Resource Selection

Eva Strand CNR Remote Sensing and GIS Lab

Habitat map

Available habitat

Expected distribution of 100 points??

Use

Resource selection ratio (use/available) Manly-Chesson Selectivity Index

Garshelis 2000

Conditional probability Scenario 1

Scenario 1

10 points2 habitats (only one habitat present)

	% availability		use/availability	
Habitat 1	100	100	1	

Conditional probability Scenario 2

	••••
• •	

10 points2 habitats

% availability % use use/availability

Habitat 1 Habitat 2

Conditional probability: Scenario 3

Scenario 3

10 points 2 habitats

	% availability	% use	use/availability
labitat 1 labitat 2			

Does this mean that the animal uses the two habitats at random?

Conditional probability: Aspen distribution

Fatal Flaws in Habitat Selection Analysis according to Garshelis 2000

1) The assumption that the more available a resource is the more likely an animal is to use it.

 The assumption that selection is related to each habitat's potential contribution to individual fitness and population growth.

Overlay Analysis in GIS

Gathering information from multiple data layers

Vector Data

Coordinate-based data structures commonly used to represent map objects. Each object is represented as a list of X,Y coordinates

Examples - tree, poles, roads, housing developments, zoning districts

Points

Polygons

Raster Data

Cell-based representation of map features. Each cell has a value. A group of cells with the same value represent a feature.

Examples - satellite imagery, aerial photography and some come from software packages like GRID and ERDAS.

Point / Polygon overlay

Point / GRID overlay

"Piercing Needle" Approach

Multiple layers of data are in relative position with one another inserting a "digital pin" through the stack of overlayed data.

This allows questions to be answered concerning *everything* occurring at a particular location.

This view of the world limits focus to a particular point and precludes wide-area landscape analysis.

GIS Overlay Analysis - Points

Overlay type	ArcView 3x	ArcGIS 9x	ArcInfo Workstation
Point to Polygon	Geoprocessing Wizard – Spatial Join	Join and Relates: Join – Join data based on spatial location	Arc: identity
Point to Grid	Spatial Analyst: Analysis – Tabulate Areas or Script: samplegrids.ave	Spatial Analyst: Raster Calculator Toolbox – Spatial Analyst Tools- Extraction- <i>Extract by Points</i> <i>or Sample</i>	GRID: sample

Polygon Overlays – on polygons or grids

What covertypes burned in the Selway-Bitterrot Wilderness in year 2000?

Fire perimeters 2000-

Region Wide: "Cookie Cutter Approach"

Vector data

- Clip
- Intersect Union

Raster data

- GRID clip (masking)
- Zonal statistics (GRID)
- Combine

GIS Overlay Analysis - Polygons

Overlay type	ArcView 3x	ArcGIS 9x	ArcInfo
Poly to Poly	Geoprocessing Wizard – Intersect or Union	Toolbox – Analysis Tools – Overlay – Union or Intersect	Arc: intersect Arc: union Arc: identity
Poly to Grid	Spatial Analyst: Analysis – Tabulate Areas Spatial Analyst – Zonal Statistics	Convert the polygon cover to a grid or the grid to a polygon Spatial Analyst – Zonal Statistics	GRID: zonalstats
Grid to Grid	Spatial Analyst: Analysis – Tabulate Areas or Extension: Grid Transformation Tools – Transform Grids - <u>Combine</u>	Spatial Analyst: Raster Calculator Combine(grid1, grid2) Spatial Analyst: Analysis – Zonal- Tabulate Areas	GRID: combine

Resource selection Statistical Methods Expected vs. Observed outcomes Simple ratio: % observed / % expected (Manly-Chesson Selectivity Index)

Chi-square

Example 1: Neu et al. 1974 used chi-squared analysis with a Bonferroni confidence interval to assess habitat selection for moose in burned areas.

Example 2: Young *et al.* (1987) used χ^2 analysis to demonstrate that the Northern Spotted Owl use old-growth habitats more than would be expected based on its proportion of the landscape

Example 3: Agee *et al.* (1989) used χ^2 analysis to evaluate habitat preference of grizzly bears

Resource selection Statistical Methods Expected vs. Observed outcomes

Resource selection software by Garton et al.

Methods

- 1) Neu et al. Chi-square analysis with Bonferroni Confidence Intervals
- 2) Friedman's method
- 3) Johnson's method
- 4) Quade's method
- 5) Aebischer's compositional analysis

Input to Resource selection software

- Number of animals
- Number of habitats
- % use for animals within habitats
- % available of habitats

Scales of selection

- Points within home range
- Home range within study area

```
; Number of blocks (animals)
Blocks = 13, 'pheasants'
; Number of treatments (habitats)
Treatments = 5, habitats
; Label for each habitat type
Labels = Scrub, Broad, Conifer, Grass, Crop
```

[Resources]

; resource u	use data (ent	ered by ani	imal on each	line)
Use = 1, 19	9.60, 1.97,	0.00, 0.0	00, 78.40	
Use = 2, 20	0.58, 14.70,	0.00, 0.4	40, 64.31	
Use = 3, 8	3.32, 5.73,	0.00, 58.9	90, 27.03	
Use = 4, 8	8.78, 23.86,	0.00, 12.2	24, 55.10	
Use = 5, 4	4.41, 30.29,	10.32, 54.9	98, 0.00	
Use = 6, 5	5.43, 30.52,	10.11, 53.9	94, 0.00	
Use = 7, 4	4.34, 31.24,	11.02, 53.3	39, 0.00	
Use = 8, 8	8.66, 38.71,	0.00, 52.0	51, 0.00	
Use = 9, 9	9.64, 53.16,	0.00, 37.1	17, 0.00	
Use = 10, 11	1.72, 8.82,	0.00, 79.4	14, 0.00	
Use = 11, 14	4.36, 32.56,	0.00, 53.0	0.00	
Use = 12, 9	9.70, 10.95,	0.00, 79.3	33, 0.00	
Use = 13, 5	5.53, 20.08,	4.11, 70.2	28, 0.00	

available resource

Available =	1,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	2,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	з,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	4,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	5,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	6,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	7,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	8,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	9,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	10,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	11,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	12,	3.22,	9.23,	0.75,	52.83,	33.98
Available =	13,	3.22,	9.23,	0.75,	52.83,	33.98

Resource selection Statistical Methods Expected vs. Observed outcomes

Logistic Regression

In a logistic regression analysis you would compare the locations where the phenomenon is present to those locations where it is absent (or to a random set).

Example 1 : Pereira and Itami (1991) used logistic regression to model effects on Red Squirrel habitat

Example 2: Beck et al. 2006 used logistic regression to model resource selection of elk in the Jarbidge Mountains, Nevada.

Statistical analysis: Manly BFJ, LL McDonald, DL Thomas, TL McDonald, and WP Erickson, 2002. Resource Selection by Animals pp.83-117, chapter 5, Kluwer Academic Publisher, Dordrecht/Boston/London.

Some considerations...

How is availability defined?

What is the accuracy of the point locations?

What is the spatial and thematic accuracy of the habitat layer?

Is the sample size large enough?

Are the data locations independent in time?

The Fence:

27 miles of 8 foot high fence About 40 square miles The Animals: 450 elk, 250 deer, 550 cowcalf pairs Approx. 180 collared The System: Loran-C Automated Telemetry System Positions every 15 seconds Accurate within 50 meters

Exercise outline

1. Create a home range for one Starkey elk.

2. Determine what habitat types are located within the home range (Availability)

3. Determine how many elk points fall within each habitat type (Use).

4. Through calculation of the 'Simple Ratio' determine if the elk (represented by GPS locations) selects certain habitat types over others within the home range.

5. Using the resource selection software, determine if **pheasants** are selecting for certain habitats using the method by Neu et al. and Compositional Analysis. How would you set up a similar study for the Starkey elk data?