Lab #7 – Fire spread simulation with FARSITE

NR506 - Advanced GIS Applications in Fire Ecology and Management

Objectives

- Create input layers in GIS for FARSITE
- Learn how to enter weather data into FARSITE
- Build a FARSITE project
- Run FARSITE and interpret the results

We will use data for Craig Mountain and use FARSITE to re-create the Maloney Creek fire, Aug 12-24, 2000

Flowchart for setting up a FARSITE project (see FARSITE Users Guide)

File Name	File Ext.	File Type	Required	Optional	
<u>Landscape</u>	.LCP	GIS	<u>Fuel Model</u> , <u>Slope</u> , <u>Aspect</u> , <u>Elevation</u> , <u>Canopy</u> <u>Cover</u>	<u>Crown Bulk Density</u> , <u>Crown Base Height</u> , <u>Stand Height</u> , <u>Duff</u> <u>Loading</u> , and <u>Coarse</u> <u>Woody</u> themes	
<u>Weather</u>	.WTR	Text	At least one file	<i>FARSITE</i> can use up to 5 .WTR files in a simulation	
<u>Wind</u>	.WND	Text	At least one file	<i>FARSITE</i> can use up to 5 .WND files in a simulation	
<u>Adjustment</u>	.ADJ	Text	Although required, this file can consist of all zeros	Adjustment factors other than zero are optional	
<u>Initial Fuel</u> <u>Moisture</u>	.FMS	Text	FARSITE needs moistures at least one day before the beginning of the simulation	none	
<u>Fuel Model</u> <u>Conversion</u>	.CNV	Text	none	yes	
<u>Custom</u> Fuel Models	.FMD	Text	none	For fuel models other than the 13 standard NFFL models	
<u>Fire</u> Acceleration	.ACL	Text	none	yes	
<u>Air Attack</u> <u>Resources</u>	.AIR	Text	none	needed to implement the air attack functions	
<u>Coarse</u> <u>Woody</u> <u>Profiles</u>	.CWD	Text	none	specifies > 3" fuels for the Coarse Woody GIS theme used by Post Frontal Combustion Model.	
<u>Burn Period</u>	.BPD	Text	none	specifies a daily burn period by date	
Gridded Weather and Winds	.ATM	Text	none	uses gridded weather files if a weather model to provide them is available	
<u>Ground</u> <u>Attack</u> <u>Resources</u>	.CRW	Text	none	needed to implement the air attack functions	

GIS File Data Units

File Theme	Required	Default Units	Alternate Units
elevation	yes	meters	feet
slope	yes	degrees	percent
aspect	yes	categories 1-25	degrees
fuel model	yes	13 NFFL models	custom or converted models
canopy cover	yes	categories 1-4	percent
tree height	no	meters*10	meters, feet, feet*10
crown base height	no	meters*10	meters, feet, feet*10
crown bulk density	no	kg/m₃*100,	kg/m³, lbs/ft³, lbs/ft³*100
duff loading	no	Mg/ha	tons/acre
coarse woody	no	coarse woody models	none

1. Generate Landscape layers for the Craig Mountain area in ArcGIS

Layers to generate are: elevation, slope, aspect, fuel models and canopy cover

- Start a new ArcMap project – make sure the Spatial Analyst extension is loaded.

- All data for this lab is located in c:\nr506\data\farsite_data

- All data in this folder is in projection: UTM, Zone 11, datum NAD83, map units meters

- Add the following layers:

dataset	description	data type	scale/resolution
ele	Elevation, meters	grid	30 m pixels
canopy	Canopy cover	grid	30 m pixels
Fuelmodel	Fuel models (1-13) created in lab#4	shapefile	30 m pixels
Fire_area83	Advancement of fire Aug15-24, 2000	coverage	
	Folder: c:/nr506/data/craig_mtn		
Canopy_lookup.	Lookup table for canopy codes	DBASE	
dbf			

NOTE: When working with FARSITE it is very important that all raster data layers have the same extent and bounding coordinates. You can easily ensure that this is the case by defining extent, mask etc. in the Options menu in Spatial Analyst.

file in

FA

- In the Spatial Analyst menu under Options set the parameters for the analysis as follows:

General: Working directory: c:\NR506\data\farsite_data Analysis mask: ele Extent: Same as layer 'ele' Cellsize: Same as layer 'ele'

The extent and bounding coordinates of the elevation layer 'ele' will be applied to all derived datasets.

- Create slope and aspect from the elevation layer using Spatial Analyst (you may have created these layers in Lab #4)
- FARSITE requires the canopy layer to be expressed in categories 1-4. The GAP canopy layer in your data folder is expressed as follows:

0 (<15%), 1 (15-33%), 2 (33-66%), 3 (>66%)

Reclassify the GAP categories 0-3 into FARSITE categories 1-4 using the *Reclassify* option in *Spatial Analyst*. Name the output raster *canopy_far*. The output layer will be limited to the analysis mask area (this is the extent of elevation) and the new *canopy_far* data layer will therefore have the same extent as the other layers.

Add the reclassified canopy layer to your ArcMap project

2. Generate ASCII GRIDS from the input rasters

. Use ArcToolbox to convert the raster grids to ASCII grids (can also be done in Arc Workstation).

- Start ArcToolbox Start Program Files ArcGIS ArcToolbox
- Select Conversion Tool Export from Raster Grid to ASCII

c:\nr506\data\farsite_data\elevati

- Use the same procedure to create ASCII grids for slope, aspect, canopy (reclassified) and the fuel model layer. Save all ASCII files in c:\nr506\data\farsite_data\elevation
 - 3. Build the Landscape file (.LCP) in FARSITE
 - Start FARSITE
 - Select New Project in the File menu
 - Begin creating the Landscape file (.lcp) by selecting *Input Landscape Generate Landscape file*

ł	xt	andscape (LCP) File Generation		•		x
	-	Load File (.LCP)	Clear Files	1		
	li	Save File (.LCP)	Latitude ^e	Units and Optic	ns	
	-		+ 46	DISTANCE	● Meters OFeet	
	\sim	Elevation ASCII	elevation	Meters	C Feet	ОК
nter the input ASCII grids you just /	ns i	Slope ASCII	slop	Degrees	C Percent	
S /	5	Aspect ASCII	asp	0 1-25	Degrees	
	C P	Fuel Model ASCII	fuel	Custom I	Convert 🔲 Const	Help
	e	Canopy Cover ASCII	canop	• Cat. 0-4	🔿 Percent 🥅 Const	
	c n	StandHeight ASCII		Meters	💌 🗖 Const	
Save the LandFile (LCP) in the		Crown Base Height		Meters	💌 🗖 Const	Cancel
	a	🗌 Crown Bulk Density		kg/m3	💌 🗖 Const	
Farsite_data folder.	0	Duff Loading ASCII		C T/ac	Mg/ha Const	
	C I	Coarse Woody ASCII			🗖 Const	
	-					
I	ir d	Description				
	u i	l				<u> </u>

4. Create the Weather file (.WTR and .WND) in FARSITE

Open Lewiston_weather_aug_15-24.xls (in the Farsite_data folder) to find daily weather information from the Lewiston, Idaho weather station during the time period August 15-24, 2000. Use this data as a guide when creating the weather file for FARSITE. The fire actually started on Aug 12. Since the weather throughout this time period was relatively constant you can assume that the weather for Aug 12-14 is about the same as it was for Aug 15.

Select Weather types in the Input menu

Create weather definitions for Low, Moderate, High and

	Extreme weather conditions.
Hi H Lo Time PM Save Changes Save File As File Retrieve Winds > DNDEF	Select Weather type Enter min, max temp and relative humidity Create a series of wind directions and speeds

Go to the next weather type (if you started with Low, you also have to do Moderate, High and Extreme)

Click OK when you are done with the weather data. Save the .WWD file in the farsite_data folder.

Weather Defini	tions				×
Weather Type	T Hi H	Lo Time P	M Sa	ive Changes	
High 💌	90 °F 🗄 30	<mark>%</mark> :1500	S	ave File As	
Elevation	-		- F	ile Retrieve	
4000 ft	F	\sim			=
Rain Amt.	E		V North		
	\sim			in proce	- 1
- <u> </u>	F	\sim	- 0 6n	r OK	
Units	F		- 🔿 2h	, <u> </u>	
English	TLo HI	Hi Time A	M 0 1h	r Help	
C Metric	50 °F - 60		그 오 왜	n Cance	

Select *Generate WTR/WND Files* in the *Input* menu to generate the weather for Aug 15-24, 2000. (or Aug 12-24)

Add Start and End dates

Specify that you want to use WWD definitions and select the .wwd file you just created in the previous step.

Assign Low, Moderate, High or Extreme weather to each day - use the Lewiston weather data as a guide.

Each weather file can only hold weather for 7 days. If you create weather for the full period Aug 12-24 you must divide it u

Use WWDef:

🔺 Month 🔺 Day

Date

6

×

wwD

The weather stream files .WTR and .WND files will be created.

5. Create the FARSITE project file

You are now ready to create the final FARSITE project from the Landscape (.LCP), weather (.WTR) and wind (.WND) files.

The last required input file is initial fuel moistures.

Click on the arrow to the left of Moistures (.FMS). Enter the suggested Initial Fuel Moistures according to the table below (or as you wish). Do not enter any data for the fuel models that are not used.

Fuel	1 hr	10 hr	100 hr	LH	LW
Model					
1	4	7	12	50	100
2	4	7	12	50	100
3	na	na	na	na	
4	na	na	na	na	
5	6	8	15	60	100
6	na	na	na	na	
7	na	na	na	na	
8	6	8	15	60	100
9	6	8	15	60	100
10	8	12	15	100	100

Save the .FMS file then click Apply & Exit.

Back in the FARSITE Project window, save the project and click OK.

Check that you have specified: Landscape file (LCP) Weather file (WTR) Wind file (WND) Adjustment file (ADJ) Moisture file (FMS)

FARSITE Project		nicol colegai X
Load Project	ata\Farsite_data\craigmtn.FPJ	Attached Vector Files
Save Project	Close Project	Canopy Characteristics
Craigmtn.LCP	Weather Files (.WTR)	*
Fuel Files ✓ Adjustments (.ADJ) Craigmtn.ADJ →		
Moistures (.FMS)	5	<u>></u>
- craigmtn.FMS ->	Wind Files (.WND)	> Help
Conversions (.CNV)		>
Custom Models (.FMD)		Cancel
Coarse Woody (.CWD)	Burn Period (.BPD)	
		<u>ک</u>

6. Set up initiate and run the simulation

Select *View Landscape File* in the *View* menu to display the map of your landscape file. Use the dialogs for *Landscape Display* (in the *Output* menu) to modify the display if desired.

Select Initiate / Terminate in the Simulate menu to initiate the run.

Click on *Elapse Time* and *Current Time* in the *Output* menu to set up the clocks.

learn more about

the parameters.

Click *Duration* in the *Simulate* menu and enter start and finish day and time for the fire. Enter start and end dates for the fire. Check the *Use Conditioning Period of Fuel Moistures* box and enter the conditioning for the month and day of the fire start. Click *Help* to read more about conditioning. Click OK when done.

Click on the 'Drip-torch' icon and then click on the fire start location on the landscape.

Click *Start* in the *Simulate* menu to start the simulation – watch the fire advance.

Advance of the Maloney Creek fire August 15-24, 2000. Data from BLM office in McCall.

Compare your FARSITE run to the actual advance of the fire displayed to the left.

What parameters could be adjusted to better mimic the actual advance of the fire?