believe these models showed no 

statistical difference because the weighting of the forage-cover interaction component 

was not large enough to see significant improvement.  

 

Although these models performed significantly better than my random models, the range 

in predictive ability of the models was not great, predicting model suitability at best 8% 

better than random and congruence with actual animal use intensity up to 2% better than 

by random chance.  The poor predictive ability of the model may have resulted because 

the landscape within the greater study area is similar to the areas elk selected, or the 

variables modeled are not greatly influencing elk selection. 

 

Another possibility that might cause poor model predictability is the discrepancy in 

modeled variable relationships and actual variable relationships.  For example, the actual 

relationship between road density and elk use is markedly different from that predicted 

by the HSI. It appears as though elk are using areas with higher road densities.  In fact, 

elk have demonstrated an attraction to roads at small scales (Anderson et al. 2005).  At 

small scales, roadsides can provide an abundance of forage biomass and are often 

considered edges when this high biomass of forage is in close proximity to cover (Tufto 

et al. 1996, McCorquodale 2003, Wolff and Van Horn 2003).  Furthermore, the major 

foraging areas for elk in the Cameron Lake region are highly associated with roads 

because they consist of recent clear cuts and reforested stands. As a result, forestry 

activities in the Cameron Lake region provide a patchwork of forage and cover areas, 
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which ultimately results in increased amounts of edge.  It is therefore difficult to tease out 

whether elk are selecting for roads or if the perceived selection of greater road density is 

secondary to the selection for better foraging opportunities and greater amounts of edge.  

 

Cover width is another variable that shows a different relationship than modeled by the 

HSI.  This variable is modeled as linear but shows a non-linear relationship with animal 

space use.  The non-linear selection pattern may be a product of the study design and not 

reflect actual selection patterns by elk. For instance, in northwestern Ontario, buffer strips 

are often left between clear cuts and lakes.  These buffers range in width from 50 to100m 

from a clear-cut to the water’s edge.  The inclusion of buffer strips into the highly 

suitable portion of the SD likely occurs because the buffer strips are within very close 

proximity to good forage, and included in the UD only because of small sampling 

intensities.  

 

Some relationships were similar to those modeled in the HSI.  For example, elk in 

northwestern Ontario exhibited highest use within 100m from a cover-forage edge 

(Figure 1.10).  This is comparable to the relationship predicted by Benkobi et al. (2004) 

for elk in Custer State Park, but in my study area there was no difference in actual elk 

resource use when average distance per band was greater than 200m from a forage-cover 

edge, suggesting that elk greatly value areas in very close proximity to edges.  This 

relationship is illustrated when assessing the correlation between distance to a forage-

cover edge and elk space use.  This correlation showed a marked negative linear trend 

and explained almost half of the variation in elk use intensity.  The high correlation 
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between distance to a forage-cover edge and elk space use provides further evidence for 

weighting the FCA component rather than the forage component. 

 

HSI models constructed using a priori relationships can be helpful tools to assess if there 

is an adequate resource base within an area to support a reintroduced animal population.  

The initial site assessment model to determine suitable sites to reintroduce elk was 

performed at a coarse scale with respect to quantity of forage, quantity of cover and road 

density and did not include important interactions between forage and cover (Hutchinson 

et al. 2003).  It is not surprising that when the reintroduced elk population decreased 

dramatically, the resource quantity and quality of the landscape came under scrutiny.  

Fortunately, the relatively good average HSI value (for each of the models) throughout 

the study area is evidence that there is a reasonable resource base for elk present within 

the Cameron Lake region.  Despite this, the large discrepancies between the individual 

variables used to construct the model and the actual relationships expressed by elk use 

suggests that some of the modeled general elk-resource relationships may in fact be more 

site-specific to northwestern Ontario.  To investigate this, I also created a resource 

selection model using an inductive approach in an effort to improve upon the accuracy of 

modeled resource use for elk in the Cameron Lake region.    
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CHAPTER 2. 

Development of a Resource Utilization Function model; 

an inductive approach. 
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Introduction 

The development of predictive resource suitability models has recently increased within 

the field of ecology (Guissan and Zimmermann 2000).  These inductive models are both 

probabilistic and static, as they aim to relate the geographical distribution of a species, 

community or population to their current environment using statistical analyses (Guissan 

and Zimmermann 2000).  Resource utilization function (RUF) models are one of the most 

recent inductive techniques proposed to relate the probability of occurrence of an animal 

or a population to environmental characteristics (Marzluff et al. 2004).  

 

The basis for a RUF model is the utilization distribution (UD).  A UD is a probability 

density function (Silverman 1986) that quantifies an individual’s relative use of space 

(Kernohan et al. 2001, Marzluff et al. 2004).  It is based on relocation point data, and 

often calculated using a kernel analysis.  A UD describes the probability of an animal 

occurring at any given point within its home range as a function of the number and spatial 

arrangement of relocation points (White and Garrott 1990), and is best understood when 

visualized as a three dimensional unit (Figure 2.1).  Peaks occur in areas with greater 

clustering of relocations as compared to areas with smaller amounts or no clustering, and 

the probability of an animal occurring on the landscape (density of animal use) is 

proportional to the height of the UD at a given point.   
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Figure 2.1. The bottom figure is a three dimensional representation of relocation points 
(top) known as a utilization distribution.  The probability of an animal 
occurring on the landscape (density of animal use) is proportional to the 
height of the utilization distribution.  Figure adapted from Roloff et al. (2001).   
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To relate space use to resources we assume that a higher probability of animal use is 

directly related to the quantity or type of resources in an area (Marzluff et al. 2004).  

Probability distributions rarely reach 100% (or 1.0), but when relating space use to 

resources we assume that the optimal resources occur at the spatial location under the 

highest peak in density.  Consequently, I transformed each elk UD into a suitability 

distribution (SD), by standardizing it on a scale from 0 to 1 (General Methods 5.1). SDs 

are related to resources using multiple regression, where the variation in the height of a 

SD is attributed to variation in a set of environmental predictor variables or resources 

(Marzluff et al. 2004). 

 

Using a UD (or SD) to relate space use to resource use has advantages such as: 1) it 

reduces the impact of telemetry error because resource use is estimated along a gradient 

rather than at a series of relocation points (Marzluff et al. 2004), 2) autocorrelation 

(Swihart and Slade 1997) is not an issue because decreased time intervals between 

relocation points result in a more accurate UD estimation (Marzluff et al. 2004),  3) the 

animal or population is the study unit rather than the relocation point (Marzluff et al. 

2004), 4) the entire distribution of the animal is considered rather than just the relocation 

points (Marzluff et al. 2004), 5) the sensitivity of resource use modeling is increased 

because it is executed on a continuous (or discrete) probability metric (as opposed to a 

binary logistic regression composed of used vs. unused categories), therefore resource 

use of varying intensities can be captured (Marzluff et al. 2004), 6) the spatial extent of 

available resources is limited to an animal’s UD, thus resource use is modeled as a 

probability of use, and never estimates non-use (Marzluff et al. 2004), 7) studies that do 
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not incorporate a 24hour sampling design run the risk of underestimating resource use 

because animals may be inactive during specific periods of the day, but the UD can 

reduce these concerns because resources used during these periods are likely to be 

captured within the UD (as opposed to using point data); however, this does not hold true 

for animals that move large distances between foraging and resting sites.  

 

Although the general HSI model estimated a relatively good resource base for elk in the 

Cameron Lake area, there was some discrepancy between modeled and actual elk-

variable relationships (Chapter 1).  As a result, I hypothesized that a more site-specific 

inductive approach would provide further insight into elk-variable relationships and elk 

space use within the Cameron Lake region.  My objective for this chapter was to 

construct a RUF model for the Cameron Lake region based on telemetry locations of 

radio-collared elk released in the area, to assess the predictive performance of the model 

and provide insight into how important each variable is in influencing elk space use. 

 73



Methods 

I quantified the stand age (Age), distance to nearest cover-forage edge (Prox), the width 

of the cover area associated with the closest forage-cover edge (CW), the proportion of 

deciduous trees in the stand (Deciduous) and road density (Roads) using Landscaping 

Scripting Language (LSL) (General Methods 4).  I did not group variables into model 

components as in the HSI model.  

 

I calculated individual summer SDs from relocation point data for 18 elk (General 

Methods 5.1) used for model construction (Appendix 1). I overlaid each SD across the 

study area and erased all lakes because kernels often incorporate obvious barriers such as 

bays or water surrounding a peninsula. I then clipped the SD and all landscape metrics 

calculated therein (Figure 2.2) to obtain a SD complete with all data layers. I summarized 

an animal’s probability of resource use by calculating the mean of each variable over the 

suite of hexagons within each SD band (General Methods 5.1).  I pooled the means in 

each band for all 18 animals, checked assumptions of normality and assessed if the 

relationships between animal use and each variable were linear or non-linear. I graphed 

the mean of each variable in relation to elk use (each suitability band) to visually 

compare resource relationships between the model building cohort and the model 

validation cohort.   
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Figure 2.2. Example of a clipped SD with calculated landscape metrics and without lakes. 
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I used multiple linear regression to relate resource attributes to the probability of use 

(height of the SD) by elk (Equation 2.1). I regressed the mean calculated resource metric 

(independent variable) for each band of the SD (dependent variable) to get an overall 

RUF model; 

RUF = βo + β 1X1 + β 2X2 +..... β n X n +e                       (Equation 2.1) 

where; 

βo = intercept  

β n = Regression coefficients of n environmental variables 

X n = Independent variables 

RUF = Predicted elk space use as a function of n environmental variables.  

 

I entered all the linear relationships into the multiple linear regression model, but only 

obvious non-linear relationships were included.  I used backwards stepwise multiple 

regression to identify significant variables and obtain the final beta coefficients and 

constant.  I applied the RUF model back to the landscape by calculating suitability for 

each hexagon using the regression model and created a suitability map of the study area. 

 

The model was evaluated using an independent data set of 19 elk (Appendix 1).  I 

visually compared individual elk-variable relationships between the model building and 

validation cohorts.  I assessed the mean landscape suitability as predicted by the RUF 

model as well as compared the individual elk SDs to the RUF model using the WO, the 

AO and the DVI Indices (General Methods 5.2-5.3).  I also compared random SDs to the 

RUF model (as in Chapter 1) using WO, AO and DVI Indices.  I evaluated if the model 
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predicted each of these indices better than by random chance using a 2-tailed independent 

samples t-test.  I calculated the mean and 95% confidence intervals of the mean of all 

indices for both elk and random comparisons.  I deemed the model as having predictive 

ability if it performed better than random chance with respect to all three indices.  
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Results 

Backwards stepwise multiple regression identified Prox, CW, CW2, Deciduous2 and 

Roads as significantly influencing elk space use and together explained 61.3% of the total 

variation in elk space use (ANOVA; P<0.001, df = 5; 173; Table 2.1). Stand age was 

highly correlated with Prox (Pearson Correlation (2-tailed) r=0.82; P<0.001) and 

subsequently eliminated from the multiple linear regression model.  Roads, Deciduous2 

and CW2 showed positive linear relationships between suitability and elk use (r=0.585, 

R2= 0.342; r= 0.432, R2=0.187, and r= 0.288, R2= 0.083; respectively).  Age, CW and 

Prox showed negative relationships with elk use (r= -0.692, R2= 0.479, r= -0.020, R2= 

0.000, and r= -0.714, R2= 0.510, respectively), all correlation and regression relationships 

were significant (Pearson Correlation (2-tailed): P<0.001 and ANOVA: P<0.001, 

respectively) except for CW (Pearson Correlation (2-tailed): P=0.788 and ANOVA: 

P=0.788; Table 2.2).  Relationships were similar to the validation cohort (Table 2.3; 

Figures 2.3 and 2.4). 

 

Average suitability of the landscape was 0.692 (Std.dev = 0.38; n= 404,899; Figure 2.5) 

whereas average suitability of individual elk SDs (AO Index) was 0.767 (SE= 0.008; 

n=19) and weighted average suitability of individual elk SDs (WO Index) was 0.862 

(SE= 0.015; n=19; Figure 2.6).  Average suitability and weighted average suitability of 

random SDs (AO Index =0.727, SE= 0.011; WO Index=0.726 SE= 0.014, n=95, 

respectively) were significantly lower than for elk SDs (2-tailed t-test P=0.013 and 

P<0.01, respectively; Figure 2.6).  Mean difference between elk and random DVI Indices 

was 0.0491 (95% C.I. lower: 0.0392, upper: 0.0598).  The RUF model performed 16% 
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better than by random chance alone and predicted elk space use significantly better than 

by random chance (2-tailed t-test P<0.01; Figure 2.7).  

 

Table 2.1.  Estimates of RUF coefficients (β) and standardized coefficients (β1) 

 Predictor β Std. Error of β Standardized coefficients; β1
Enter Constant 0.306* 0.150  

 Prox -0.003*** 0.000 -0.529 
 CW2 0.607*** 0.148 +0.229 
 Roads 0.000*** 0.000 +0.220 
 CW 0.000*** 0.000 -0.185 
 Deciduous2 0.255* 0.125 +0.110 

Note: Relative importance of variables is indicated by the magnitude of β1.  
R2=0 .613 (P<0.001). * P< 0.05, ***P<0.001. 
 

Table 2.2. Correlation and regression analyses between each variable and the suitability 
band for the model development cohort of 18 elk utilization distributions.   
 

Variable 
 
r 

Pearson 
Correlation 

 
R2

 
ANOVA 

Roads 0.585 0.000 0.342 0.000 
Deciduous2 0.432 0.000 0.187 0.000 

CW -0.020 0.788 0.000 0.788 
CW2 0.288 0.000 0.083 0.000 
Age -0.692 0.000 0.479 0.000 
Prox -0.714 0.000 0.510 0.000 

 

Table 2.3. Correlation and regression analyses between each variable and the suitability 
band for the validation cohort of 19 elk utilization distributions.   
 

Variable 
 
r 

Pearson 
Correlation 

 
R2

 
ANOVA 

Roads 0.454 0.000 0.210 0.000 
Deciduous2 0.483 0.000 0.230 0.000 

CW -0.139 0.057 0.014 0.057 
CW2 0.367 0.000 0.130 0.000 
Age -0.556 0.000 0.310 0.000 
Prox -0.676 0.000 0.460 0.000 
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Figure 2.3. Elk-variable relationships for both cohorts of elk data in the Cameron Lake 
region. Left column represents validation cohort of 19 elk and right column 
represents model development cohort of 18 elk.   
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Figure 2.4. Elk-variable relationships for both cohorts of elk data in the Cameron Lake 
region. Left column represents validation cohort of 19 elk and right column 
represents model development cohort of 18 elk.   
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Figure 2.5. Frequency of RUF suitability for all hexagons in the study area (n=404,899).  
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Figure 2.6. Weighted overlap (filled squares) and average overlap (open squares) index 
scores between the RUF model and 19 individual elk SDs and between RUF 
model and 95 random elk SDs. Mean is represented by squares; bars represent 
95% confidence intervals. 
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Figure 2.7. Deviation from ‘no selection’ pattern between the RUF model and 19 
individual elk SDs and between the RUF model and 95 random elk SDs. 
Means are represented by diamonds; bars represent 95% confidence intervals. 
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Discussion 

Inductive models do not provide the underlying ecology behind the observed resource 

selection, therefore they are less informative than deductive models.  They simply help to 

identify significant variables that can account for the observed variation in animal 

distribution or space use (Morrison et al. 1992) and do not consider the effects of site 

familiarity or fidelity.  But, inductive models are very helpful when used for exploratory 

purposes as they can sift through many variable relationships and identify those which 

might warrant further investigation.  

 

In this case, the variable relationships used in the RUF model reflected elk resource use 

patterns, which was a notable improvement upon the HSI model (Chapter 1).  The RUF 

model identified the proximity to a forage-cover edge as having greatest relative 

influence on elk space use, explaining approximately 50% of the variation.  The 

relationships outlined by the regression model suggest that we can expect to see elk using 

edge or adjacent habitat.  Younger forest stands that provide both forage and cover are 

also highly favourable as are areas along roadsides in close proximity to recent logging 

and reforestation operations.  The elk-variable relationships depicted in this model 

suggest a dependence on recent forest harvesting activities; these relationships, especially 

roads, should be individually investigated before accepting these correlations as causal 

evidence.  Nevertheless, if management for increased elk density becomes a primary goal 

within the Cameron Lake area and possibly within the greater Kenora region, decisions 

will be tied to harvesting and silvicultural practices that enhance the amount and quality 

of edge.  
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The RUF model predicted a good overall landscape suitability, but the distribution was 

very skewed towards the extremes, with the majority of the landscape having very high 

(0.9 to 1.0) suitability and a smaller proportion having very poor suitability (0.0 to 0.1).  

The highly skewed distribution resulted in a poor reflection of animal use intensity as 

measured by the DVI Indicex.  Without a strong variability in RUF values (especially 

intermediate RUF values) within the spatial extent of an animal’s home range, these 

indices have difficulty detecting a selection pattern, even when selection is obvious at the 

landscape level.  I found it surprising that the RUF model did not depict a gradual change 

in suitability between areas of high and low use intensity, considering the model is based 

on varying degrees of use intensity rather than a binary used and available design.  I am 

curious to know if this is a result of including animals that are unsuccessful or who do not 

belong to the same life history cohort (sex or age groups) or low sampling intensities, as 

all of these actions may bring extra variation into the system and act to dilute (or average) 

the relationship between use intensity and resources. 

 

RUF models will always show an extreme variation in resource suitability (0 to 1) even 

in circumstances when actual resource suitability is not optimal.  When unsuccessful 

animals, living in sink environments, are included in a RUF model, they add poor 

resource-use intensity relationships to the model, which act to moderate the true 

successful relationships.  Therefore to reduce variability in these resource-suitability 

relationships, RUF models should be based only on successfully reproducing animals.  

Grouping animals of similar age or sex categories or creating RUF models based on a 
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particular behaviour (Marzluff et al. 2001) may also help to alleviate some of the 

variation and facilitate a better understanding of the ecological relationships behind the 

space use pattern.  Unfortunately, my sample size was not large enough to create separate 

RUF models for different elk cohorts or behaviours. 

 

A greater number of fixes used to create the UD will characterize an animal’s space use 

with greater accuracy, showing detailed peaks and valleys within a home range (Burt 

1943) or even core areas (Samuel et al. 1985).  New technologies such as Global 

Positioning System (GPS) and satellite collars make it possible to achieve extremely high 

fix intensities, attaining good depiction of animal space use by reducing the inclusion of 

obvious barriers (lakes) or unused resources.  The application of brownian bridges to 

kernel estimators is the next step in furthering the accurate portrayal of animal space use, 

since they aim to connect disjointed regions based on the time and distance of successive 

relocation points (Powell 2000).  For this study, I did not have a large enough sample size 

to exclude animals with lower sampling intensities so I may have increased the 

possibility of inaccurately depicting elk resource use in the Cameron Lake area.  

 

Although I was not able to meet the above requirements to minimize variation, the 

validity of the model should not be too highly scrutinized because it did explain over 

60% of the variation in elk space use, improved upon the null model by 16% and 

performed significantly better than the null model with respect to space use.  The more 

important question is; did constructing the RUF model, based on actual animal radio-
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locations with the possibility of including sources of variation, significantly improve 

upon the more general HSI approach? This question is addressed in chapter 3. 
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CHAPTER 3. 

A comparison of deductive and inductive modeling 

approaches. 
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Introduction 

Inductive modeling techniques require a tremendous amount of data collected on specific 

wildlife populations to accurately portray and predict resource use.  They require one data 

set for the construction of the model as well as a separate data set (independent animals) 

to properly assess the predictive ability of the model.  When much of a species’ ecology 

is well known, deductive models are less expensive to construct as they require only one 

data set for validation and any subsequent model adjustments.  At present, we do not 

know if there is a scientific benefit of using one technique over the other, so when much 

of today’s ecological research is limited by strict financial budgets it seems only logical 

to use the most economical study design for a research project.  In light of this, the 

current trend toward expensive inductive wildlife-resource modeling techniques (Corsi et 

al. 1986, Boyce and McDonald 1999, Marzluff et al. 2001, Boyce et al. 2002, , Manly et 

al. 2002,  Marzluff et al. 2004) is unfounded since a direct comparison between the two 

approaches has yet to be accomplished.   

 

A recent attempt was made by Dettki et al. (2003) to compare inductive and deductive 

resource modeling techniques, but a direct comparison turned out to be impossible 

because differences were attributed to variation in model variables.  To accurately 

compare these two modeling approaches, the models must be built using the same 

variables so any difference in predictive ability is attributed to the method of model 

construction, and not to differences in variables.  
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My goal for this chapter was to determine which modeling technique, inductive or 

deductive, demonstrated the best predictive ability when using the same variables.  I 

hypothesized that the inductive approach would produce the better predictive model 

because it is based on how animals are actually using the resources, rather than a 

perceived notion of how they should be using them.  
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Methods 

I tested two competing methods of model development in order to determine which 

method better described resource use of reintroduced elk in northwestern Ontario.  Both 

methods used identical variables; distance to the nearest forage-cover edge (Prox), 

density of primary and secondary roads per km2 (Roads), stand age (Age), the width of 

cover associated with an edge (CW), and the amount of deciduous trees in a stand 

(Deciduous).  Where the deductive model assigned a predicted suitability to the value of 

each variable and grouped them into model components (Chapter 1), the inductive model 

did not group variables into model components and related the value of each variable to 

the degree of animal space use using multiple regression (Chapter 2).  

 

Because I could not detect a significant difference between HSI models E, F and G 

(Chapter 1), I compared the RUF model to all three of these HSI models.  To do so, I 

compared the AO and WO Indices (General Methods 5.3) between the resource models 

and elk SDs to determine which model predicted the highest resource suitability (General 

Methods 5.3).  I then compared AO and WO Indices between elk and random SDs (as in 

Chapter 1) to evaluate if the model predicted each of these indices better than by random 

chance using a 2-tailed independent samples t-test.  I calculated the difference between 

elk and random index scores and assessed which model outperformed random index 

scores the most using a one-way ANOVA. 

 

I compared each model’s ability to predict elk space use in northwestern Ontario using 

the DVI Index (General Methods 5.2) and further assessed the difference between actual 
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elk suitability distributions and random suitability distributions.  I calculated the 

difference between elk and random DVI Index scores and assessed which model best 

outperformed random index scores using a one-way ANOVA.  I also assessed the 

similarity (or overlap) of the resulting suitability maps between the two types of models 

(HSIG and RUF) using the VI Index. 

 

The model that predicted the highest weighted overlap and DVI Index score between the 

model and actual elk suitability distributions, as well as showed the greatest difference 

between actual and random indices, was deemed ‘the best’.   
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Results 

The overall landscape suitability was similar for all models but the average RUF 

suitability of elk SDs was higher than those of the HSI models (ANOVA for WO and AO 

Indices: P<0.001, df =3; 376; Figure 3.1). All models predicted suitability better than by 

random chance (all WO and AO Index 2-tailed t-tests: P<0.01; Table 3.1) but the 

difference between elk and random suitability was greatest for the RUF model (ANOVA 

for WO Index: P<0.001, df =3;376; Figure 3.2).  Mean DVI Index scores among the 

RUF and HSI models were the same (ANOVA: p=0.847; df=3; 72) but the RUF showed 

the greatest difference between elk and random DVI Indices (ANOVA: P<0.01, df = 3; 

72; Figure 3.3).  Figures 3.4 and 3.5 show maps of the study area derived using the HSI 

model and RUF model, respectively.  Note that model HSIG was used as a visual 

representation of all three HSI models as they were not significantly different from one 

another. The predicted suitability of models HSIG and RUF were similar (VI Index 

=0.883; upper 95% CI=0.891; lower 95% CI =0.875) throughout areas used by elk.  

 

Table 3.1. Comparison between elk and random SDs for WO and AO Indices. 
 

Weighted Overlap Index Average Overlap Index  
Model 

t d.f. 2-tailed 
Sig. 

t d.f. 2-tailed 
Sig. 

HSIE 3.607 46.719 0.001 2.899 64.687 0.005 
HSIF 4.475 47.868 0.000 3.432 62.811 0.001 
HSIG 5.009 49.310 0.000 3.476 63.586 0.001 
RUF 6.513 55.416 0.000 4.404 77.330 0.000 
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Figure 3.1. Weighted overlap (filled squares) and average overlap (open squares) index 
scores between models and 19 elk SDs. Squares represent mean, bars 
represent 95% confidence intervals of the mean. 
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Figure 3.2. Difference between elk (filled squares) and random (open squares) SDs 

Squares represent mean, bars represent 95% confidence intervals of the mean. 
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Figure 3.3. Mean absolute difference between elk and random DVI Index scores. Open 

circles represent mean, bars represent 95% confidence intervals of the mean. 
Italicized letters represent membership to significantly different means (Tukey 
HSD and Games-Howell). 
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Figure 3.4. Resource suitability map of HSIG in the Cameron Lake area. Darker shades 
represent lower elk resource suitability.  
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Figure 3.5. RUF suitability map of the Cameron Lake area. Darker shades represent 
lower elk resource suitability. 
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Discussion 

The RUF model appeared to show a better predictive ability than the HSI models since 1) 

the RUF model showed the highest suitability of elk SDs (WO and AO Indices), even 

though mean landscape suitability for the HSI and RUF models were similar, and 2) the 

RUF showed a greater difference between random and elk indices (WO and DVI) as 

compared to the HSI model.  It seems reasonable that the RUF would perform better than 

the HSI because it is based on how the elk are actually using the resources.  However, all 

models showed similar DVI Index scores, which sheds some concern on the apparent 

success of the RUF.   

 

Although the landscape suitability did not differ among models, the RUF model predicted 

a more drastic change in resource suitability throughout the landscape (Figure 3.5), 

ranging from 0 to 1.0, as compared to the range in HSI suitability, which was more 

moderate and never reached 0 (Figure 3.4).  The drastic change in resource use predicted 

by the RUF model can be attributed to the underlying assumption of RUF models.  They 

always assume that there are relatively poorer and higher quality resources in an area (in 

the outer and inner bands of the SD, respectively) and that the degree of space use is 

directly related to resource quality.  When this assumed change in resource suitability is 

used to construct a regression model, it should result in a resource suitability that spans 

the scale of the suitability distribution (as long as the model is applied to the same spatial 

location from which it is derived).  On the contrary, variable components within HSI 

models do not necessarily have suitability ratings that range the extent of a SD, or from 0 

to 1 (Figure 1.1a), nor are the combined effects of all variables forced to range from 0 to 
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1.  As a result, it is unlikely that a HSI model will have the same variation in suitability as 

predicted by a RUF model. It is this difference that probably accounts for the perceived 

better performance of the RUF as compared to the HSI model.  

 

When visually comparing the HSI and RUF models (Figures 3.4 and 3.5) it appears as 

though the models predict similar areas as highly suitable (although some variation is 

noticeable).  As such, when comparing the relative shape, or pattern of space use (DVI 

Index) of actual elk SDs, the models do not differ because elk are located primarily 

within the areas of the highest suitability.  The models were also very similar when the 

predicted suitability of areas known to have elk occupancy were directly compared (from 

the VI Index).  This provides evidence that both models predict good elk habitat 

similarly.  It is not surprising that the RUF model predicts space use better than random 

chance as compared to the HSI as the degree of space use is highly dependent on the 

magnitude of difference between the highest and lowest suitability values.  A model that 

has very poor suitability located at the peak of a random SD will show a greater 

difference between elk and random DVI Indices (assuming the elk SD has a high 

suitability at its peak) as compared to a model with a moderate suitability at the peak of a 

random SD.  

 

The RUF would follow the space use pattern of elk SDs more closely than the HSI model 

if the RUF model had fewer sources of variation (i.e. Chapter 2) because it would show 

differences of within-home range suitability.  The inclusion of many sources of variation 

in the RUF model may have brought it closer to depicting general elk-resource 
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relationships, (which is the ultimate goal of an HSI model) and thus showed a similar 

space use pattern to the HSI model.  An alternative approach that may eliminate some 

sources of variation would be to create separate RUF models for individual animals (as in 

Marzluff et al. 2004) but this technique would require validation to occur on a temporal 

scale (e.g. individual models built from data collected in years 1 and 2 but compared to 

SDs created with data collected in years 3 and 4) as opposed to using a separate cohort of 

animals. 
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General Summary 

Landscape suitability and the decline of the LOW population 

A reasonable resource base within the Cameron Lake area was demonstrated by the HSI 

models. The RUF model also identified edge, a prominent feature within the region, as 

the major driving force behind elk resource selection.  As a result, I conclude that a lack 

of proper resources did not cause the decline in the Cameron Lake elk population. 

Instead, the decline may be a reflection of an adjustment period; where animals explore 

the landscape for appropriate forage, learn methods to minimize interspecific 

competition, how to evade predators and encounter new diseases or parasites.  

 

One known threat to the LOW elk herd is Meningeal worm (Parelaphostrongylus tenuis), 

a parasitic nematode normally found in white-tailed deer within the eastern states and 

provinces.  The nematode rarely causes disease in white-tailed deer (Lankester 2001) but 

can cause serious pathology in elk (Anderson et al. 1966).  Infection has been implicated 

in the failure of some eastern elk reintroductions (Carpenter et al. 1973, Raskevits et al. 

1991), was thought to limit population growth in Pennsylvania (Eveland et al. 1979) and 

was diagnosed within the reintroduced elk herd in Bancroft, Ontario (Rick Rosatte, pers. 

comm.).  Meningeal worm is widespread within the white-tailed deer population in the 

Cameron Lake area, where infection rates are known to reach 85% (McIntosh 2003).  

Consequently, transmission from deer to elk is very possible and requires further 

investigation as meningeal worm may be a limiting factor to the success of the Cameron 

Lake elk herd.  
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Deductive models 

HSI models describe causal relationships between individual variables and animal use, 

but may improperly model the overall relationship of the combined variables.  For 

example, most general HSI models created for elk, suggest weighting the forage 

component more heavily than other model components.  This weighting scheme was not 

the most appropriate for elk in northwestern Ontario.  As such, deductive models may 

lack precision and should be fine tuned when applied to a specific area, especially when 

the general wildlife relationships were derived in a very different location.  But because 

HSI models describe causal relationships, they can be extremely useful for evaluating 

landscape suitability for reintroduction programs. This aspect is increasingly important as 

national and international biodiversity strategies aim to monitor, remediate and even 

expand habitats for the purpose of protecting species.  

Inductive models 

Although inductive modeling techniques can fine tune relationships to a specific area, 

their major downfall is not the technique, rather it is their improper use. For instance, 

sample sizes are often very small as it is expensive to collect data for the construction of 

inductive models (e.g. GPS locations to create a Resource Selection Function model). As 

a result, researchers may be reluctant to group animals by specific cohorts (e.g. sex, 

condition or age) or behaviours (as in Marzluff et al. 2001) or to eliminate unsuccessful 

animals.  However, without controlling for these factors, inductive techniques may be 

modeling an inappropriate representation of important resources.  When inductive models 
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are used appropriately, they are powerful tools to assess the relative influence that a suite 

of variables or an individual variable has on resource selection. 

 

Researchers should be aware of the limitations and benefits of different inductive 

modeling techniques as the choice of technique will depend upon the question or nature 

of each study.  RUF models always model within home-range suitability, either at the 

individual level or at the herd or population level.  As a result they provide a finer 

resolution to general used vs. available study designs. However, they always assume that 

differences in use intensity are linearly related to perceived resource quality.  This aspect 

of RUF models should be further investigated as this assumption may not hold true. For 

example, resource use may be based on perceived thresholds rather than a gradual linear 

function.  In addition, RUF models do not take into account site familiarity or fidelity, as 

these may play a larger role in determining selection than the quality or quantity of 

resources alone.   

Suggested method for applying inductive and deductive models 

The most important part of developing a wildlife-resource model is the validation 

process.  Models lacking this evaluation should never be used to make management 

decisions.  It is therefore mandatory to collect at least one data set to complete the 

validation process regardless of which modeling technique is used.  With this in mind, I 

suggest a partnership between deductive and inductive techniques as they are both helpful 

in developing the best possible model to describe wildlife-resource use.  When budgets 

are tight or the specific wildlife-resource relationships are well known for a particular 

region, a model should be built using a deductive approach. The required data set put 
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aside for model validation can also be employed to construct an inductive model and 

subsequently used to help fine tune the deductive model by providing insight into the 

appropriate mathematical combination or weighting scheme of HSI variables. This helps 

provide a repeatable and empirical method for determining appropriate weighting of 

model components. 

 

When budgets are not tight or the underlying ecological relationships are not well 

understood, and information on individual reproductive success is available, an inductive 

approach can be used. I suggest collecting two independent data sets; one for model 

building and one for validation, as the integrity of this model needs to be well established 

since the underlying ecological relationships are typically unknown or not modeled 

independently.  

 

If recruitment data are unavailable, deductive techniques should be employed to provide 

information on the spread of resource quality on the landscape. This will give baseline 

information to help choose appropriate animals to fine tune the deductive model or to 

create an inductive model (i.e. not including animals occupying unsuitable or possible 

sink areas). There is no point in creating or fine tuning a resource model that is based on 

inferior resources! 

 

Reintroductions 

Reintroduction programs are challenging to model since the general wildlife-relationships 

of a deductive model, or traditional weightings of model components, may not hold true 
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in the new landscape. This was very apparent within the Cameron Lake region as the 

important factor driving elk selection was forage-cover edge and not strictly forage.  On 

the contrary, inductive methods should not be applied as a stand-alone procedure because 

they do not show cause and effect relationships.  Therefore, resource evaluation for 

introduction programs should be conducted as a two step process, ideally before animals 

are introduced into a landscape. 

 

A deductive model should be completed and based on general wildlife-resource 

relationships, at an appropriate scale relevant to the animal or population, to assess the 

quality and quantity of resources within an area.  If resources are deemed adequate and 

there are no other known factors that may be problematic (e.g. known parasites or 

predator densities that may hinder reintroduction success) then the reintroduction 

program can go ahead.  Once animals have had an appropriate amount of time to disperse 

and adjust to the landscape, I propose that an inductive model should be completed to 

evaluate if general wildlife-resource relationships hold true within the new system or 

whether they require adjustment.  Creating the inductive model will help researchers to 

fine tune their understanding of the population in its new environment and may bring 

forth new information that will help with future management decisions.  If the population 

does not flourish within its new environment, the inductive model may help to identify 

possible factors causing the decline.  This information may be helpful to remediate 

problems within the area or can be used to further the knowledge base of factors 

inhibiting reintroduction success for the species under study.  
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Model validation 

Assessing the predictive performance of a model is extremely important.  I believe that 

the VI Index, in its present state, does not provide the best method for validating resource 

models by comparing them to animal space use.  The problem arises because a resource 

model typically does not have the same range of within home-range suitability as does a 

SD based on animal relocations.  As a consequence, any comparison between the SD and 

resource model using the VI Index is strictly relative (J.J. Millspaugh, pers. comm.) and 

empirical assessment of ‘how good the model is’ is not possible.  This can be problematic 

when the goal is to compare more than one model.  In this case, I developed the DVI 

Index to facilitate the direct comparison of multiple models, but I am not convinced that 

this is the answer to the validation dilemma.  In the future, I would like to see a resource 

map transformed into a utilization distribution (and adjusted to a SD). This would ensure 

that both the resource model and the SD have the same range in suitability (i.e. 0 to 1) 

and would facilitate a direct comparison using the VI Index.  Comparison would be done 

at an appropriate scale (i.e. individual, herd or population) and would occur within the 

same spatial location.  I suggest creating a UD from the model by placing random points 

within the resource suitability categories (i.e. categories of 0.1 suitability increments as in 

this study), where the number of points placed in a category is proportional to the 

category’s resource suitability and the amount of area within the SD that the category 

occupies.   
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Resource modeling 

Resource selection studies assume that the selection of higher quality resources will result 

in higher fitness (Rosenzweig and Abramsky 1986, Garshelis 2000) but higher quality 

resources are rarely pre-determined using fitness data.  Therefore resource selection 

modeling techniques may incorporate poor relationships into a model.  To address this 

problem, the direction of resource modeling should steer towards using fitness to identify 

optimal choices of resource selection (Marzluff et al. 2004).  This will likely require the 

synthesis of traditional habitat selection studies (Rosenzweig 1981, Morris 2003) with 

new resource selection techniques (Boyce et al. 2002, Marzluff et al. 2004).  Such a 

synthesis would be beneficial as management decisions that manipulate resources that are 

closely tied to animal fitness should result in a more powerful response to treatments.   
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Appendix 1.  
 

Table 1. Summer sample sizes of elk used for model building and model validation. 
 

Model Building Model Validation 
Tag Number of 

relocation points 
Tag Number of 

relocation points 
73 30 88 31 
85 25 90 32 
89 28 91 32 
111 76 98 36 
112 21 113 26 
118 25 115 21 
119 75 122 75 
120 48 398 26 
316 70 400 27 
402 20 401 81 
403 78 405 49 
404 82 407 27 
406 30 408 23 
409 26 410 80 
411 68 412 29 
415 20 416 24 
427 83 417 21 
441 27 420 72 

  552 26 
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Appendix 2. Sample calculations of the DVI Index. 
 
Table 2. Suitability values for each hexagon within three distributions, HSI, SD and ‘no 

selection’, their respective standardized suitability at each hexagon and the 
minimum standardized suitability between the SD and HSI, and between the SD 
and ‘no selection’.  The suitability of the HSI model deviates in shape from the 
animal’s SD. 

Suitability Standardized suitability 

Minimum 
standardized 

suitability 

Hexagon 
label HSI SD 

No 
selection1 HSI SD 

No 
Selection2

SD & 
HSI 

SD & 
‘no 

selection’
1 0.5 0.01 0.7 0.037594 0.000988 0.045455 0.000988 0.000988 
2 0.3 0.1 0.7 0.022556 0.009881 0.045455 0.009881 0.009881 
3 0.5 0.2 0.7 0.037594 0.019763 0.045455 0.019763 0.019763 
4 0.8 0.3 0.7 0.06015 0.029644 0.045455 0.029644 0.029644 
5 0.6 0.4 0.7 0.045113 0.039526 0.045455 0.039526 0.039526 
6 0.6 0.5 0.7 0.045113 0.049407 0.045455 0.045113 0.045455 
7 0.4 0.6 0.7 0.030075 0.059289 0.045455 0.030075 0.045455 
8 0.4 0.7 0.7 0.030075 0.06917 0.045455 0.030075 0.045455 
9 0.6 0.8 0.7 0.045113 0.079051 0.045455 0.045113 0.045455 
10 0.8 0.9 0.7 0.06015 0.088933 0.045455 0.06015 0.045455 
11 0.9 1.0 0.7 0.067669 0.098814 0.045455 0.067669 0.045455 
12 0.2 0.9 0.7 0.015038 0.088933 0.045455 0.015038 0.045455 
13 0.6 0.8 0.7 0.045113 0.079051 0.045455 0.045113 0.045455 
14 0.6 0.7 0.7 0.045113 0.06917 0.045455 0.045113 0.045455 
15 0.4 0.6 0.7 0.030075 0.059289 0.045455 0.030075 0.045455 
16 0.8 0.5 0.7 0.06015 0.049407 0.045455 0.049407 0.045455 
17 0.9 0.4 0.7 0.067669 0.039526 0.045455 0.039526 0.039526 
18 0.9 0.3 0.7 0.067669 0.029644 0.045455 0.029644 0.029644 
19 0.7 0.2 0.7 0.052632 0.019763 0.045455 0.019763 0.019763 
20 0.7 0.1 0.7 0.052632 0.009881 0.045455 0.009881 0.009881 
21 0.6 0.1 0.7 0.045113 0.009881 0.045455 0.009881 0.009881 
22 0.5 0.01 0.7 0.037594 0.000988 0.045455 0.000988 0.000988 

Sum 13.3 10.12 15.4 1 1 1 0.672427 0.709486
 

1 Note: the suitability value of each hexagon in the ‘no selection’ model can be any 
arbitrary value greater than 0. 

 
2 Note: following standardization, the suitability value of each hexagon in the ‘no 
selection’ model is equal to 1 divided by the total number of hexagons. 
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Table 3. Suitability values for each hexagon within three distributions, HSI, SD and ‘no 

selection’, their respective standardized suitability at each hexagon and the 
minimum standardized suitability between the SD and HSI, and between the SD 
and ‘no selection’.  The suitability of the HSI model is similar in shape to the 
animal’s SD.  

Suitability Standardized suitability 

Minimum 
standardized 

suitability 

Hexagon 
label HSI SD 

No 
selection1 HSI SD 

No 
Selection2

SD & 
HSI 

SD & 
‘no 

selection’
1 0.01 0.01 0.7 0.000987167 0.000988 0.045455 0.000987 0.000988
2 0.01 0.1 0.7 0.000987167 0.009881 0.045455 0.000987 0.009881
3 0.2 0.2 0.7 0.019743337 0.019763 0.045455 0.019743 0.019763
4 0.2 0.3 0.7 0.019743337 0.029644 0.045455 0.019743 0.029644
5 0.5 0.4 0.7 0.049358342 0.039526 0.045455 0.039526 0.039526
6 0.5 0.5 0.7 0.049358342 0.049407 0.045455 0.049358 0.045455
7 0.7 0.6 0.7 0.069101678 0.059289 0.045455 0.059289 0.045455
8 0.7 0.7 0.7 0.069101678 0.06917 0.045455 0.069102 0.045455
9 0.8 0.8 0.7 0.078973346 0.079051 0.045455 0.078973 0.045455
10 0.8 0.9 0.7 0.078973346 0.088933 0.045455 0.078973 0.045455
11 1 1 0.7 0.098716683 0.098814 0.045455 0.098717 0.045455
12 1 0.9 0.7 0.098716683 0.088933 0.045455 0.088933 0.045455
13 0.7 0.8 0.7 0.069101678 0.079051 0.045455 0.069102 0.045455
14 0.6 0.7 0.7 0.05923001 0.06917 0.045455 0.05923 0.045455
15 0.6 0.6 0.7 0.05923001 0.059289 0.045455 0.05923 0.045455
16 0.6 0.5 0.7 0.05923001 0.049407 0.045455 0.049407 0.045455
17 0.3 0.4 0.7 0.029615005 0.039526 0.045455 0.029615 0.039526
18 0.4 0.3 0.7 0.039486673 0.029644 0.045455 0.029644 0.029644
19 0.2 0.2 0.7 0.019743337 0.019763 0.045455 0.019743 0.019763
20 0.2 0.1 0.7 0.019743337 0.009881 0.045455 0.009881 0.009881
21 0.1 0.1 0.7 0.009871668 0.009881 0.045455 0.009872 0.009881
22 0.01 0.01 0.7 0.000987167 0.000988 0.045455 0.000987 0.000988

Sum 10.13 10.12 15.4 1 1 1 0.941043 0.709486
 

1 Note: the suitability value of each hexagon in the ‘no selection’ model can be any 
arbitrary value greater than 0. 

 
2 Note: following standardization, the suitability value of each hexagon in the ‘no 
selection’ model is equal to 1 divided by the total number of hexagons. 
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The general formula to calculate the standardized suitability for HSIi  (or SDi or ‘no 

selectioni’) is as follows: 

∑
=

= n

i
i

i
i

HSI

HSIHSIStd

1

.  

where Std.HSIi represents the standardized suitability of HSI (or SDi or ‘no selectioni’) at 

hexagon i.  Appendix Figures 1a and 1b show a two-dimensional representation of the 

unstandardized, and standardized HSI and SD, respectively, as shown in Appendix Table 

2.  Appendix Figures 1c and 1d show a two-dimensional representation of the 

unstandardized and standardized ‘no selection’ and SD, respectively, as shown in 

Appendix Table 2.  Appendix Figures 2a-d provide a visual representation of a similar 

example using data from Appendix Table 3.  In both examples, the VI Index of ‘no 

selection’ is the same, but the resource model in Appendix Figures 2a and b resembles 

animal space use to a greater degree than the resource model depicted in Figures 1a and 

b. 

 

The VI Index between the SD and HSI is calculated using equation 5 (General Methods 

5.2), or by summing the minimum standardized suitability (column “SD & HSI”).  The 

resulting VI Index using data in Appendix Table 2 is 0.672427.  The VI Index of no 

selection is calculated using the same method, by summing the minimum standardized 

suitability (column “SD & no selection”). The resulting VI Index of no selection using 

data in Appendix Table 2 is 0.709486. 

 

Using equation 6 (General Methods 5.2), the DVI Index is calculated as follows; 
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DVI Index = 0.672427 – 0.709486= -0.037059 

Similarly, the DVI Index using data in Appendix Table 3 is 0.231557 

 

When the DVI Index is negative, the resource model does not reflect actual resource 

suitability as predicted by animal space use (Appendix Table 2, Figure 1). When the DVI 

Index is positive, the model shows a similar pattern of resource suitability as compared to 

animal space use (Appendix Table 3, Figure 2).  
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Figure 1.  Two dimensional representation of an unstandardized SD and HSI model (A),  standardized SD and HSI model (B), 

unstandardized SD and ‘no selection’ (C) and standardized SD and ‘no selection’ (D).  The HSI model deviates in shape 
from the animal’s SD.  Each bar represents a hexagon and bars within the same hexagon label represent overlapping 
hexagons. Data from Appendix Table 2. 
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Figure 2.  Two dimensional representation of an unstandardized SD and HSI model (A),  standardized SD and HSI model (B), 

unstandardized SD and ‘no selection’ (C) and standardized SD and ‘no selection’ (D).  The HSI model shows a similar shape 
to the animal’s SD.  Each bar represents a hexagon and bars within the same hexagon label represent overlapping hexagons. 
Data from Appendix Table 3. 
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