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Abstract

Leptin plays an important role in signaling nutritional status to the central reproductive axis of
mammals and appears to be at least a permissive factor in the initiation of puberty. The expres-
sion and secretion of leptin are correlated with body fat mass and are acutely affected by changes
in feed intake. Moreover, circulating leptin increases during pubertal development in rodents, hu-
man females and heifers. Effects of leptin are mediated mainly via receptor activation of the JAK-
STAT pathway; however, activation of alternative pathways, such as MAP kinase, has also been
reported. Although the leptin receptor (LR) has not been found on GnRH neurons, leptin stimu-
lates the release of GnRH from rat and porcine hypothalamic explants. Moreover, leptin increases
the release of LH in rats and from adenohypophyseal explants and/or cells from full-fed rats and
pigs. In contrast, stimulation of the hypothalamic–gonadotropic axis by leptin in cattle and sheep
is observed predominantly in animals and tissues pre-exposed to profound negative energy bal-
ance. For example, leptin prevents fasting-mediated reductions in the frequency of LH pulses in
peripubertal heifers, augments the magnitude of LH and GnRH pulses in fasted cows, and enhances
basal secretion of LH in vivo and from adenohypophyseal explants of fasted cows. However, lep-
tin is incapable of accelerating the frequency of LH pulses in prepubertal heifers, regardless of
nutrient status, and has no effect on the secretion of GnRH and LH in full-fed cattle or hypotha-
lamic/hypophyseal explants derived thereof. Similar to results obtained with LH, basal secretion
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of GH from anterior pituitary explants of fasted, but not normal-fed cows, was potentiated acutely
by low, but not high, doses of leptin. Mechanisms through which undernutrition hypersensitize the
hypothalamic–gonadotropic axis to leptin may involve up-regulation of the LR. However, an in-
crease in LR mRNA expression is not a requisite feature of heightened adenohypophyseal responses
in fasted cattle. To date, leptin has not been successful for inducing puberty in ruminants. Future
therapeutic uses for recombinant leptin that exploit states of nutritional hypersensitization, and iden-
tification of genetic markers for genotypic variation in leptin resistance, are currently under investi-
gation.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The hypothesis for the existence of a peripheral factor that informs the brain of en-
ergy status was first proposed in the 1950s[1,2]. This hypothesis formed the basis for
further investigations that led eventually to characterization of the obese (ob/ob) mouse,
a homozygous mutant that lacks a critical factor for regulation of body weight. Coleman
characterized the phenotype of the obese mouse which included massive obesity, hyperpha-
gia, insulin resistance, and cold intolerance[3]. However, it was not until 1994 that Zhang
et al. characterized, through positional cloning and sequencing, the genotype responsible
for the syndrome leading to the discovery of leptin[4]. The termleptinwas taken from the
Greek “leptos”, meaning “thin”, and is descriptive of the hormone’s body weight-reducing
effects. However, leptin not only normalized the obese, diabetic state inob/obmice, it also
restored fertility. Hence, a concerted effort to characterize the physiological role of leptin
and the mechanisms that govern its actions followed, including considerations of its poten-
tial for treating obesity in humans, as a hormonal signal to the central reproductive axis,
and as a trigger for puberty. The purpose of this review is to summarize on a comparative
basis recent developments in the biology of leptin, with a particular emphasis on the role of
leptin in regulating reproduction and metabolism in ruminant species important to animal
agriculture.

2. Overview of the leptin gene and LR

The leptin gene is highly conserved across species, and is located on chromosome 7q31.3
in humans[5] and on chromosome 4q32 in the bovine[6]. Its DNA sequence has more than
15,000 base pairs and contains three exons, which are separated by two introns[5]. The
mouse protein exhibits 83% homology with human leptin[4], and both share many structural
similarities to other members of the helical cytokine family, including interleukin-6 (IL-6)
and growth hormone (GH)[7,8]. Although adipose tissue is the primary source of leptin, its
production has also been observed in a variety of other tissues, including the stomach[9],
skeletal muscle[10], fetal cartilage[11], pituitary[12], mammary tissue[13], and placenta
[14]. Leptin may be found in the circulation in the free form or complexed with leptin-
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binding proteins, and this characteristic appears to be species-specific and dependent upon
physiological status[15,16]. In humans, the half-life of free leptin is about 30 min[17],
with the kidneys being responsible for approximately 80% of leptin clearance from the
peripheral circulation[18]. In addition, leptin secretion follows a circadian rhythm[19],
with a nadir early in the morning (08:00–09:00 h), an increase during the day, and a peak
between 24:00 and 02:00 h. A circadian rhythm for leptin secretion has not been observed
in ruminants[20].

The LR has a single membrane-spanning domain and exists in different isoforms
(Ob-Ra, Ob-Rb, OB-Rc, Ob-Rd, Ob-Re and Ob-Rf) that derive from alternative splic-
ing of mRNA [21]. All isoforms have similar ligand-binding domains but differ at
the C-terminus, intracellular domain. The Ob-Rb, which contains a long intracellular
domain, is the only isoform with both of the protein motifs necessary for activation of
the Janus kinase 2 and signal transducers and activators of transcription (JAK-STAT)
pathway [22]. Although the JAK2/STAT3 pathway has been considered the major
signaling mechanism activated by the LR, mitogen-activated protein kinase (MAPK)
[23] and phosphatidylinositol-3 kinase (PI-3K)[23] have also been implicated in LR
signaling.

Although originally referred to as the “anti-obesity” hormone, leptin’s effects are coun-
teracted in some humans by a natural resistance that is associated with hyperleptinemia.
It appears that an intracellular protein induced by LR activation, the suppressor of cy-
tokine signaling-3 (SOCS-3), may mediate leptin resistance at the molecular level within
the brain[24], as it effectively blocks leptin signaling. Similarly, the soluble LR (Ob-Re),
a potential product of proteolytic cleavage of membrane-bound isoforms in the human
[25], can bind leptin in the circulation, augment its half-life, and perhaps contribute to
leptin resistance. Leptin has also been linked to regulatory processes as divergent as an-
giogenesis, hematopoiesis, bone formation, the immune response, diabetes, and general
fertility.

3. Neuroendocrine effects of leptin

In mammals, hypothalamic control of gonadotropin secretion is mediated by
gonadotropin-releasing hormone (GnRH). The hypothesis that leptin plays an important
role in regulating GnRH secretion, and ultimately in reproduction, stems from several find-
ings. First, theob/obmouse, lacking a functional leptin gene, is infertile and has atrophic
reproductive organs[26]. Gonadotropin secretion is impaired and the central reproductive
axis is very sensitive to negative feedback by gonadal steroids[27,28]. Treatment with lep-
tin rejuvenates the reproductive system inob/obmice, leading to growth and function of
the reproductive organs and fertility[26] via secretion of gonadotropins[26,29]. Studies in
vitro with hemipituitaries and mediobasal hypothalamic explants of rats have demonstrated
that leptin can act directly in both the hypothalamus and the pituitary to stimulate the re-
lease of GnRH and LH, respectively[30–32]. Recent studies in our laboratory with cattle
support these assertions. However, both sexual maturation and nutritional status are impor-
tant determinants of how leptin affects the hypothalamic–hypophyseal axis in ruminants
[33–35].
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3.1. Role of leptin in regulating gonadotropin secretion in cattle and sheep: effects of
nutritional status

Ruminants are less acutely responsive to short-term changes in dietary energy intake
than monogastrics. However, the peripubertal heifer[36] and estradiol-implanted wether
[37] represent two ruminant models in which acute fasting has been demonstrated to restrain
the frequency of LH pulses and lower mean circulating concentrations of LH. Moreover,
chronic feed restriction reduces the LH pulse frequency in lambs[38,39] and circulating
concentrations of LH in ewes[40]. Treatment with leptin does not affect LH secretion in
adequately nourished ovariectomized ewes[41] and cows[33] but clearly prevents a re-
duction in the frequency of LH pulses in fasted, estrogen-treated wethers[37] and fasted
prepubertal, intact heifers[42]. Moreover, in early reports, leptin appeared to stimulate
secretion of LH in chronically food-restricted, ovariectomized ewes[43]. However, more
recent studies from the same laboratory have suggested that only fasted ewes previously
fed a normal diet will respond acutely to leptin, whereas long-term nutrient-restricted ewes
that were fasted do not respond with an increase in LH secretion[44]. Nonetheless, it is
clear that the stimulatory effect of leptin on LH secretion in ruminants is confined predom-
inantly to periods of nutritional stress ([36,37,42,43]; Table 1). In the mature cow, although
short-term (2–3 d) fasting is incapable of restraining the frequency of LH pulses, even in
moderately thin animals[33,34], leptin stimulated a robust increase in baseline and over-

Table 1
Summary of the effects of recombinant oleptin on the hypothalamic–gonadotropic axis in cattle, including probable
site(s) of action

Animal/tissue model Response Site of action Reference(s)

Fasted cow Increased baseline and mean circulat-
ing LH; increase pulse size

Adenohypophysis [33,34]

Adenohypophyseal explants;
fasted cows

Increase basal release of LH Gonadotrope [35]

Adenohypophyseal explants;
full-fed cows

Increase GnRH-mediated release of
LH

Gonadotrope [35]

Fasted, peripubertal heifers Prevented fasting-mediated reduction
in frequency of LH pulses and
increased frequency relative to start
of fasting

Hypothalamus [42]

Increased GnRH-mediated release of
LH

Adenohypophysis [42]

Fasted cows Increased plasma LH and IIIV csf
GnRH; increased amplitude of LH
pulses and size (auc) of GnRH pulses

Hypothalamus/
adenohypophysis

[45]

Adenohypophyseal explants and
primary cell cultures, full-fed
bulls, steers

No effect N/A [47]

Prepubertal, normal- or
moderately growth-restricted,
prepubertal heifers

No effect N/A [86,45]

Abbreviations: auc, area under the curve; csf, cerebrospinal fluid; oleptin, recombinant oleptin; IIIV, third ventricle.
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Fig. 1. Dose-related effect of intravenously administered recombinant oleptin on mean concentrations of circu-
lating LH in mature ovarectomized cows. Mean concentrations of LH were greater than controls at the lowest
(141% of control;P< 0.001) and middle (122% of control;P< 0.01) doses employed. Results are expressed as
mean percent (±S.E.M.) of the time 0 value on day 0. (Adapted with permission from[34].)

all mean concentrations of LH. This occurs as a result of an augmentation of the size of
individual LH pulses[33,34]. These findings, coupled with our recent observations using
perifused anterior pituitary explants, are consistent with the view that the effects of leptin
on LH secretion in the sexually mature, ruminant female reside to a large degree at the
level of adenohypophysis[35]. However, in our most recent studies, we measured GnRH
directly in CSF collected from the third ventricle (IIIV) and observed the ability of leptin to
increase the concentration of GnRH and size of individual pulses of GnRH. Therefore, it is
now clear that leptin-mediated increases in LH secretion in the cow can be effected at both
hypothalamic and anterior pituitary levels (Table 1). The inability of leptin to stimulate an
increase in circulating concentrations of LH in full-fed cattle and sheep[41,42,46], and in
primary cell cultures or explants from full-fed cattle[47], is not completely understood;
however, the published literature increasingly supports a consensus that leptin stimulates
the hypothalamic–adenohypophyseal axis mainly in nutritionally stressed animals. Addi-
tionally, the effects of leptin on the hypothalamic–pituitary axis appear to be exquisitely
dose-dependent. Intravenously injected recombinant oleptin causes an inverse, dose-related
increase in basal plasma concentrations of LH in ovariectomized, estradiol-implanted cows
fasted for 60 h[34]. A dose of 0.2�g/kg maximized the increase in LH, whereas doses of 2
and 20�g/kg caused lower and no responses, respectively (Fig. 1). Therefore, the duration
and/or amount of exposure to the hormone appear to determine the level of resistance.

3.2. LR interactions within the hypothalamic–gonadotropic axis

3.2.1. Hypothalamus
Neuroendocrine mechanism(s) through which leptin influences GnRH neuronal activity

have not been completely elucidated. The LR is expressed abundantly within the hypotha-
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lamus[48–53]; however, leptin may ultimately influence GnRH secretion mainly through
interneuronal signaling mechanisms, as double-labeling studies conducted with rodents[32]
and higher primates[54] have failed to demonstrate expression of LR on GnRH neurons.
Watanobe[55] reported that leptin can act within the hypothalamus of rats to stimulate
the release of GnRH, with highest sensitivity to leptin within the median eminence-arcuate
nucleus (ME-ARC) in fasted rats. Based upon increases in both receptor mRNA and protein
levels[56,57], fasting may enhance LR concentration in this region. Similarly, expression
of the full-length LR in the ventromedial hypothalamus (VMH) was found to be much
greater in feed-restricted than in full-fed ewes[50]. Negative energy balance induced by
fasting appears to have presynaptic actions that are conveyed by a reduction in excitatory
GABAergic drive onto GnRH neurons. Treatment with exogenous leptin prevents this re-
duction, indicating that leptin can act presynaptically to restore afferent GABAergic drive
to GnRH neurons in fasted animals[58]. In morphological studies, populations of NPY
neurons in the ARC co-express LR[56,59], and NPY appears to mediate a large part of
leptin’s neuroendocrine effects on both the GnRH-LH system[60,61]and feeding behavior
[61]. Other downstream factors implicated in leptin action within the ARC include orexin
[62] and agouti-related peptide (AgRP)[63], the latter of which is an endogenous antagonist
of the melanocortin 3 (MC3-R) and 4 (MC4-R) receptors. The inhibitory effects of leptin on
food intake are mediated primarily through these receptors. In addition, MC4-R may play a
crucial role in leptin’s ability to potentiate the LH surge in female rats[64], and disruption
in the genes encoding MC3-R and MC4-R increases fat mass[65] and causes obesity in the
mouse[66]. Although numerous other leptin-responsive, hypothalamic peptides have been
identified, most do not appear to be related directly to GnRH secretion [e.g.,�-MSH and
cocaine-and amphetamine-regulated transcript (CART)]. A more recently identified peptide
within the hypothalamus, galanin-like peptide (GALP), responds to leptin, stimulates the
secretion of LH when administered centrally[67], and has been reported to either increase
[68] or decrease food intake[69].

3.2.2. Adenohypophysis
In the ovine adenohypophysis, while LR is expressed in almost 90% of the gonadotropes

in the pars tuberalis, it is observed in only about 30% of the gonadotropes in the pars distalis
[70]. Moreover, approximately 25% of rat anterior pituitary cells, predominantly follicu-
lostellate cells and corticotropes, express leptin[71]. This suggests a potential regulatory
function of leptin in growth and differentiation of pituitary cells[12]. Moreover, direct ef-
fects of leptin at the adenohypophyseal level have been demonstrated in rodents[31], pigs
[72], and cattle[35]. Intracellular mechanisms involved in the ability of leptin to regulate
LH secretion at the adenohypophyseal level have not been thoroughly explored. However,
there are several potential pathways through which these effects could occur, including ef-
fects on Ca2+ ion channels, an increase in the releasable pool of LH, and/or GnRH-receptor
desensitization[73]. In porcine chromaffin cells, leptin caused a sustained increase of intra-
cellular Ca2+ and activated inositol 1,4,5-triphosphate production[74], intracellular factors
known to be associated with GnRH-receptor signaling and release of LH[75].

Pathways involved in the heightened sensitivity of the adenohypophysis of nutritionally
stressed animals to leptin[35] have not been determined. However, the hypersecretion of
LH observed in cattle in response to leptin as a consequence of short-term fasting is not



172 D.A. Zieba et al. / Domestic Animal Endocrinology 29 (2005) 166–185

accompanied by a detectable increase in expression of LR mRNA in the anterior pituitary,
nor a reduction in SOCS-3 mRNA expression[76]. To the contrary, SOCS-3 is generally
elevated in adenohypophyseal tissue of fasted cows[76].

4. Leptin and the onset of puberty

4.1. Does leptin regulate the timing of puberty?

The onset of puberty is characterized by an acceleration of GnRH pulse generator ac-
tivity, thereby increasing the pulsatile release of LH. Several studies have demonstrated an
advancement of pubertal onset in female mice treated with leptin, and by indirect inference,
an increase in GnRH and LH secretion. Treatments with leptin beginning on postnatal day
21 advanced vaginal opening by 1–4 d, increased weights of reproductive organs (ovaries,
uterus, oviducts), and decreased latency to first mating[77]. In a similar study[78], mice
given the same dose of leptin showed early onset of vaginal opening, vaginal estrus and
vaginal cycling compared to vehicle-treated mice, without undergoing significant weight
loss. Leptin has also been found to induce puberty in nutritionally growth-retarded female
rats[79]. In contrast, Cheung et al.[80] found that leptin did not advance sexual maturation
in the normally fed rat, but partially prevented the negative effects of food restriction on
the timing of sexual maturation. Grauz et al.[81] found that leptin administration advanced
sexual maturation in only 44% of female rats when starting leptin treatment at 29 d of age.
This is in contrast to the findings of Almog et al.[82] in which administration of leptin to
rats starting at 21 d of age advanced puberty in 100% of the animals. A “reassessment” of
the role of leptin in sexual maturation in rats was later performed and reported by Cheung et
al. [83]. Conclusions were that leptin is one of several permissive factors, whose presence
is necessary, but alone is not sufficient, to initiate sexual maturation in rodents.

4.2. Leptin and puberty in cattle and sheep

In initial studies with heifers near the time of pubertal transition, we observed that fasting
for 2 d markedly decreased leptin mRNA in adipose tissue, as well as circulating concen-
trations of leptin, and reduced the number of pulses of LH compared to non-fasted animals
[36]. We then examined the pattern of adipose mRNA expression for leptin and serum con-
centrations of leptin during pubertal development[15], and correlated these measures with
body weight and adiposity, proportions of bound/free leptin, and IGF-1 concentrations in
serum[15,84]. Body weight accounted for the greatest variation associated with time of
onset of puberty and was highly correlated with circulating leptin. Serum concentrations
of leptin, IGF-1, and leptin gene expression increased as puberty approached in heifers
reaching sexual maturation from early spring to mid-summer[15]. The increase in serum
leptin was linear regardless of season of pubertal onset (Fig. 2). However, we found no
evidence for the presence of leptin-binding proteins in bovine serum[84]. To the contrary,
in humans, marked decreases in leptin-binding activity in serum accompany pubertal in-
creases in circulating leptin, theoretically making it available to the full-length receptors
[85]. Although earlier reports had indicated that leptin was capable of triggering pubertal



D.A. Zieba et al. / Domestic Animal Endocrinology 29 (2005) 166–185 173

Fig. 2. Change in leptin gene expression during pubertal development (panel A) and serum leptin concentrations
(panel B) in heifers that reached puberty from late winter/early spring to late summer. (Adapted with permission
from [15].)

transition in rodents[77,78], we have found no evidence to support this hypothesis in our
experiments with heifers. In those studies, neither chronic s.c. treatment of normally fed
heifers[86], nor acute i.v. treatment of normal-growth or restricted growth heifers[45],
were capable of accelerating the development of a sexually mature pattern of gonadotropin
secretion. These observations are supported by studies in male lambs[87], demonstrating
that leptin cannot drive GnRH secretion in individuals incapable of producing pulses due to
developmental constraints. Additional studies sought to manipulate serum concentrations
of leptin, and thus timing of puberty, during growth and development[88]. In one approach,
we attempted to reduce the degree of adipose tissue accretion during pubertal development
by suppressing the conversion of pre-adipocytes to adipocytes. Our objectives were to in-
crease tissue contents of conjugated linoleic acid (CLA) through feeding a high linoleic
acid diet. Theoretically, both rumen and milk contents of CLA can be increased several fold
using this approach because CLA are produced as intermediate products of linoleic acid
biohydrogenation in the rumen[89]. Although we were able to increase tissue content of
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CLA somewhat by feeding such a diet to heifers between 4 months of age and puberty, we
did not reduce adiposity or circulating concentrations of leptin and did not modify age at
puberty[88].

5. Gonadal and embryonic effects of leptin

Not only does leptin participate in the control of gonadotropin secretion via its hypotha-
lamic/pituitary actions, but circulating or locally produced leptin may also provide direct
modulation of ovarian and testicular function. Bovine ovarian granulosa[90] and theca[91]
cells have high affinity receptors for leptin. Expression of LR mRNA has been identified
in adult human granulosa, theca and interstitial cells[92–94], in multiple tissues in the rat
[48], and in the porcine ovary[49]. Leptin protein has been found in follicular fluid, with
concentrations corresponding to those reported in serum[93], and leptin concentrations
in peripheral blood vary throughout the menstrual cycle[95,96]. Leptin has been shown
to inhibit IGF-1-mediated enhancement of FSH-stimulated estradiol synthesis by rat[97],
human[98] and ovine granulosa cells [Zieba et al., unpublished data], and LH-stimulated
androgen synthesis by bovine theca cells[91]. Recent studies have shown that both in vivo
administration of leptin to immature gonadotropin-primed rats, and in vitro exposure of
perifused rat ovaries to elevated concentrations of leptin, can lead to a marked decline in
the number of ovulated oocytes[99]. However, relatively little research has focused on
receptor-mediated events in maturing oocytes and pre-implantation embryos. LR mRNA
and protein are expressed in mouse oocytes[100–102], and leptin induces tyrosine phos-
phorylation of STAT3, a major intracellular leptin signal transduction protein in mouse
metaphase II stage oocytes[101]. Moreover, in embryo culture media, leptin promoted the
development of embryos from the two-cell stage to blastocysts, fully expanded blastocysts,
and hatched blastocysts[100]. However, exposure of porcine or ovine oocytes to leptin dur-
ing in vitro maturation and subsequent embryo culture after IVF resulted in the formation of
fewer blastocysts relative to controls ([103]; Zieba et al., unpublished data). Both the long
(OB-Rb) and short isoforms (OB-Ra) of the LR are expressed in rodent Leydig cells[104],
indicating potential effects of leptin on testis function. Moreover, leptin inhibits human
chorionic gonadotropin-stimulated testosterone secretion from rat testicular explants[105].

6. Metabolic adaptation and endocrine responses to leptin

The role of leptin as a mediator of physiological responses to nutritional stress has
received significant attention in this review, particularly in relation to reproduction. Food
deprivation results in a fall in circulating leptin, and if unmitigated, results in a cessation
of reproduction, a survival mechanism that is achieved relatively quickly in monogastrics
and less quickly in ruminants[106,107]. While serving as a communications link between
nutritional status and reproduction, leptin ultimately supports metabolic homeorhesis by
influencing eating behavior[108]. Moreover, centrally mediated signals within the ARC
drive changes within other endocrine systems, including the somatotrophic, pancreatic,
thyrotrophic, and adrenal axes. These interrelationships have been summarized extensively
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for laboratory animals by others and will not be discussed in detail here[60,108,109].
However, recent investigations in cattle, sheep, and pigs have provided some insight into
the role of leptin in regulating metabolic endocrinology in farm species.

6.1. Somatotrophic axis

In pigs, leptin is a potent anorexigenic agent, stimulates GH secretion in an inverse,
dose-dependent manner in full-fed animals, and suppresses GHRH-mediated release of GH
[110]. Interestingly, GHRH appears to down-regulate the expression of the long form of
the LR in pigs, suggesting a reciprocal relationship between leptin and GHRH in regulating
GH secretion[111]. Direct effects of leptin on GH release in that species was attributed to
a potential decrease in NPY release. Paradoxically, NPY actually stimulates GH release in
ruminants[112–114], and pretreatment of cows with leptin blocks GH release in response
to a simulated, post-secretory rise of NPY administered into the IIIV[114]. The seemingly
counterintuitive ability of both NPY and leptin to stimulate GH secretion in ruminants
has not been fully explained. Nonetheless, similar to leptin’s effects on secretion of LH,
ruminants are more likely to respond to leptin with increased basal release of GH when
under nutritional stress. For example, continuous ICV infusion of recombinant hleptin had
no effect on circulating concentrations of GH in ovariectomized, full-fed sheep[41], but
increased circulating GH in chronically undernourished sheep[43] and in fasted heifers
[42]. The ability to detect such effects is related to some extent to the timing, duration,
and dose of leptin[115]. In gonadectomized wethers, continuous treatment with leptin, as

Fig. 3. Effects of oleptin (0, 5, 10, 50 and 100 ng/ml) on mean (±S.E.M.) concentrations of growth hormone (GH)
in perifusion media of adenohypophyseal (AP) explants collected from normal-fed and fasted mature ovarec-
tomized cows: (*) and (**) denote differences from controls (P< 0.01 andP< 0.002, respectively). (Adapted with
permission from[115].)
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opposed to chronic treatment beginning at the onset of fasting[43], did not stimulate the
secretion of GH[37]. However, similar to results obtained with LH[35], basal secretion
of GH from anterior pituitary explants of fasted, but not normal-fed cows, was potentiated
acutely by low, but not high, doses of leptin[115]. In fact, doses of oleptin above 5 ng/ml
suppressed basal release of GH in anterior pituitary explants from full-fed cows (Fig. 3).
However, there is evidence that leptin positively modulates anterior pituitary synthesis and
secretion of LH and GH in full-fed ruminants[34,115]. Although leptin-mediated increases
in basal (spontaneous) secretion of LH and GH were observed only in explants from fasted
cows, both GnRH-mediated release of LH[34] and GHRH-mediated release of GH[115]
were enhanced in anterior pituitary explants from full-fed cattle, and only explants from
full-fed cows were able to respond to GHRH with an increase in GH release (Fig. 4).

6.2. Hepatic and pancreatic responses to leptin

Circulating concentrations of IGF-I and insulin consistently decrease in sheep and
cattle during fasting[36,116]. Although leptin appears to have no effect on circulating

Fig. 4. Temporal patterns of growth hormone (GH) release after growth hormone releasing hormone (GHRH)
stimulation in perifusion media of adenohypophyseal (AP) collected from explants from normal-fed and fasted
mature, ovariectomized cows.
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Fig. 5. Mean (±S.E.M.) concentrations of insulin in ovariectomized cows on day 2 of fasting before and after
single i.v. injections of saline or recombinant oleptin. Plasma insulin concentrations increased (P< 0.01) in all
leptin-treated groups and reached their highest concentration during the first hour. The stimulation of insulin
secretion was greatest (P< 0.001) at the intermediate dose of 2.0�g/kg relative to the control group and other
leptin-treated groups. This effect persisted for 3 h. (Adapted with permission from[34].)

IGF-1 in cattle[33,35,42], both ICV [33] and peripheral infusions[34] of leptin stim-
ulate increases in circulating insulin, and these effects are dependent upon the dose of
leptin employed[34] (Fig. 5). A single, low-dose (2.0�g/kg) injection of leptin into
fasted cows elevated serum insulin for over 3 h, whereas lower (0.2�g/kg) and higher
(20�g/kg) doses had only brief effects. The presence of LRs in pancreatic islets[117]
indicates that leptin can regulate directly the secretion of insulin. In rodents, leptin ei-
ther failed to affect basal or glucose-induced insulin secretion[118,119], stimulated in-
sulin release[120,121], or suppressed its release[117,122,123]. We interpret our re-
sults in cows to mean that an increase in circulating concentrations of leptin, phys-
iologically a product of food intake and positive energy balance, acts as a signal to
normalize pancreatic insulin secretion following nutritional restriction. Failure of the
pancreas to respond to leptin in other experimental models, particularly animals un-
der normal feeding conditions, may be related to a state of leptin resistance[33,34].
Tissues exposed to relatively large concentrations of leptin tend to accumulate exces-
sive amounts of suppressors of cytokine signaling, which can mediate leptin resistance
[21,124,125].

7. Physiological consequences of genotype

The pursuit of marker-assisted selection strategies to identify physiological traits of
importance to medicine and agriculture has resulted in the identification of a number of
genotypic polymorphisms related to the leptin gene. Although an in-depth discussion of
this area is beyond the scope of this review, its importance, particularly in animal agri-
culture, for predicting or selecting for economically important genetic traits should not
be underestimated. An early example of this strategy was the identification of the restric-



178 D.A. Zieba et al. / Domestic Animal Endocrinology 29 (2005) 166–185

tion fragment length polymorphism (RFLP), Sau3AI within the bovine leptin gene[126].
Three genotypes from two alleles were reported in eight breeds of cattle, and it was pro-
posed that these alleles (A and B) could represent differences in adiposity and physiolog-
ical characters related to adiposity. In one survey of cattle in Northern Mexico and the
southwestern U.S., it was determined that the relatively high frequency of A allele, and
conversely, low frequency of the B allele, probably rendered the SAU3AI-RFLP uninfor-
mative for use in selection strategies[127]. This RFLP and two others were examined by
Liefers et al.[128] in dairy cattle. The SAU3AI RFLP (termed RFPL1 in that study) was
found to be related to milk yield; however, again the frequency of the B allele probably
precludes it from being useful for selection. More recently, a single nucleotide polymor-
phism (SNP)[129] has been identified in which presence of the dominant t allele (ct or
tt) was related to increased fat deposition[130], increased dry matter intake, and greater
milk and milk protein yield[129]. Cattle bearing the t allele may exhibit a form of resis-
tance in which the LR does not recognize the modified form of leptin resulting from this
mutation. Currently, this SNP, and the physiology surrounding it, are the focus of a major
proprietary development effort in North America (IgenityTM, Merial Corp, Duluth, GA)
in relation to the identification of genotypic variance in carcass quality in beef cattle and
milk yield in dairy cattle. The frequency of the alleles in various beef cattle breeds and
DNA analyses to determine genotypes related to these alleles has moved leptin physiol-
ogy into the realm of functional genomics. Earlier studies in beef cattle had already pro-
vided physiological evidence that relatively higher levels of circulating leptin, a probable
indicator of leptin resistance, are related to modifications in carcass adiposity[131]. How-
ever, it has not been reported whether cattle with circulating concentrations of leptin much
greater than the average of the population represent genetic variances in genes for leptin or
the LR.

8. Summary and conclusions

During the last 10 years, the study of leptin and it roles in reproduction and metabolism
of animals has taken on nearly gigantic proportions. Its contributions as a hormone acting at
multiple loci have now been clearly established, including effects at the hypothalamus, ade-
nohypophysis, pancreas, and gonads. These actions involve pathways that regulate appetite
and energy expenditure, as well as the secretion of reproductive and metabolic hormones.
All of these regulatory pathways involve activation of the LR, but also include many down-
stream molecules that modulate both sensitivity and resistance to leptin. In addition, collec-
tive evidence across several species supports the idea that leptin plays a passive or permis-
sive, rather than causal, role in timing the process of pubertal maturation. Finally, one of the
most intriguing and valuable discoveries has been that the hypothalamic–adenohypophyseal
axis becomes hypersensitive to leptin during fasting, with an ability of leptin to stimulate
LH and GH secretion by direct effects at both the hypothalamic and adenohypophyseal
levels. Much additional work will be necessary to delineate fully the role of leptin in the
variety of physiological systems with which it is involved, and to develop managerial,
pharmacological, and genetic strategies for exploiting those roles in medicine and
agriculture.
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