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Abstract

We explore the stability of image reconstruction algorithms under deterministic compressed sensing.
Recently, we have proposed [1, 2, 3] deterministic compressed sensing algorithms for 2D images. These
algorithms are suitable when Daubechies wavelets are used as the sparsifying basis. In the initial work,
we have shown that the algorithms perform well for images with sparse wavelets coefficients. In this
work, we address the question of robustness and stability of the algorithms, specifically, if the image is
not sparse and/or if noise is present. We show that our algorithms perform very well in the presence of
a certain degree of noise. This is especially important for MRI and other real world applications where
some level of noise is always present.
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1 Introduction

The theory of compressed sensing [4, 5, 6] states that it is possible to recover a sparse signal from a small
number of measurements. A signal x0 ∈ CN is k-sparse in a basis Ψ = {ψj}Nj=1 if x0 is a weighted
superposition of at most k elements of Ψ. Compressed sensing broadly refers to the inverse problem of
reconstructing such a signal x0 from linear measurements {yℓ = 〈x0, φℓ〉| ℓ = 1, . . . , n} with n < N , ideally
with n ≪ N . In the general setting, one has Φx0 = y, where Φ is an n × N sensing matrix having the
measurement vectors φℓ as its rows, x0 is a length-N signal and y is a length-n measurement. By now, many
authors have proposed different sensing matrices and reconstruction algorithms, establishing the feasibility
of such reconstruction in practice. Applications have been shown for medical images [7], communications [8],
analog-to-information conversion [9], geophysical data analysis [10], etc. The standard compressed sensing
technique guarantees exact recovery of the original signal with overwhelmingly high probability if the sensing
matrix satisfies the Restricted Isometry Property (RIP). This means that for a fixed k, there exists a small
number δk, such that

(1− δk)‖xk‖2ℓ2 ≤ ‖Φxk‖2ℓ2 ≤ (1 + δk)‖xk‖2ℓ2 , (1.1)

for any k-sparse signal xk. Solving for the original sparse signal with ℓ1 minimization,

min
x

‖x‖ℓ1 , subject to Φx = y, (1.2)

guarantees successful recovery with a very high probability. This is a well-known theory and has been verified
empirically in several papers, e.g., [5, 11]. In this paper, we explore the stability of deterministic compressed
sensing when there is noise present in the signal or its measurements, or the signal is not sparse. Traditional
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compressed sensing techniques use random projections for the sensing matrix as opposed to deterministic
measurements. We discuss some comparisons between the two later in this section.

Signals that are compressible are not sparse in any transform domain. A signal x is said to be compressible
[12] if its coefficients follow a decay rate ,

|x|(j) ≤ Cs(j +D)−s, (1.3)

where |x|(j) is the jth largest coefficient (|x|(1) > |x|(2) > · · ·) of x with respect to some basis or transform Ψ,
s ≥ 1, the constant Cs depends only on s, and D ≥ 0 is a shift. A compressible signal may not have any of
its coefficients exactly equal to zero. The most relevant recent results on the reconstruction of compressible
signals are summarized below.

In [13], Candès and Romberg demonstrate that empirically it is possible to recover a compressible signal
x0 from about 3k to 5k projections with accuracy as good as the optimal k-term wavelet approximation of
x0. Their experiments are carried out for compressible 1D signals and 2D images. For images, they proposed
a recovery algorithm that minimizes the total variation (TV) in the image domain (with Ψ being the inverse
wavelet transform), with ℓ1-norm constraints on the wavelet coefficients:

min ‖Ψx‖TV such that Φx = y, and ‖xj‖ℓ1 ≤ ‖x0j‖ℓ1 . (1.4)

The ℓ1-constraints restrict the locations where the large wavelet coefficients can appear, assuming the ℓ1-
values ‖x0j‖ℓ1 of each subband x0j = {x0j,m ,m = 0, ..., 2j−1 − 1} are known. In their experiments, random
Fourier matrices were applied to the wavelet coefficients of the images. The number of measurements were
taken to be 15%, 23%, 30%, and 38% of the total number of pixels, i.e., 256 × 256. It was shown that the
recovery from 3k to 5k random projections is comparable to the best k-term wavelet approximation [13].

The main results in [12] by Candès, Romberg and Tao are that the standard compressed sensing is able to
stably recover sparse as well as compressible signals from noisy measurements. For the latter, if k is chosen
such that δ3k and δ4k in (1.1) satisfy δ3k + 3δ4k < 2, the error bound for compressible signals with noise in
the measurements is

‖x0 − x̂‖ℓ2 ≤ C1,k · ‖µ‖ℓ2 + C2,k
‖x0 − xk‖ℓ1√

k
, (1.5)

where x0 is the true signal, x̂ is the recovered signal, xk is the best k-term approximation of x0, µ is any
perturbation, and constants C1,k and C2,k depend on δ4k. It is stated (Theorem 2, [12]) that ℓ1 minimization
stably recovers the k-largest entries. As the authors point out, this is a deterministic statement, i.e., there
is no probability of failure. Their experiments on both 1D and 2D compressible signals with noise added
to measurements confirm this theoretical result. It is also observed in their experiments that if the noise is
Gaussian with small standard deviation, then the recovery error is dominated by the approximation error,
i.e., by the last term in (1.5).

Even though the above methods and results deal with non-sparse compressible signals they are not
deterministic in the sense that the measurements are obtained via random projections. In practice, it is
beneficial to use deterministic sensing matrices that are pre-determined in order to save computation time
and memory. Work in this direction was done by DeVore ([14]), then followed by a few others. However, the
recovery results were far inferior compared to that obtained by traditional random sensing. Recently, another
deterministic compressed sensing method (mainly applicable for 1D signals) was proposed by Applebaum,
Howard, Searle, and Calderbank [15] by using the chirp transform to create the sensing matrix. In their
experiments (Figs. 2 and 3 in [15]), the full pass chirp decode algorithm results in smaller reconstruction
error than using Gaussian random matrices with matching pursuit. They have also shown empirically (see
Fig. 4 in [15]) that these two methods are comparable when there is noise in the measurements. The
reconstruction algorithm is good for 1D signals but in experiments given in [15] the 1D signals are of size
N = 412 or 672 only, much smaller than the size encountered for 2D signals, such as images. A similar
reconstruction algorithm was also proposed for a sensing matrix made from Reed-Muller sequences [16].
In [3], we proposed new reconstruction algorithms for deterministic sensing matrices made from chirp and
Reed-Muller sequences that are suitable for 2D images.

The advantage of using deterministic matrices for compressed sensing is that reconstruction can be
very efficient [15, 16]. The fast reconstruction algorithm [15, 16, 17] is called the Quadratic Reconstruction
Algorithm. This algorithm takes advantage of the multivariable quadratic functions that appear as exponents
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of the entries in the sensing matrix, and therefore, only requires vector-vector multiplication instead of matrix-
vector multiplication required in Basis and Matching Pursuit algorithms that are used for reconstructions
with random sensing matrices. In [17], Calderbank, Howard and Jafarpour set forth criteria on Φ that ensure
a high probability that the mapping taking the k-sparse signal vector xk to the measurement vector y is
injective, assuming a uniform probability distribution on the unit-magnitude k-sparse vectors in C

N . They
say that Φ has the Statistical Restricted Isometry Property (StRIP) with respect to parameters ε and δ if

(1− ε)‖xk‖22 ≤ ‖Φxk‖22 ≤ (1 + ε)‖xk‖22 (1.6)

holds with probability exceeding 1-δ when xk is assumed to be uniformly distributed among k-sparse vectors
in CN of some fixed norm (e.g., unit norm). They show that such deterministic sensing matrices satisfying
StRIP can be constructed by chirps, Reed-Muller (RM) sequences, and BCH codes, as done in [15, 16, 17].
In the presence of noise, if Φ satisfies the StRIP property with parameters ǫ and δ, the reconstruction error
due to the Quadratic Reconstruction Algorithm is given by

‖x0 − x̂‖ℓ2 ≤ 5 + ǫ

1− ǫ
‖x0 − xk‖ℓ2 +

2

1− ǫ
‖µ‖ℓ2, (1.7)

where x0 is the true signal, x̂ is the recovered signal, xk is the best k-term approximation of x0, and µ is the
measurement noise from a Gaussian distribution, see [17]. As mentioned there, this bound is tighter than
bounds obtained by using random ensembles [12] and expander-based methods [18]. While the Quadratic
Reconstruction Algorithm [15, 16] is shown to accurately reconstruct 1D sparse signals with nonzero locations
chosen uniformly at random, from a small number of measurements, it does not work when it is directly
applied to 2D signals, like images. This is because the locations of the nonzero coefficients, usually in the
wavelet domain, are not distributed uniformly. Our proposed algorithm [3] takes this into account and
we have shown that it outperforms a standard compressed sensing method, which takes random noiselet
measurements and uses ℓ1 minimization for reconstruction, for example, see [19].

Authors in [17] also derived that the deterministic sensing matrices are resilient to noise. Suppose the
noise comes from the measurements, say y = Φxk + µ, where µ are iid complex Gaussian random variables
with zero mean and variance 2σ2. Suppose Φ satisfies

(1− ǫ′)2‖xk‖2ℓ2 ≤ ‖Φxk‖2ℓ2 ≤ (1 + ǫ′)2‖xk‖2ℓ2 (1.8)

with probability exceeding δ > 0. Then, for γ ≥ 0,

(1− ǫ′ − γ)2‖xk‖2ℓ2 ≤ ‖y‖2ℓ2 ≤ (1 + ǫ′ + γ)2‖xk‖2ℓ2 , (1.9)

with probability exceeding 1− 2
(
δ + S

[γ‖x‖
σ

])
, where

S(r) =
(∫ ∞

r

e−
y2

2 y(N−1)dy
)( ∫ ∞

0

e−
y2

2 y(N−1)dy
)−1

. (1.10)

Therefore, we see that the noisy measurement is bounded in (1.9) by the signal in a similar way as the
inequality (1.8) in the StRIP property.

Now, suppose that the noise comes from the signal, say y = Φ(x0+µ), where µ is a complex, multivariate,
Gaussian distributed noise with zero mean and covariance E(µµ†) = 2σ2IN×N . In this case, the estimates
given in (1.9) can still be applied. The covariance of the measurement vector is E(Φµ(Φµ)†) = E(Φµµ†Φ†) =
2σ2ΦΦ†. For deterministic matrices, ΦΦ† = N

n In×n and this gives E(Φµ(Φµ)†) = 2σ2N
n In×n. The factor N

n
that appears in E(Φµ(Φµ)†) is not present in E(µµ†), making the measurement variance in this case larger
than the source noise variance 2σ2. This means that noise coming from the signal is harder to deal with
than noise coming from the measurements.

One important and desirable task in reconstruction of signals via deterministic compressed sensing is to
reconstruct signals efficiently. Moreover, such reconstruction should be stable under noise and also work
when the signal is non-sparse. In this paper, we discuss the stability and robustness of the algorithms we
introduced in [3]. We show that these algorithms are stable for non-sparse (compressible) signals and robust
under various types of noise. In addition, we also indicate how, when using the sensing matrix composed
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from Reed-Muller sequences, the algorithms in [3] may be modified to efficiently handle excessively large
images or large 2D signals.

This paper is structured as follows: in Section 2, we review our reconstruction algorithm of [3] and
comment on how to incorporate properties of the Reed-Muller sequences so that the algorithm can handle
images of size much larger than considered so far. Then we discuss how to choose the proper wavelet domain
and the level of decomposition of the image under the chosen wavelet basis. In Section 3, we discuss the
stability and robustness under noise and for non-sparse signals. Finally, Section 4 contains the discussion of
the results.

2 Choosing a Suitable Sparsifying Domain

We address the issue of choosing a suitable sparsifying domain for images, since the compressed sensing
theory is based on the fact that the signal is sparse. Wavelets are commonly used for 2D images, but the
choice of the specific wavelet to be used is not usually discussed much. In the next few subsections, we first
review the fast reconstruction algorithm for 2D signals including comments on modifying the Reed-Muller
sensing case based on certain properties of the Reed-Muller sequences. Then we discuss how to choose a
suitable Daubechies DN wavelet basis and the optimal level of decomposition. The images used in this work
are shown in Figure 1, where (a) is a 512× 512 MR image of brain, (b) is a 512× 512 MR angiogram image,
and (c) is a natural image of 1024× 1024 resolution, which we refer to as the man image.

(a) brain 512× 512 (b) MR angiogram 512× 512 (c) man 1024× 1024

Figure 1: 2D images used in this paper

2.1 Reconstruction algorithm for deterministic sensing matrices

We start with a discussion of deterministic compressed sensing using chirps, i.e., frequency modulated discrete
sinusoids. Our reconstruction algorithm using Reed-Muller sequences is similar and is briefly discussed here
as well. The detailed reconstruction technique for both can be found in [3].

2.1.1 Compressed sensing with chirps

A discrete chirp of length n with chirp rate r and base frequency m has the form

φr,m(ℓ) =
1√
n
e

2πi
n rℓ2+ 2πi

n mℓ, r,m, ℓ ∈ Zn. (2.1)

Note that the coefficient 1/
√
n is present in order for the vector to have a unit ℓ2 norm. For a fixed n, there

are n2 possible pairs (r,m). The full chirp sensing matrix Φ thus has size n× n2 and can be written as

Φchirp =
[
Ur1 Ur2 · · · Urt · · · Urn

]
, 1 ≤ t ≤ n. (2.2)

Each Urt is an n × n matrix with columns given by chirp signals having a fixed chirp rate rt with base
frequency m varying from 0 to n − 1. The chirp rate r also varies from 0 to n − 1. Therefore, column
j = m+ rn+ 1 of Φchirp is a discrete chirp with chirp rate r and base frequency m.
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Example 2.1. Let n = 2; r,m, ℓ ∈ {0, 1}. Then

U0 =

[
1 1
1 eiπ

]
, U1 =

[
1 1
eiπ eiπ+i2π

]
.

The 2× 4 sensing matrix is then given by

Φchirp =

[
1 1 1 1
1 eiπ eiπ eiπ+i2π

]
.

Note that U0, the n×n matrix corresponding to chirp rate r = r1 = 0, is the Discrete Fourier Transform
(DFT) matrix. The Fast Fourier Transform (FFT), which implements the DFT, is used in the algorithm for
recovering a sparse signal from chirp measurements, see Section 2.1.5.

2.1.2 The chirp sensing matrix for 2D signals

Despite the success in accurate reconstruction of very sparse one-dimensional (1D) signals with the algorithm
described in [16], applying it to real two-dimensional (2D) images is impractical. This is because, in general,
real images are not as sparse in any transform domain as the one-dimensional signals used in [15] or [16].

A good approximation of a 256 × 256 pixel image is typically obtained by retaining the largest 10%
wavelet coefficients in some suitably chosen wavelet domain. In particular, many medical images are well
approximated by transform coding using 10–20% of their wavelet coefficients, but begin to show appreciable
degradation as the percentage of coefficients retained falls below these levels. However, a 256 × 256 image
with 10% sparsity has 6, 554 nonzero coefficients, which is much larger than the sparsity considered for the
1D signals in [15] and [16]. A rule of thumb, see [20, Theorem 1], for the number of measurements in the
standard compressed sensing using the Gaussian random matrices with ℓ1 minimization is given by

n > k log2(1 +N/k). (2.3)

This rule guarantees successful reconstruction with high probability if the number of measurements n is large
compared to the sparsity and signal size. Using (2.3) in the above example, at least 22,672 measurements
are needed for the correct reconstruction. The ratio N/n is 2.89, and this implies that roughly only three
chirp rates are needed to form the sensing matrix.

As explained above, due to the nature of sparsity of images and the rule of thumb (2.3), a few sub-
matrices of Φchirp can be used to make the sensing matrix, with the ratio N/n = 2.89 for 10%-sparse
images. In practice, a larger ratio can be used, such as 4 for 10%-sparse images, which will be analyzed later.
Consequently, there is more freedom in the choice of the chirp rates r when constructing the sensing matrix.

The inner product of any pair of distinct chirp vectors is as follows:

∣∣〈φrt,mt , φrt′ ,mt′

〉∣∣ =
{

1√
n
, if rt 6= rt′

0, if rt = rt′ and mt 6= mt′ .
(2.4)

Therefore, a submatrix should use as few chirp rates as possible and the choice of the chirp rates can be
arbitrary. For example, the submatrix can be

Φchirp =
[
Ur1 Ur2 Ur3 Ũr4

]
, (2.5)

where r1 = 0, r2 = 1, r3 = 2, r4 = 3, and Ũr4 denotes a submatrix of Ur4 so that the number of columns of
Φchirp matches the signal size. When only the first J submatrices Ur1 , . . . , UrJ are used to form the sensing
matrix, it follows from an argument given by Alltop [21, Section IV] that n need not necessarily be prime.
Rather, the crucial condition for unique identification of the chirp rate rt in the reconstruction algorithm
is that the smallest prime divisor of n is greater than J . For instance, the sensing matrix for a 256 × 256
(N = 65536) image may be taken to be of size n×N = 16385× 65536. Note that 16385 = 5× 29 × 113 is
closest to and larger than 25% × 65536 = 16384 whose smallest prime divisor is greater than 4. Here, the
25% ratio comes from the fact that four chirp rates are used. In this example, Ũr4 is of size 16385× 16381
and can be Ur4 without the last four columns.
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2.1.3 Reed-Muller sequences in deterministic compressed sensing

The set of real valued second-order Reed-Muller (RM) codes or sequences with length 2p is parameterized by
p×p binary symmetric matrices P and binary p-vectors b ∈ Z

p
2. In terms of these parameters, a second-order

RM code is given by

φP,b(a) =
1√
2p
i(2b+Pa)Ta. (2.6)

In analogy with the chirps, the vector b in the linear term of (2.6) and the matrix P in the quadratic term
may be regarded as the “frequency” and “chirp rate” of the code, respectively. In the expression (2.6), a ∈ Z

p
2

indexes the 2p components of the code φP,b. So, for given parameters P and b, the code is a vector of length
2p. These vectors will serve as the columns of the sensing matrix ΦRM. In addition, during implementation,
P is taken to be zero on its main diagonal to ensure that the codes generated are real valued. This implies
that the components of these codes are all ±1.

Example 2.2. Let p = 2. Then Z2
2 =

{[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
and a, b ∈ Z2

2. There are 2
2(2−1)/2 = 2

zero diagonal symmetric matrices of size 2× 2. These are

P1 =

[
0 0
0 0

]

and

P2 =

[
0 1
1 0

]
.

Set b =

[
0
1

]
. Then if a =

[
0
0

]
, we get for P1

φP1,b(a) = φP1,b

([
0
0

])
= −1.

Similarly for other values of a in Z2
2 one gets

φP1,b

([
0
1

])
= 1, φP1,b

([
1
0

])
= −1, φP1,b

([
1
1

])
= 1.

The vector




−1
1
−1
1


 will be one of the columns of the sensing matrix.

In general, the compressed sensing matrix proposed in [16] has the form

ΦRM =
[
UP1 UP2 · · · UPt · · · UP

2p(p−1)/2

]
, 1 ≤ t ≤ 2p(p−1)/2, (2.7)

where each UPt is a 2p × 2p orthogonal matrix whose columns are φPt,b with b going through all binary
p-vectors. In addition, each φP,b is multiplied with a phase factor (−1)wt(b), where wt(b) is the Hamming
weight of b, i.e., the number of ones in b. The extra phase factor ensures that the total number of plus and
minus signs of the inner products of any two columns are the same. For convenience, P1 is chosen to be
the zero matrix, and therefore, without the phase factor, UP1 is a Hadamard matrix up to a scaling [22].
Consequently, multiplication by UP1 is the Walsh-Hadamard transform (DHT) which, up to a scaling, is its
own inverse [22]. In the reconstruction of a sparse signal using the Reed-Muller sensing matrix the algorithm
uses the DHT, see Section 2.1.5. This is analogous to the DFT that is used with the chirp sensing matrix.

Example 2.3. In Example 2.2,

UP1 =




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1


 .

6



In this case, the first column corresponds to b =

[
0
0

]
, the second column corresponds to b =

[
0
1

]
(as

shown in Example 2.2), and so on. Similarly, for the matrix P2 we get

UP2 =




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
−1 −1 −1 −1


 .

Together, we get the 22 × 23 Reed-Muller sensing matrix, for p = 2, as

ΦRM = [UP1 UP2 ] =




1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1


 .

As noted earlier, the vector b in the linear term of (2.6) and the matrix P in the quadratic term may be
regarded as the binary “frequency” and “chirp rate” of the code, respectively. There are 2p(p−1)/2 such P
matrices with zero-diagonal, so the maximum size of the RM sensing matrix in (2.7) is 2p × 2p(p+1)/2. For a
given P , 2p codes are obtained by varying b, yielding the columns of a 2p × 2p orthogonal matrix UP .

The Delsarte-Goethals set DG(p, r) is the binary vector space of p× p binary symmetric matrices with
the property that the difference between any two distinct matrices has rank greater than or equal to p− 2r
[23]. Evidently, these sets are nested

DG(p, 0) ⊂ DG(p, 1) ⊂ · · · ⊂ DG

(
p,
p− 1

2

)
. (2.8)

Example 2.4. Let p = 3. Then DG(3, 0), consisting of matrices whose differences have rank at least 3, is
spanned by the set [24] 







1 0 0
0 0 1
0 1 0


 ,




0 0 1
0 1 0
1 0 1


 ,




0 1 0
1 0 1
0 1 1






 .

The set DG(3, 1), consisting of matrices whose differences have rank at least 3− 2 = 1, is spanned by [24]

DG(3, 0) ∪








0 0 0
0 0 1
0 1 0



 ,




0 1 0
1 0 0
0 0 0



 ,




0 1 1
1 0 0
1 0 0







 .

Note that these 6 matrices generate all the 26 binary symmetric matrices of size 3× 3.

The set of all P matrices that reside in DG(p, 0) is called the Kerdock set. This means that the difference
between any two distinct matrices in the Kerdock set has full rank. The Reed-Muller codes made from the
matrices P in the Kerdock set produces the Kerdock codes [25]. Two distinct Kerdock codes, normalized to
unit length, have inner product modulus that is either zero (if they correspond to the same P ) or 1/

√
2p (if

they correspond to distinct P s). More generally,

|〈φP,b, φP ′,b′〉| =
{

1√
2q
, 2q times,

0, 2p − 2q times,
(2.9)

where q = rank(P −P ′). So, if the domain of P is DG(p, q), the set of possible inner product modulus values
for distinct normalized codes is {0, 2−p/2, ..., 2−(p−2r)/2}. Allowing P to range over all of DG(p, (p − 1)/2),
(2.6) gives the full set of second-order RM codes.

Defining N = 2p(p+1)/2 and n = 2p, a k-sparse signal x ∈ CN yields a measurement y = ΦRMx ∈ Cn,
which is the superposition of k RM functions

y(a) = z1φP1,b1(a) + z2φP2,b2(a) + · · ·+ zkφPk,bk(a) =

k∑

t=1

ztφPt,bt(a). (2.10)

In (2.10), zt are used instead of x in order to only write the nonzero terms, and Pt and bt may individually
repeat in the equation.
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2.1.4 The Reed-Muller sensing matrix for 2D signals

When forming a sensing matrix from submatrices of the RM matrix given in (2.7), the choice of the submatrix
cannot be arbitrary. The inner product of two columns of ΦRM, one taken from UPt and another from UPt′

,

t 6= t′, is given by (2.9) with q = rank(Pt − Pt′). If q = p, the inner product is always 1/
√
2p, which is

smaller than the inner product in other cases, q < p. Since the nonzero locations of the signal are unknown,
it is desirable that the inner products between any two columns are as small as possible, thus making the
columns of the resulting sensing matrix close to orthogonal. Taking q = p, and thus drawing P matrices only
from DG(p, 0) (i.e., the Kerdock set) gives the best situation. For a given p, there are 2p−1 zero-diagonal

matrices in the Kerdock set [24]. A sensing matrix can be constructed in the form

ΦRM =
[
UP1 UP2 UP3 UP4

]
, (2.11)

where P1, P2, P3, and P4 are matrices from the Kerdock set. The idea behind choosing four P matrices or
chirp rates is the same as that discussed in Section 2.1.2 for the chirp sensing matrix. For example, the
sensing matrix for a 256× 256 (N = 216) image with 10% sparsity is of size n×N = 214 × 216, which means
that only 25% of the signal entries are sampled. Note that for images with sparsity much smaller than 10%,
fewer measurements are needed, and therefore, more P matrices can be used, since the ratio N/n becomes
larger.

2.1.5 The reconstruction algorithm

Here we outline the reconstruction algorithm. For more details, we refer the reader to [3].
Input: y and Φ =

[
U1 −U2 U3 −U4

]
.

Output: z̃

1. Approximation: Perform hard-thresholding U∗
1 y to obtain a set of nonzero locations, denoted by Γ.

Let A = U1

∣∣∣
Γ
be a submatrix of U1 restricted on the set Γ. Then, the initial approximation is z̃ = A∗y

and the residual is obtained by y0 = y −Az̃.

2. Detection1: From w(t, ℓ) = DHT
n

{
y0(ℓ)vt(ℓ)

}
orDFT

n

{
y0(ℓ)vt(ℓ)

}
, t = 1, 2, 3, 4, where vt is the first

column of Ut, update Γ = Γ∪
{
locations associated with d largest

∣∣w(t, ℓ)
∣∣}. Let A = Φ

∣∣∣
Γ
.

3. Least Squares: z̃ = argmin
z

∥∥y −Az
∥∥
2
.

4. Define y0 = y −Az̃. Repeat 2.-4. until ‖y0‖2 is sufficiently small.

If all the non-zero terms are caught by the set Γ then the precision of reconstruction is dependent on the
LSQR algorithm [26] that is used in step 3. above.

2.2 Using the hierarchy of the Delsarte-Goethals (DG) sets for larger signals

So far while using the RM sensing matrix the size of the images was such that it was possible to pick all the
P matrices, needed to construct the sensing matrix, from the Kerdock set. Sometimes one has to deal with
signals whose sizes are such that the required sensing matrix has to be larger than what can be obtained
only from the Kerdock set. Then we have to move on to P matrices from the DG sets that do not have the
full rank property of the Kerdock matrices. This leads us to look at the rank and other properties, see, for
example, (2.8), of matrices from the DG sets as described in Section 2.1.3. In this case some assumptions
on the signal are useful. Compressed sensing for signals with prior information has been addressed by other
authors [27, 28, 29, 30]. These authors design appropriate reconstruction algorithm but not sensing matrices
as we do here.

We assume that there is some a priori knowledge of the behavior of the signal coefficients. Let us suppose
that the signal is sparse and the coefficients of the signal (with respect to some sparsity domain, for example,

1DHT is used for the Reed-Muller sensing matrix while DFT is used in the case of the chirp sensing matrix.
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some wavelet basis) follow a decay pattern. This means that for each location in the signal we know the
probability of having a non-zero value. In this case the sensing matrix from the second order Reed-Muller
sequences can be constructed in the following way. We start assigning vectors generated from P matrices
in the Kerdock or DG(p, 0) set to the columns of the sensing matrix that correspond to the signal locations
that are most likely to be non-empty. Once the Kerdock set is exhausted we take vectors that come from
DG(p, 1), DG(p, 2), and so on following the hierarchy given in (2.8). Alternatively, without any loss of
generality, one can assume that the signal elements are arranged in ascending order. Then the columns of
the sensing matrix appear in the DG order, i.e., the columns from the Kerdock set come first, followed by
the DG(p, 1) and so on. So

Φ = [φK1 · · ·φKnφDG(p,1)1φDG(p,1)2 · · ·φDG(p,2)1 · · · ].

This is outlined in the following algorithm. Note that in the algorithm given below, f is the probability
density function of the nonzero (or active) locations. It is assumed to be a decreasing function, which
corresponds to the design of the DG matrix.

Input: y, f,Φ = [φK1 · · ·φKnφDG(p,1)1φDG(p,1)2 · · ·φDG(p,2)1 · · · ]
Output: z̃
Initially, the residual y0 = y.

1. Detection: From w(t, ℓ) = (f(ℓ))1/3 DFT
n

{
y0(ℓ)vt(ℓ)

}
, t = 1, 2, ..., where DFT is DHT in the RM case

and vt is the first column of Ut, update Γ = Γ∪
{
locations associated with d largest

∣∣w(t, ℓ)
∣∣}. Let

A = Φ
∣∣∣
Γ
.

2. Least Squares: z̃ = argmin
z

∥∥y −Az
∥∥
2
.

3. Define y0 = y −Az̃. Repeat 1.-3. until ‖y0‖2 is sufficiently small.

Some preliminary results have been obtained by using the above method and are given in Table 1.
According to the rule of thumb, as given in (2.3), if we have a signal of size 221 and we wish to recover this
using 26 measurements, then the sparsity should satisfy k ≤ 3. However, our results in Table 1 indicate that
with our algorithm, using the DG order, we are able to recover signals with sparsity greater than 3. This is
part of ongoing and future work.

Table 1: The density function used is f(j) = 1

1−aN

(

− ln(a) aj
)

. Signal size is N = 221, sparsity k = 6, 7, measurement size or

no. of rows of the sensing matrix = n = 26 = 64. The magnitude of the signal entries are either ones or randn (normally distributed
pseudorandom).

No. of nonzero entries a magnitude No. of successes out of
100 independent trials

6 0.98 ones 99/100

6 0.99 ones 98/100

7 0.98 ones 96/100

7 0.99 ones 90/100

6 0.98 randn 97/100

6 0.99 randn 96/100

7 0.98 randn 99/100

7 0.99 randn 97/100
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2.3 Choosing the best Daubechies wavelet basis

It is commonly believed that the Haar wavelet (D2) works best for 2D images in compressed sensing. This is
because many images chosen for experiments are relatively small, i.e., at most 128× 128. In this paper, we
are interested in higher-resolution images, such as 512× 512 and 1024× 1024. The degree of smoothness in
an image loosely determines the support width of polynomials. For an image scene, if the image resolution
is large, the degree of smoothness becomes large. Therefore, an appropriate support width should be large.

Figure 2 shows experiments of chirp compressed sensing using different Daubechies wavelet transforms.
The vertical axis is the reconstruction SNR in dB using chirp compressed sensing. The horizontal axis
shows which Daubechies wavelet DN (or dbN

2 in Matlab) is used as the sparsifying domain. The level of
decompositions is fixed here and is equal to 4 levels (see explanation about the levels in Section 2.2). In
particular, D2 (or db1 in Matlab) is the Haar wavelet. The 2D images are not sparsified. The number of
measurements taken is 25% of the number of pixels. In all three plots, the reconstruction SNR is optimal
around D16. More strictly, the largest reconstruction SNR is within 0.5 dB from the reconstruction error
at D16. The decay is faster in the vessel image (b) than in the images (a) and (c), since the vessel image is
sharper than the brain and man images and contains more edges. See Table A.1 in Appendix for the precise
values. Therefore, we suggest using D16 wavelet basis in deterministic compressed sensing. In particular,
instead of the Haar basis our results are obtained using D16 basis.
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Figure 2: Reconstruction SNR (in dB) of chirp compressed sensing with different Daubechies wavelet DN
(or dbN

2 in Matlab) and 4 levels of wavelet decomposition. The 2D images from Figure 1 are not sparsified.
The number of measurements taken is 25% of the number of pixels.

2.4 Number of levels for wavelet decomposition

In this subsection we investigate how many levels of decomposition should be used in the reconstruction
of large images. Figure 3 shows experiments of chirp compressed sensing using D16 with different levels
of decomposition. The vertical axis is the reconstruction SNR in dB using chirp compressed sensing. The
horizontal axis is the number of levels. In (a) and (c), 3 levels give the best reconstruction SNR. However,
we observe that the sparsified images with 3 levels lost a lot more details than with higher levels, when
compared to the original un-sparsified images. Therefore, we do not choose 3 levels. The reconstruction
SNR from level 4 to 7 is within 0.1 dB range. For experiments in the next section, we thus choose 4 levels.
See Table A.2 in Appendix for the precise values.

3 Stability of the Deterministic Compressed Sensing Algorithms

By the observation in the previous section, we use Daubechies D16 with 4 levels of wavelet decomposition
in all of the following experiments. To study the stability of deterministic compressed sensing using chirp
and Reed-Muller sequences for 2D images under noise, we consider five cases. In the first three cases, the
noise is in the sparse signal, before the transform Φ is taken. In the last two cases, the noise is added after
the transform. In what follows we choose noise to be iid Gaussian with mean zero and variance 2σ2. The
following are the cases:
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Figure 3: Reconstruction SNR (in dB) of chirp compressed sensing with Daubechies D16 wavelet and different
number of levels of wavelet decomposition. The 2D images are not sparsified. The number of measurements
taken is 25% of the number of pixels.

1. The 2D images are sparsified with pre-defined sparsity in the wavelet domain. The wavelet coefficients
xk is k-sparse and there is a noise in the wavelet domain. The measurement is

y = Φ(xk + µ). (3.1)

2. The wavelet coefficients, denoted by x0, is not sparsified, but assumed to be compressible. The noise
is again in the wavelet domain. The measurement is

y = Φ(x0 + µ). (3.2)

3. The wavelet coefficients xk is k-sparse and the noise µkc , in the wavelet domain, is only non-zero outside
the support of xk. Here kc stands for the complement locations of the non-zero wavelet coefficients,
i.e., the noise is added to the zero wavelet coefficients. Therefore, the nonzero coefficients of the signal
are not perturbed. The measurement is

y = Φ(xk + µkc). (3.3)

4. Noise occurs at the step of measurements and is added after the signal xk is transformed by the CS
matrix Φ:

y = Φxk + µ. (3.4)

5. Noise occurs at the step of measurements and is added after the compressible non-sparse signal x0 is
transformed by Φ:

y = Φx0 + µ. (3.5)

We test our algorithm on 3 images, see Figure 1, which we refer to as brain, vessel, and man. The first
two are typical MRI images used in the medical community, and the third is a high resolution natural
image. We reconstruct these images using chirp and Reed-Muller sensing matrices and compare with the
reconstruction by noiselets (for example, see [31]). The noiselet method takes random noiselet measurements
and then reconstructs by ℓ1 minimization whereas our chirp and Reed-Muller algorithms use deterministic
measurements and the reconstruction is by a least squares method.

The reconstruction error is defined as:

Error(dB) = 10 log10

[ ||xactual − xreconstructed||2
||xactual||2

]
.

The negative of the above error is known as the signal-to-noise ratio (SNR). Tables 2-6 show the reconstructed
SNR of measurements taken according to (3.1)-(3.5), respectively. Several noise levels were chosen for the
experiment; and specifically, the standard deviation σ of Gaussian noise with zero mean are σ = 0, 0.01,
0.05, 0.1, and 0.2. These values are chosen for comparison purposes, for example, with Tables 1 and 2 in
[12].
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For Tables 1-3, the third columns are the SNR of the noisy images compared to the images before noise
is added to the wavelet coefficients. If noise is present in the signal, all reconstructed SNR are smaller than
the reference SNR via noiselet measurements and ℓ1 minimization. The reconstructed SNR by chirp has the
highest value (best) in all cases and stays very close to the reference SNR. The reconstructed SNR by RM is
higher than noiselets when the noise level is small.

When the noise level is large, it seems that the noiselets slightly outperform RM even though the dis-
cussion in Section 1 assures that the deterministic compressed sensing matrices comprised of chirps and
Reed-Muller sequences have advantage over random matrices. The reason is that the deterministic sensing
matrices here satisfy StRIP for sparse signals whose nonzero locations follow a uniform distribution, and the
wavelet coefficients do not follow a uniform distribution. Therefore, better performance is not guaranteed
anymore. Nevertheless, all results show that the deterministic algorithms are as stable as the reconstruction
using noiselets and ℓ1 minimization.

For tables 5 and 6, the third column gives the SNR of the noisy measurement compared to the clean mea-
surement. The reconstructed SNR is calculated the same way as in Tables 1-3, comparing the reconstructed
image to the reference image. Therefore, the SNR in the third columns is in a different domain, or differs
by the Φ transform. All results show that the reconstruction by chirp or RM performs significantly better

than noiselets. Note that in Tables 1, 3, and 4, where there is no noise, the reconstruction is very accurate,
above 100 dB.

Table 2: The 2D images are first sparsified in the domain of Daubechies wavelet D16 (db8 in Matlab) with 4 levels of decomposition.
The image, its size, and the pre-determined sparsity are shown in the first column. Gaussian noise with zero mean and variance σ2 (or
standard deviation σ) is added to the wavelet coefficients of the sparsified image; see (3.1). The third column shows the SNR in dB
compared to the noise-free sparsified image. Columns 4 - 6 show the reconstruction SNR in dB using noiselets, chirp, and Reed-Muller
CS algorithms, respectively. The number of measurements taken is 25% of the number of pixels.

image, size, sparsity stan. dev. σ SNR noiselets Chirp RM

0 – 29.8 127.0 121.6
0.01 31.6 24.0 31.0 27.4

brain, 512× 512, 7% 0.05 17.7 15.4 17.1 16.1
0.1 11.9 10.8 11.6 10.4
0.2 6.5 6.5 6.8 5.6

0 – 37.1 126.2 121.0
0.01 21.6 15.7 18.1 15.2

vessel, 512× 512, 5% 0.05 8.9 7.0 7.7 6.8
0.1 3.2 3.6 4.2 3.0
0.2 -2.5 1.2 2.1 0.9

0 – 43.3 122.6 118.1
0.01 32.5 30.0 32.2 30.1

man, 1024× 1024, 2.38% 0.05 18.7 16.8 17.9 16.7
0.1 12.9 11.8 12.5 11.3
0.2 7.2 7.2 7.5 6.3

4 Discussions

In this work, we show that the algorithms introduced in [3] are stable even if the signal is not exactly sparse
and there is some noise in the measurements or in the signal. We also address several practical concerns
about compressed sensing with images.

First of all, the Haar wavelet is commonly used as the sparsifying transform domain. We compare the
performance of standard Daubechies DN wavelets and suggest using Daubechies D16 as it performs the best
for larger resolutions images, such as 512× 512 or 1024× 1024 pixels.

Secondly, we explain the proper selection of the number of levels for wavelet decomposition. As discussed
in Section 2, levels 4-7 are optimal for wavelet decomposition, and for optimal computation time we work
with level 4.

Finally, our experiments show that the algorithms are indeed stable if the signal is compressible and
there is noise in either measurements or the signal. Furthermore, our chirp and RM compressed sensing
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Table 3: In this table, the 2D images are not sparsified. Gaussian noise with zero mean and standard deviation σ is added to all 4
levels of D16 wavelet coefficients decomposition of the non-sparsified image; see (3.2). The third column shows the SNR in dB of the
noisy images compared to the original image. Columns 4 - 6 show the reconstruction SNR in dB using noiselets, chirp, and Reed-Muller
CS algorithms, respectively. The number of measurements taken is 25% of the number of pixels.

image, size stan. dev. σ SNR noiselets Chirp RM

0 – 23.4 28.4 25.7
0.01 31.6 22.2 25.7 24.6

brain, 512× 512 0.05 17.7 15.2 17.0 15.9
0.1 12.0 10.8 11.6 10.4
0.2 6.5 6.5 6.8 5.6

0 – 12.0 14.1 13.4
0.01 21.8 11.4 12.8 12.7

vessel, 512× 512 0.05 9.0 6.7 7.5 6.6
0.1 3.3 3.6 4.1 3.0
0.2 -2.4 1.2 2.0 0.8

0 – 20.0 23.2 22.6
0.01 32.5 19.8 22.8 22.0

man, 1024× 1024 0.05 18.8 15.2 17.3 16.1
0.1 12.9 11.3 12.4 11.1
0.2 7.3 7.1 7.5 6.3

Table 4: The 2D images are first sparsified in the Daubechies wavelet D16 domain with 4 levels of decomposition. The pre-determined
sparsity for each image is shown in the first column. The Gaussian noise with zero mean and standard deviation σ is added only to the
non-zero wavelet coefficients of the sparsified image; see (3.3). The third column shows the SNR in dB of the images with added noise
compared to the noise-free sparsified image. Columns 4 - 6 show the reconstruction SNR in dB using noiselets, chirp, and Reed-Muller
CS algorithms, respectively. The number of the measurements taken is 25% of the number of pixels.

image, size, sparsity stan. dev. σ SNR noiselets Chirp RM

0 – 29.7 127.0 121.6
0.01 31.9 24.2 31.1 27.1

brain, 512× 512, 7% 0.05 18.0 15.5 17.1 16.1
0.1 12.3 11.0 11.6 10.4
0.2 6.8 6.7 6.8 5.6

0 – 31.7 126.2 121.0
0.01 21.3 15.7 17.9 15.2

vessel, 512× 512, 5% 0.05 8.6 7.0 7.7 6.7
0.1 3.0 3.6 4.1 3.0
0.2 -2.8 1.2 1.9 0.8
0 – 43.1 122.6 118.1

0.01 35.5 29.9 32.2 30.1
man, 1024× 1024, 2.38% 0.05 18.7 16.8 17.9 16.8

0.1 12.8 11.8 12.6 11.3
0.2 7.2 7.2 7.5 6.3
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Table 5: The 2D images are first sparsified in the Daubechies wavelet D16 domain with 4 levels of decomposition. The pre-determined
sparsity for each image is shown in the first column. Measurements are taken from the D16 domain. The number of measurement taken
is 25% of the number of pixels. Gaussian noise with zero mean and standard deviation σ is added to the measurements of the sparsified
image; see (3.4). The third column shows the SNR in dB of the noisy measurements compared to the noise-free measurements. Columns
4 - 6 show the reconstruction SNR in dB using noiselets, chirp, and Reed-Muller CS algorithms, respectively.

image, size, sparsity stan. dev. σ SNR noiselets Chirp RM

0 – 29.7 127.0 121.6
0.01 31.6 24.7 46.4 45.6

brain 512× 512, 7% 0.05 17.6 16.8 27.5 26.8
0.1 11.5 12.6 22.0 21.4
0.2 5.5 8.1 15.5 14.9

0 – 37.1 126.2 121.0
0.01 20.6 16.4 32.8 32.7

vessel 512× 512, 5% 0.05 6.6 7.5 14.6 15.0
0.1 0.5 2.8 10.9 10.0
0.2 -5.5 -2.6 5.2 4.5

0 – 43.1 122.6 118.1
0.01 32.4 31.4 46.9 46.5

man 1024× 1024, 2.38% 0.05 18.4 18.3 27.0 26.0
0.1 12.4 13.5 22.0 21.0
0.2 6.4 8.6 16.0 15.5

Table 6: The 2D images are not sparsified in this experiment. Measurements are taken from the D16 domain with 4 levels of
decomposition. The number of measurements taken is 25% of the number of pixels. Then, Gaussian noise with zero mean and standard
deviation σ is added to the measurements of non-sparsified image; see (3.5). The third column shows the SNR in dB of the noisy
measurements compared to the noise-free measurements. Columns 4 - 6 show the reconstruction SNR in dB using noiselets, chirp, and
Reed-Muller CS algorithms, respectively.

image, size stan. dev. σ SNR noiselets Chirp RM

0 – 23.4 28.4 25.7
0.01 31.6 22.4 28.0 25.7

brain 512× 512 0.05 17.6 16.5 25.2 24.9
0.1 11.5 12.5 21.3 20.9
0.2 5.5 8.0 15.3 14.7

0 – 12.0 14.1 13.4
0.01 20.6 11.5 13.8 13.4

vessel 512× 512 0.05 6.7 6.9 12.4 12.3
0.1 0.7 2.6 9.9 9.1
0.2 -5.3 -2.6 4.9 4.3

0 – 20.0 23.2 22.6
0.01 32.4 19.6 23.2 22.5

man 1024× 1024 0.05 18.4 16.2 22.5 21.7
0.1 12.4 12.7 20.2 19.4
0.2 6.4 8.4 15.6 15.1
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reconstruction algorithms outperform the standard compressed sensing reconstruction using random matrices
and ℓ1 minimization. We have also done some analysis on how our efficient reconstruction algorithm can be
adapted by using the nesting of the Delsarte-Goethals sets of the Reed-Muller codes to deal with very large
images. Currently, we are trying to use this to improve the performance of our deterministic compressed
sensing algorithms.
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Appendix A: SNR values for Figures 2 and 3

Please see Tables A.1 and A.2.

Table A.1: The table below shows reconstruction SNR of chirp compressed sensing with different Daubechies wavelet DN (=dbN
2

in matlab) and 4 levels of decomposition. Specifically, D2 is the Haar wavelet. The 2D images are not sparsified. Each column shows
the reconstruction SNR in dB with the indicated DN . The number of measurements taken is 25% of the number of pixels. This table
is plotted in Figure 2.

D2 D4 D8 D12 D16 D20 D24 D32 D40

brain 23.34 26.45 28.58 28.93 29.17 29.24 29.04 29.39 29.24

vessel 13.13 13.79 14.11 14.19 13.97 13.94 13.77 13.26 13.12

man 21.46 23.01 23.58 23.66 23.71 23.71 23.62 23.60 23.54

D48 D56 D64 D72 D80 D88

brain 29.09 29.14 29.08 28.80 28.78 28.72

man 23.46 23.44 23.38 23.37 23.35 23.30

16



Table A.2: The table below shows reconstruction error of chirp compressed sensing with Daubechies D16 wavelet and various levels
of decomposition ranging from 3 to 7. The 2D images are not sparsified. Each column shows the reconstruction SNR in dB with the
indicated number of levels. The number measurement taken is 25% of the number of pixels. This table is plotted in Figure 3.

3 4 5 6 7

brain 29.51 29.17 29.30 29.31 29.32

vessel 13.89 13.97 13.99 13.96 13.94

man 23.74 23.71 23.71 23.70 23.72
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