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1 Introduction

Given a signal, whether it is a discrete vector or a continuous function, one desires
to write it in terms of simpler components. Typically, these components or “building
blocks” form what is called a basis. A basis is an optimal set, having the minimal
number of elements, such that any vector (signal) in the underlying space can be
written uniquely as a linear combination of the basis vectors. Bases play an impor-
tant role in the analysis of vector spaces, since the characteristics of the signal can
be read off from the coefficients in the basis representation. However, if the coeffi-
cients get corrupted by noise or if some get lost during transmission then valuable
signal information can get lost beyond recovery. The main problem with bases is
this lack of flexibility - even a slight modification of a basis can leave us with a set
that is no longer a basis. Since the basis representation is typically nonredundant
one can try to bring in more flexibility by adding some extra elements and sacrific-
ing the uniqueness property of a basis representation. This leads to the notion of a
frame. A frame can be thought of as a redundant basis, having more elements than
needed. In fact, in any finite dimensional vector space every finite spanning set is a
frame. Although the redundancy of a frame leads to non-unique representations, this
also makes the corresponding signal representations resilient to noise and robust to
transmission losses. In applications, such robustness might be more desirable than
having a unique representation.
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It is widely acknowledged that the idea of frames originated in the 1952 paper
by Duffin and Schaeffer [11], but frames have only gained significant popularity
relatively recently due to work such as [10]. Frames are now standard tools in signal
processing and are of great interest to mathematicians and engineers alike. This
chapter focuses on frames in finite dimensional spaces. The notion of frames for
infinite dimensional spaces like function spaces is far more subtle [6, 9, 26] and
will not be discussed here. Along with introducing finite frame theory, this chapter
discusses a special highly desirable class of frames called equiangular tight frames.
Possible research ideas suitable for an undergraduate curriculum are also discussed.

Throughout the chapter, many of the well known results will be stated without
proofs and the reader will be provided with the necessary references. It is assumed
that readers have taken some undergraduate linear algebra course, and are familiar
with the notion of a basis and its fundamental properties. For an in depth study
of linear algebra, readers may refer to [12, 17]. A nominal knowledge of complex
numbers is also assumed. In all that follows, R will denote the set of real numbers,
and C will denote the set of complex numbers. For a given c ∈ C, the complex
conjugate of c is denoted by c, and the modulus of c is denoted by |c|. In a setting
that applies to both R and C we will use the notation F, the elements of which are
called scalars.

We first recall one of the most significant properties of a basis in the following
result [12].

Theorem 1. [12] Let V be a vector space and B = {v1,v2, . . . ,vn} be a subset of
V . Then B is a basis for V if and only if each v ∈ V can be uniquely expressed as
a linear combination of vectors of B, that is, there exist unique scalars c1,c2, . . . ,cn
such that

v = c1v1 + c2v2 + · · ·+ cnvn. (1)

The scalars ci in (1) are called the coefficients of v with respect to B. Note that each
basis for a given vector space has the same number of elements, and this number
is the dimension of the underlying vector space. As will become apparent later, in
the case of a frame there is an added flexibility in that frames for the same space
can differ in the number of elements. The computation of the coefficients in (1) is
important since this allows us to represent v in terms of the basis elements. How-
ever, this process can be cumbersome. The concept of an inner product can greatly
simplify these calculations. For the convenience of the reader, we next recall some
standard definitions and properties pertinent to inner products.

Definition 1. Let V be a vector space over F. An inner product on V is a function
that assigns to every ordered pair of vectors u,v∈ V , a scalar in F denoted by 〈u,v〉,
such that for all u,v,w ∈ V and all c ∈ F, the following hold:

(a) 〈u+w,v〉= 〈u,v〉+ 〈w,v〉.
(b) 〈cu,v〉= c〈u,v〉.
(c) 〈u,v〉= 〈v,u〉, where the bar denotes complex conjugation.
(d) 〈u,u〉 ≥ 0, with equality if and only if u = 0.
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A vector space endowed with an inner product is called an inner product space. If
F = R, it is called a real inner product space and if F = C, it is called a complex
inner product space.

Example 1. In Fn, an inner product of two vectors u = (a1,a2, . . . ,an) and v =
(b1,b2, . . . ,bn) can be defined as

〈u,v〉=
n

∑
i=1

aibi.

This is the standard inner product of Fn. When F = R, the conjugations are not
needed, and we have what is commonly referred to as the dot product, often written
as u · v.

The definition of an inner product is used to generalize the notion of length in a
vector space. Recall that in R3, the Euclidean length of a vector v = (a,b,c) is given
by
√

a2 +b2 + c2 =
√
〈v,v〉. This leads to the following.

Definition 2. Let V be an inner product space. For v ∈ V , the norm or length of v
is defined by

‖v‖=
√
〈v,v〉.

If ‖v‖= 1 then v is called unit normed.

Definition 3. Two distinct vectors u,v in an inner product space V are said to be
orthogonal if 〈u,v〉 = 0. A subset S of V is called an orthogonal set if any two
distinct vectors in S are orthogonal.

Recall that in R2 or R3 two vectors that are mutually perpendicular to each other
have dot product equal to zero. The notion of an inner product can thus be used to
infer the (angular) distance between vectors in a vector space, and leads to a special
kind of basis called an orthonormal basis.

Definition 4. A basis B of a vector space V is called an orthonormal basis (ONB)
if B is an orthogonal set in which every vector is unit normed.

Every finite dimensional vector space has an orthonormal basis. This is a conse-
quence of the Gram-Schmidt orthogonalization process [12]. One of the main ad-
vantages of an ONB is that the coefficients in the basis representation, when using
an ONB, are very easy to compute. This is due to the following result.

Theorem 2. [12] Let B = {ui}n
i=1 be an ONB of V . Any vector v∈ V can be written

in terms of the vectors in B as

v =
n

∑
i=1
〈v,ui〉ui.

Theorem 2 shows that the unique coefficients in the basis representation in (1), when
using an ONB, are just given by the inner products 〈v,ui〉, and therefore very simple
to calculate. Theorem 2 leads to Parseval’s Formula which can be thought of as a
generalization of the Pythagorean Identity.
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Proposition 1 (Parseval’s Formula). [15] Let {ui}n
i=1 be an ONB of a vector space

V . Then for every v ∈ V

‖v‖2 =
n

∑
i=1
|〈v,ui〉|2. (2)

Parseval’s Formula is particularly intimate to frame theory, and the importance of
this can be understood by taking a closer look at (2). It says that the norm of the
signal v is completely determined by the orthonormal basis coefficients {〈v,ui〉}.
Suppose that the signal v cannot be analyzed directly but one can measure the coef-
ficients {〈v,ui〉}. Since both sides of (2) have the meaning of energy, this suggests
that some valuable information of the signal can be obtained solely from its coeffi-
cients even if one does not know what the signal is.

A natural question is: why do we wish to generalize bases or why do we want
to look beyond bases? First of all, it might be worth pointing out that once a ba-
sis for a vector space V has been fixed, for each v ∈ V , one can just work with
the coefficients of v that appear in the basis representation. This means that if
B = {v1,v2, . . . ,vn} is a basis of V and if c1,c2, . . . ,cn are the unique coefficients
representing v, that is,

v = c1v1 + c2v2 + · · ·+ cnvn, (3)

then in order to store or transmit v, one only uses the vector (c1,c2, . . . ,cn). Once
these coefficients are known, one can recover v using (3).

Now suppose that in transmitting v, the coefficients {ci}n
i=1 get corrupted by

noise, and as a result what is received is {ci +µi}n
i=1. During the recovery process,

one obtains

v̂ =
n

∑
i=1

(ci +µi)vi =
n

∑
i=1

civi +
n

∑
i=1

µivi = v+ ε.

Instead of a basis suppose that one uses a spanning set, that is, a set that spans V
but is linearly dependent. Such a set could be {v1, . . . ,vn,vn+1, . . . ,vm} = {vi}m

i=1,
m > n, obtained from B by adding some additional vectors of V . Then v can be
recovered by calculating

v̂ =
m

∑
i=1

civi +
m

∑
i=1

µivi

where ci = 0, n < i ≤ m. Since {vi}m
i=1 is a linearly dependent set, there is a possi-

bility that the second summation ∑
m
i=1 µivi will become zero, thereby canceling the

noise, something that is never possible when using a basis. Intuitively, this shows
how the effect of noise can be reduced by using a redundant set.

As another instance of the benefit of having a redundant spanning set, let us
consider v = (1,1) ∈ R2. 1 Using the standard orthonormal basis of R2, {e1 =
(1,0),e2 = (0,1)}, v can be written as

v = 1 · e1 +1 · e2.

1 The authors would like to thank Andy Kebo for sharing this example.
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If one of the coefficients, say the second coefficient is lost, then at the reconstruction
stage one gets

v̂ = 1 · e1 +0 · e2 = (1,0)

and the error in the reconstruction is

‖v− v̂‖2 = 1

where ‖.‖2 is the Euclidean distance in R2. Instead of an ONB, let us now use the
redundant set

{ fk = (cos(2kπ/6),sin(2kπ/6))}5
k=0.

See Fig. 1(a). In terms of this set, the vector (1,1) can be written as

v = 0.333 f0 +0.455 f1 +0.122 f2−0.333 f3−0.455 f4−0.122 f5.

If the coefficient corresponding to f0 is lost then one obtains

v̂ = 0.455 f1 +0.122 f2−0.333 f3−0.455 f4−0.122 f5

and the reconstruction error is

‖v− v̂‖2 = 1/3

which is less than the error when the first coefficient was lost while using the stan-
dard ONB of R2. Losing a single coefficient with an ONB in R2 can be thought of as
losing 50% of the coefficients. In the case of the redundant set under consideration
suppose that 50%, that is, three coefficients are lost. If they are the first three, then
the reconstructed vector is

̂̂v =−0.333 f3−0.455 f4−0.122 f5

and the reconstruction error is

‖v− ̂̂v‖2 = 1/
√

2

which is still less than when using the standard ONB of R2.
In the above, what we have sacrificed by using a linearly dependent spanning set

instead of a basis is that we no longer have the unique representation of Theorem 1.
The question is whether a unique representation is necessary for our purpose and the
answer is no; as long as we are able to represent every vector in terms of the set, it
does not matter. This notion of adding redundancy is what is incorporated in a frame
for a finite dimensional vector space. The set { fk = (cos(2kπ/6),sin(2kπ/6))}5

k=0
used in the discussion above is not a basis but is a frame for R2, and we have shown
how redundancy is better when we have transmission losses. The next section gives
the basics of finite frame theory. The reader is urged to read [6, 15] for more details.
An excellent overview of the ideas underlying frames can be found in [18].
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2 Frames in Finite Dimensional Spaces

To help us think of frames as generalizations of bases, let us look at Parseval’s For-
mula in Proposition 1. Relaxing the condition in (2) gives the following definition.

Definition 5. Let V be an inner product space and let { fi}i∈I be a subset of V
indexed by some countable set I .

(i) The set { fi}i∈I is a frame if there exist constants 0 < A≤ B < ∞ such that for
every v ∈ V ,

A‖v‖2 ≤ ∑
i∈I
|〈v, fi〉|2 ≤ B‖v‖2. (4)

(ii) The constants A and B are called the lower and upper frame bound, respec-
tively.

(iii) If A = B, the frame is called a tight frame.
(iv) If for each i ∈I , ‖ fi‖= 1, the frame is called a unit normed frame.

Due to Parseval’s Formula, an orthonormal basis is a unit normed tight frame with
frame bound equal to 1. In a finite d-dimensional vector space V , a finite set { fi}n

i=1,
n≥ d, is a frame if and only if { fi}n

i=1 is a spanning set of V [6].
Let { fi}n

i=1 be a frame for a finite dimensional inner product space V . The Bessel
map F : V → Fn is defined by

F(v) = {〈v, fi〉}n
i=1, v ∈ V . (5)

The adjoint of F is given by

F∗ : Fn→ V , F∗({ci}n
i=1) =

n

∑
i=1

ci fi. (6)

The mapping F is often referred to as the analysis operator, while F∗ is referred to
as the synthesis operator. In a finite dimensional space like Rd or Cd , the synthesis
operator F∗ can be written as a d×n matrix whose columns are the frame vectors.
The analysis operator F is then an n×d matrix whose ith row is f ∗i . In other words,
F∗ is just the conjugate transpose of F in this setting.

Lemma 1. The analysis operator F given by (5) is one to one.

Proof. To show that F is one to one, it is enough to show that the null space of F
consists of only the zero vector. Let Fv = 0 for some v ∈ V . Then for i = 1, . . . ,n,
〈v, fi〉= 0. Since { fi}n

i=1 spans V , v must equal zero. Thus F is one to one. ut

Lemma 2. If {ei}n
i=1 is the standard orthonormal basis 2 of Fn, then for i = 1, . . . ,n,

F∗(ei) = fi.

2 ei is the vector whose ith coordinate is equal to 1 and the rest are zero.
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Proof. Let v be a vector in V . Then for i = 1, . . . ,n,

〈v,F∗ei〉 = 〈Fv,ei〉
= 〈v, fi〉.

Thus F∗ei = fi. ut

Lemma 3. The synthesis operator given by (6) maps Fn onto V .

Proof. Let v be a vector in V . Since { fi}n
i=1 spans V , there exist constants α1, . . . ,αn

such that

v = α1 f1 + . . .+αn fn

= α1F∗(e1)+ . . .+αnF∗(en)

= F∗(α1e1 + . . .+αnen).

where the penultimate step follows from Lemma 2. Thus the vector α1e1 + . . .+
αnen ∈ Fn gets mapped to v showing that F∗ is onto. ut

The composition of F∗ with F gives the frame operator

S : V → V , S(v) = F∗F(v) =
n

∑
i=1
〈v, fi〉 fi. (7)

If we restrict ourselves to either Rd or Cd , then the frame operator S is the d× d
matrix F∗F where F is the matrix corresponding to the analysis operator. Note that
in terms of the frame operator, for any v ∈ V ,

n

∑
i=1
|〈v, fi〉|2 = 〈Sv,v〉,

and (4) can be rewritten as

A‖v‖2 ≤ 〈Sv,v〉 ≤ B‖v‖2. (8)

For a tight frame, when A = B, (8) implies that

S = AI,

and so

n

∑
i=1
|〈v, fi〉|2 = A‖v‖2

or, ‖v‖2 =
n

∑
i=1

1
A
|〈v, fi〉|2. (9)
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Note that (9) resembles Parseval’s formula that is satisfied by an ONB. In this re-
gard, unit normed tight frames are the redundant counterparts of orthonormal bases.
Finally, since S = AI for a tight frame, (7) implies a representation of any v ∈ V in
terms of the vectors of a tight frame:

v =
1
A

n

∑
i=1
〈v, fi〉 fi. (10)

If we define a new set of vectors as

gi =
1
A

fi,

then (10) can be written as

v =
n

∑
i=1
〈v,gi〉 fi =

n

∑
i=1
〈v, fi〉gi. (11)

As can be seen from (11), for a tight frame, the coefficients in the expression for v
can be obtained simply by calculating the inner products with the gis or the fis, in
a manner similar to the case of an ONB. In the case of a general frame that is not
necessarily tight, a frame representation as in (10) or (11) is still possible and is now
given.

Theorem 3. [6] Let { fi}n
i=1 be a frame for a finite dimensional inner product space

V , and let S be the frame operator. Then

(i) S is invertible and self-adjoint, i.e., S = S∗.
(ii) Every v ∈ V can be represented as

v =
n

∑
i=1
〈v,S−1 fi〉 fi =

n

∑
i=1
〈v, fi〉S−1 fi. (12)

Proof. (i) We will first show that the frame operator S is one to one. By (8), Sv= 0
forces v = 0. Therefore the null space of S contains only the zero vector and S
is one-to-one. Since S maps V to V , S is also onto, and hence invertible.
By properties of the adjoint operator:

S∗ = (F∗F)∗ = F∗(F∗)∗ = F∗F = S.

Thus S is self-adjoint.
(ii) By (i), S−1 exists, and so for each v ∈ V we have

v = S−1Sv = S−1
n

∑
i=1
〈v, fi〉 fi, by (7),

=
n

∑
i=1
〈v, fi〉S−1 fi.

Note that since S is self-adjoint, so is S−1. Thus, again by (7),
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v = SS−1v =
n

∑
i=1
〈S−1v, fi〉 fi

=
n

∑
i=1
〈v,S−1 fi〉 fi.

ut

The set {S−1 fi}n
i=1 is also a frame for V and is called the canonical dual of { fi}n

i=1.
The numbers 〈v,S−1 fi〉 are called the frame coefficients.

If { fi}n
i=1 is a spanning set that is not a basis of V , there must exist constants

{γi}n
i=1, not all zero, such that ∑

n
i=1 γi fi = 0. Thus, by adding zero to the first part of

(12),

v =
n

∑
i=1
〈v,S−1 fi〉 fi +

n

∑
i=1

γi fi

=
n

∑
i=1

(〈v,S−1 fi〉+ γi) fi,

and so there are infinitely many representations of v in terms of the frame vectors.
The representation of v in (12) is called the canonical form. With a frame, we there-
fore have much more flexibility when choosing a representation for v compared
to a basis representation. However, the special feature of the frame coefficients
{〈v,S−1 fi〉} is that they have the minimal `2-norm among all coefficients {ci}n

i=1
such that v = ∑

n
i=1 ci fi. This can be stated as follows.

Theorem 4. [6] Let { fi}n
i=1 be a frame for a finite dimensional inner product space

V with frame operator S. If v ∈ V has the representation v = ∑
n
i=1 ci fi, then

n

∑
i=1
|ci|2 =

n

∑
i=1
|〈v,S−1 fi〉|2 +

n

∑
i=1
|ci−〈v,S−1 fi〉|2.

Example 2 (Computing a frame expansion). Consider the frame in R2 given by the
rows of

F =

1 0
0 1
1 1


and let

v =
[

1
−2

]
.

The frame operator corresponding to this frame is given by

S = FT F =

[
2 1
1 2

]
,
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and the frame coefficients for v are

〈v,S−1 f1〉=
4
3

〈v,S−1 f2〉=−
5
3

〈v,S−1 f3〉=−
1
3
.

One can then verify that

v =
4
3

f1−
5
3

f2−
1
3

f3,

which is the canonical form of v. The `2-norm of the coefficients in the canonical
form is

√
14
3 . It is not too difficult to see that v can also be written as v = f1−2 f2.

The `2-norm of the coefficients in this expansion is given by
√

5. As expected, this
is greater than the `2-norm of the coefficients in the canonical form.

Note that computing the frame coefficients involves inverting the frame operator
S which can be numerically unstable. In the case of a tight frame, this step is dras-
tically simplified due to the fact that S−1 = 1

A I, a constant multiple of the identity.
This feature has made tight frames highly desirable. They emulate ONBs and at the
same time provide the benefits of redundancy that come from using frames.

The frame potential [2] of the frame { fi}n
i=1 is the number FP({ fi}n

i=1) defined
by

FP({ fi}n
i=1) =

n

∑
i=1

n

∑
j=1
|〈 fi, f j〉|2.

The frame potential is used to give an important characterization of unit normed
tight frames and ONBs.

Theorem 5 (Theorem 6.2, [2]). Let d,n ∈ N with d ≤ n, and let { fi}n
i=1 be a unit

normed frame in Rd or Cd . Then FP({ fi}n
i=1) ≥

n2

d with equality if and only if
{ fi}n

i=1 is a unit normed tight frame (or an ONB in the case n = d).

The optimal lower bound of a frame is the supremum over all constants A that
satisfy the left inequality in (4). Similarly, the optimal upper bound is the infimum
over all constants B that satisfy the right side of inequality (4). In the finite dimen-
sional setting, the optimal lower and upper frame bounds are given by the minimum
and maximum eigenvalues of the matrix of S. The following theorem gives some
useful results involving the eigenvalues of the frame operator. The proof, given in
[6], is included here.

Theorem 6. [6] Let { fi}n
i=1 be a frame for a d-dimensional space V . Then the

following hold.

(i) The optimal lower frame bound is the smallest eigenvalue of S, and the optimal
upper frame bound is its largest eigenvalue.
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(ii) Let {λi}d
i=1 denote the eigenvalues of S. Then

d

∑
i=1

λi =
n

∑
i=1
‖ fi‖2.

(iii) If { fi}n
i=1 is a tight frame and for all i, ‖ fi‖= 1, then the frame bound is A = n

d .

Proof. (i) Since the frame operator S : V → V is self-adjoint, there is an or-
thonormal basis of V consisting of eigenvectors of S. Denote this eigenvector
basis by {ei}d

i=1 and the corresponding eigenvalues by {λi}d
i=1. Every v ∈ V

can be written as

v =
d

∑
i=1
〈v,ei〉ei.

Then

Sv =
d

∑
i=1
〈v,ei〉Sei =

d

∑
i=1

λi〈v,ei〉ei,

and
n

∑
i=1
|〈v, fi〉|2 = 〈Sv,v〉=

d

∑
i=1

λi|〈v,ei〉|2.

Therefore,

λmin‖v‖2 ≤
n

∑
i=1
|〈v, fi〉|2 ≤ λmax‖v‖2.

This shows that λmin is a lower frame bound and λmax is an upper frame bound.
Taking v to be an eigenvector corresponding to λmin, respectively, λmax, proves
that it is the optimal lower bound, respectively, upper bound.

(ii) We have

d

∑
i=1

λi =
d

∑
i=1

λi‖ei‖2 =
d

∑
i=1
〈Sei,ei〉

=
d

∑
i=1

n

∑
j=1
|〈ei, f j〉|2.

Interchanging the order of summation and using the fact that {ei}d
i=1 is an

ONB for V gives the desired result.
(iii) By the assumptions, S = AI and so S has one eigenvalue equal to A with mul-

tiplicity d. By part (ii), this means that

dA = n

and this gives A = n
d .

ut
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The n×n matrix FF∗ is the Gram matrix of the set { fi}n
i=1. The Gram matrix has

rank d, and its non-zero eigenvalues are the same as the eigenvalues of the frame
operator S. The (i, j)th entry of the Gram matrix is the inner product 〈 f j, fi〉.

Example 3 (Types of frames).

(a) The frame { fk = (cos(2kπ/6),sin(2kπ/6))}5
k=0 given in Section 1 is a unit

normed tight frame of six vectors in R2. See Fig. 1(a). The analysis operator
is given by

F =



1 0
1/2

√
3/2

−1/2
√

3/2
−1 0
−1/2 −

√
3/2

1/2 −
√

3/2


and the frame operator is

S =

[
3 0
0 3

]
.

We thus have a tight frame with frame bound equal to 3.
(b) The vectors { f0, f2, f4} from the frame given in (a) form a special unit normed

tight frame known as the Mercedes-Benz frame. These vectors are the first, third
and fifth rows of the matrix F. The corresponding frame operator is the matrix[ 3

2 0
0 3

2

]
.

The frame bound for this frame is therefore equal to 3
2 . See Fig. 1(b). This is an

example of an equiangular tight frame, see Definition 6. Note that the absolute
value of the inner product of any two distinct vectors in this set is equal to 1

2 .

(c) Let µ = 1√
5
. The set { fk}4

k=0 ⊂ R3 given by the rows of



0 0 1√
1−µ2 0 µ

µ

√
1−µ

1+µ

√
(1+2µ)(1−µ)

1+µ
µ

µ

√
1−µ

1+µ
−
√

(1+2µ)(1−µ)
1+µ

µ

−µ

√
1+µ

1−µ

√
(1−2µ)(1+µ)

1−µ
µ


forms a unit normed frame, but not a tight frame, of five vectors in R3. This
is an example of a Grassmannian frame [3], see Definition 7. The eigenvalues
of the corresponding frame operator are 1 and 2. By Theorem 6, the optimal
lower frame bound must be 1 and the optimal upper frame bound must be 2. See
Fig. 1(c).
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x

y

f1f2

f4 f5

f0f3

(a) The frame from Section 1.

x

y

f0

f2

f4

(b) The Mercedes-Benz frame.

x y

z

f0

f1 f2

f3

f4

(c) The (5,3) Grassmannian frame.

Fig. 1: Examples of frames.

(d) Given n ∈ N, let ω = e−
2πi
n . The n×n discrete Fourier transform (DFT) matrix

is given by

F =
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

 .

The rows form an orthonormal basis of Cn. Let F̂ denote the n×d matrix formed
by selecting d columns from F . The set { fk}n−1

k=0 given by the rows of F̂ forms a
tight frame in Cd , but not necessarily a unit normed frame.
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3 Equiangular Tight Frames

In a communications system, when there are several signals trying to access the
same channel, it is desired that there is minimum interference between the signals.
The cross correlation between two signals, given by the absolute value of their inner
product, can be interpreted as a measure of their interference. This is minimized
when the two vectors (signals) are mutually orthogonal i.e. their inner product is
zero. However, in a finite dimensional space, the maximum number of mutually or-
thogonal vectors is the same as the dimension. When the number of vectors exceeds
the dimension of the underlying space, we desire that the maximum cross correla-
tion between any two vectors is minimized. Welch [24] gave the following lower
bound for the maximum cross correlation among unit normed vectors { fi}n

i=1 in Fd :

max
i 6= j
|〈 fi, f j〉| ≥

√
n−d

d(n−1)
, n≥ d. (13)

In order to minimize the maximum cross correlation among vectors, one seeks sets
of vectors that meet the lower bound of (13). Equiangular tight frames (ETFs) are
a class of frames that meet the lower bound. ETFs are highly desirable and are the
closest one can come to an ONB while having the redundancy of a frame, in the
sense of minimizing the cross correlation while maintaining tightness. The bound√

n−d
d(n−1) in (13) is called the Welch bound and is denoted by α. The formal defini-

tion of an ETF is as follows.

Definition 6. [22] An equiangular tight frame (ETF) is a set { fi}n
i=1 in a d-dimensional

space V satisfying:

(i) F∗F = n
d I, i.e., the set is a tight frame.

(ii) ‖ fi‖= 1, for i = 1, . . . ,n, i.e., the set is unit normed.
(iii) |〈 fi, f j〉|= α, 1≤ i < j ≤ n, where α is the Welch bound.

For a given dimension d and frame size n, an ETF of n vectors in Fd may not
exist [22]. Even when they do exist, ETFs are hard to construct. However, ETFs of
d + 1 vectors for dimension d always exist and can be viewed as the vertices of a
regular simplex centered at the origin [21, 22]. Examples of such ETFs can be found
in [13], and an explicit construction is also given in [8]. Note that for such an ETF
the Welch bound is given by α = 1

d . An example of an ETF of three vectors in R2

was given earlier in Example 3(b).

Example 4 (An ETF of four vectors in R3). Let d = 3. Consider the four vectors
given by

f1 =


− 2√

6

−
√

2
3

− 1
3

 , f2 =


2√
6

−
√

2
3

− 1
3

 , f3 =


0

2
√

2
3

− 1
3

 , f4 =

0

0

1

 .
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In this case, for i 6= j, 〈 fi, f j〉=−1/3.

When ETFs cannot exist, the Welch bound cannot be attained by any set of n
vectors in Fd . However, the maximum cross correlation between frame vectors can
still be minimized even if the minimum does not coincide with the Welch bound.
Such sets are called Grassmannian frames [3].

Definition 7. A frame of n vectors in Fd is called a Grassmannian frame if it is a
solution to

min{max
i 6= j
|〈 fi, f j〉|}

where the minimum is taken over all unit normed frames { fi}n
i=1 in Fd .

An example of a Grassmannian frame of five vectors in R3 is shown in Fig. 1(c).

Frames

Tight frames

UNTFs

ETFs
ONBs

Grassmannian
frames

Fig. 2: Families of frames.

3.1 k-angle Tight Frames

As mentioned previously, equiangular tight frames are useful in applications be-
cause they minimize the maximum cross correlation among pairs of unit vectors,
but they are also rare. Therefore, it is desirable to construct sets that mimic ETFs in
some way. If { fi}n

i=1 is an ETF in Rd or Cd , then when i 6= j, |〈 fi, f j〉|must be equal
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to the Welch bound α . Relaxing this condition, one obtains a larger class of frames
that contains the equiangular tight frames. In particular, a k-angle tight frame is a
set { fi}n

i=1 in a d-dimensional space V satisfying [8]:

(i) F∗F = n
d I, i.e., the set is a tight frame.

(ii) ‖ fi‖= 1 for i = 1, . . . ,n, i.e., the set is unit normed.
(iii) |〈 fi, f j〉| ∈ {αm}k

m=1 for 1≤ i < j ≤ n, where {αm}k
m=1 ⊂ [0,1].

Example 5 (Mutually unbiased bases). Two orthonormal bases { fi}d
i=1 and {gi}d

i=1
in a d-dimensional space V form a pair of mutually unbiased bases if |〈 fi,g j〉|= 1√

d

for 1 ≤ i, j ≤ d. Let { f̃i}2d
i=1 denote the union { fi}d

i=1 ∪{gi}d
i=1. Then { f̃i}2d

i=1 is a
2-angle tight frame, since |〈 f̃i, f̃ j〉| ∈ {0, 1√

d
} for 1≤ i < j ≤ 2d.

A way to construct k-angle tight frames uses ETFs as starting points.

Theorem 7. [8] Let d,k ∈ N with k < d +1, and set d′ =
(d+1

k

)
. Denote the collec-

tion of all subsets of {1, . . . ,d + 1} of size k by {Λi}d′
i=1. Let { fi}d+1

i=1 ⊆ Rd denote
the ETF with 〈 fi, f j〉=− 1

d for i 6= j. Define a new collection {gi}d′
i=1 as follows:

gi :=
∑ j∈Λi f j

‖∑ j∈Λi f j‖
.

Then {gi}d′
i=1 forms a k̂-angle tight frame of d′ vectors in Rd , where k̂ ≤ k.

The proof of Theorem 7 can be found in [8]. The construction of the starting ETF
with 〈 fi, f j〉=− 1

d , i 6= j, can be done based on an algorithm in [8], and an example
of such an ETF for d = 3 has been provided earlier in this section in Example 4. The
main idea behind the proof of the tightness part is to compute the frame potential of
{gi}d′

i=1 and then use Theorem 5.

Example 6 (A 2-angle tight frame in R2). Consider the Mercedes-Benz (MB) frame
discussed in Example 3(b), and shown below in Fig. 3. It consists of the three vectors
in R2 given by

f0 =

[
1
0

]
, f1 =

[
−1/2√

3/2

]
, f2 =

[
−1/2
−
√

3/2

]
.

Note that for i 6= j, 〈 fi, f j〉 = −1/2. Let k = 2. Follow the construction given in
Theorem 7, i.e., for every distinct pair fi, f j, i< j, in the MB frame, calculate fi+ f j

‖ fi+ f j‖
to get three more vectors. Now add these three vectors to the MB frame. Doing so
produces a unit normed tight frame of six vectors in R2, that was shown in Fig. 1(a),
and is reproduced in Fig. 4. { fi}5

i=0 is a 2-angle tight frame: for 0 ≤ i < j ≤ 5,
〈 fi, f j〉 ∈ {− 1

3 ,
1
3 ,−1} which means that |〈 fi, f j〉| ∈ { 1

3 ,1}.
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x

y

f0

f1

f2

Fig. 3: The Mercedes-Benz frame.

x

y

f0

f1

f2

f3

f4

f5

Fig. 4: A 2-angle tight frame in R2.

3.2 Tight Frames and Graphs

Equiangular tight frames have important connections to graph theory. Perhaps the
most well-known connection is that between ETFs and graph theoretic objects
known as regular two-graphs [16, 21]. In particular, [16] gives a one-to-one cor-
respondence between equivalence classes of real ETFs and regular two-graphs. An-
other important connection exists between ETFs and strongly regular graphs as de-
scribed below. A graph for which every vertex has the same number of neighbors
is a regular graph. A regular graph G is called a strongly regular graph if any two
adjacent vertices in G have λ common neighbors, and any two non-adjacent ver-
tices in G have µ common neighbors. In [23], it is shown that a real ETF { fi}n

i=1 in
Rd exists if and only if a particular strongly regular graph exists. Graph theory has
also proven useful in obtaining error estimates for signal reconstruction when using
ETFs in the presence of transmission losses [4].
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These connections go beyond characterizing ETFs. A unit normed tight frame
{ fi}n

i=1 ⊂ Rd is called a two-distance tight frame3 if 〈 fi, f j〉 ∈ {α1,α2} ⊂ [−1,1]
for α1 6= α2 and 1 ≤ i < j ≤ n. If G is the Gram matrix of a two-distance tight
frame, then G = I+α1Q1 +α2Q2, where Q1 and Q2 are symmetric binary matrices
with zeros on the diagonal. Recall that a graph G has adjacency matrix Q = [qi j]
defined by

qi j =

{
1 if vertex i is adjacent to vertex j,
0 otherwise.

The matrices Q1 and Q2 in the decomposition of the Gram matrix G above can then
be viewed as adjacency matrices of graphs. In [1], the authors prove the following
result.

Theorem 8 (Proposition 3.2, [1]). Let { fi}n
i=1 be a two-distance tight frame with

Gram matrix G = I +α1Q1 +α2Q2, where α1 6= ±α2. Then Q1 and Q2 are both
adjacency matrices of strongly regular graphs.

4 Possible Research Topics

4.1 Construction of Grassmannian Frames

Equiangular tight frames are important in many applications, but as discussed previ-
ously they do not always exist. However, ETFs are themselves a specific example of
a larger class of frames called Grassmannian frames (see Fig. 2), and for any choice
of d, n, a Grassmannian frame always exists [3]. Grassmannian frames are impor-
tant in frame theory for many of the same reasons that ETFs are, since Grassmannian
frames minimize the maximum cross correlation among sets of unit vectors.

Despite their importance, many questions remain unanswered about the construc-
tion of Grassmannian frames for given values of d, n, in either Rd or Cd . Construc-
tions in R2 and R3 have been given in [3].

Research Project 1. Some interesting questions that can be explored in the
context of Grassmannian frames are the following.

• How can one verify whether or not a given frame is a Grassmannian frame?
• When can one construct Grassmannian frames from previously existing

“structured” objects such as ETFs?
• Improvements on the Welch bound exist in certain situations, such as the

following bound given in [25]:

3 Note that two-distance tight frames as defined here and in [1] are either ETFs or 2-angle tight
frames from the beginning of Subsection 3.1.
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max
i6= j
|〈 fi, f j〉| ≥max

{√
n−d

d(n−1)
,1−2n−

1
d−1

}
.

How sharp are these bounds for various values of d and n? Using computer
experiments to find a wide variety of unit normed frames and comparing
their maximum cross correlation with these bounds could give insight into
how close to the lower bound one can get and what the minimizers of the
maximum cross correlation could be when ETFs do not exist.

4.2 k-angle Tight Frames and Regular Graphs

As mentioned in Subsection 3.2, there exists a correspondence between certain 2-
angle tight frames and strongly regular graphs. A natural course of action would
be to extend this result to k-angle tight frames where k ≥ 3, and some progress has
already been made in the case k = 3 [19]. Let G be the Gram matrix of a k-angle
tight frame { fi}, and suppose that |〈 fi1 , f j1〉| = |〈 fi2 , f j2〉| if and only if 〈 fi1 , f j1〉 =
〈 fi2 , f j2〉. In other words, if α ∈ {〈 fi, f j〉}, then −α /∈ {〈 fi, f j〉}. Let {αi}k

i=1 =
{〈 fi, f j〉}, which are the distinct off-diagonal entries of G. Then

G = I +α1Q1 + · · ·+αkQk, (14)

where the matrices Qi are symmetric binary matrices with 0s along the diagonal for
1 ≤ i ≤ k. Each matrix Qi is the adjacency matrix of a graph. The question then is
as follows:

Research Project 2.
What can be said about the structure of the graphs determined by the matrices
{Qi}k

i=1 in (14)?

To illustrate this question, consider the matrix G given by
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G =



1 1
6

1
6

1
6

1
6 −

2
3

1
6

1
6 −

2
3 −

2
3

1
6 1 1

6
1
6 −

2
3

1
6

1
6 −

2
3

1
6 −

2
3

1
6

1
6 1 − 2

3
1
6

1
6 −

2
3

1
6

1
6 −

2
3

1
6

1
6 −

2
3 1 1

6
1
6

1
6 −

2
3 −

2
3

1
6

1
6 −

2
3

1
6

1
6 1 1

6 −
2
3

1
6 −

2
3

1
6

− 2
3

1
6

1
6

1
6

1
6 1 − 2

3 −
2
3

1
6

1
6

1
6

1
6 −

2
3

1
6 −

2
3 −

2
3 1 1

6
1
6

1
6

1
6 −

2
3

1
6 −

2
3

1
6 −

2
3

1
6 1 1

6
1
6

− 2
3

1
6

1
6 −

2
3 −

2
3

1
6

1
6

1
6 1 1

6

− 2
3 −

2
3 −

2
3

1
6

1
6

1
6

1
6

1
6

1
6 1


G is the Gram matrix of a 2-angle tight frame in R4. If Q1 and Q2 are defined as

Q1 =



0 0 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

0 0 0 1 0 0 1 0 0 1

0 0 1 0 0 0 0 1 1 0

0 1 0 0 0 0 1 0 1 0

1 0 0 0 0 0 1 1 0 0

0 0 1 0 1 1 0 0 0 0

0 1 0 1 0 1 0 0 0 0

1 0 0 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0



and Q2 =



0 1 1 1 1 0 1 1 0 0

1 0 1 1 0 1 1 0 1 0

1 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 1 0 0 1

1 0 1 1 0 1 0 1 0 1

0 1 1 1 1 0 0 0 1 1

1 1 0 1 0 0 0 1 1 1

1 0 1 0 1 0 1 0 1 1

0 1 1 0 0 1 1 1 0 1

0 0 0 1 1 1 1 1 1 0



,

then
G = I− 2

3
Q1 +

1
6

Q2.

Since each row of Q1 contains three 1s, this means that every vertex of the graph
whose adjacency matrix is Q1 has three adjacent vertices, hence this graph is regular.
A similar statement is true for Q2 and the graph associated with it. See Fig. 5. In
fact, the graphs associated to Q1 and Q2 are strongly regular as well by Theorem 8,
but the purpose of this example is only to illustrate how one obtains graphs from
k-angle tight frames and studies their structure.
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Fig. 5: The graphs corresponding to Q1 and Q2.

4.3 Frame Design Issues

Designing frames with good properties is important. This chapter has discussed an
important class of frames called equiangular tight frames. When designing frames,
it is important to know the kinds of transformations under which a given frame
does not lose the properties it already possesses. For example, if U is a unitary
transformation and if { fi} is a unit normed tight frame, then the set {U fi} is also a
unit normed tight frame. If { fi} is an ETF, then {U fi} is also an ETF. Recall that for
a tight frame the frame operator S has a nice structure, being a constant multiple of
the identity. In other words, S is a diagonal matrix with all diagonal entries equal to
A, the frame bound. Having such a structure is useful for computational reasons. In
particular, it is convenient to invert S in the expansion formula (12), and the process
is numerically stable. One can ask the following.

Research Project 3. What are the operators M for which {M fi} is a frame
whose frame operator S is a diagonal matrix?

This is useful since diagonal matrices are also easy to invert and the frame {M fi}
can therefore offer advantages similar to that of a tight frame. Of course, there are
other variations of the above question that can be considered.

In the context of erasures or losses, as discussed in Section 1, suppose that e
number of frame coefficients are lost during transmission. If the index set of erasures
is denoted by E, then to the receiver it is as if the signal is to be recovered using the
frame { fi}i/∈E , where |E| = e, assuming that { fi}i/∈E is a frame. In the presence of
noise, it has been shown [13] that when starting with a unit normed frame the mean-
squared error is minimized if the remaining vectors { fi}i/∈E form a tight frame.
Unfortunately, as given in Theorem 4.3 in [13], it is not possible for every { fi}i/∈E
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with |E| = e to be tight. In this context, it might be interesting to investigate the
following.

Research Project 4. Fix the number of erasures e such that e≤ n−d, where
n represents the size of a frame and d is the dimension. Starting with a unit
normed frame of n vectors in Fd , remove e vectors and see for how many of
the
(n

e

)
cases the set { fi}i/∈E is a tight frame. Try this for different unit normed

frames using a computer. Is it possible to characterize the starting frames that
maximize the number of cases when { fi}i/∈E is a tight frame?

4.4 Frame Algorithms

In order to reconstruct a signal v from the frame coefficients {〈v, fi〉}n
i=1 one can use

(12). However, that entails inverting the frame operator which can be complicated if
the dimension is large. To avoid inverting S one can find successive approximations
to f . This can be done using a well-known algorithm known as the frame algorithm
[6]. This is given below in Lemma 4.

Lemma 4. [6] Let { fk}n
k=1 be a frame for V with frame bounds A, B. Given v ∈ V ,

define the sequence {gk}∞
k=0 in V by

g0 = 0, gk = gk−1 +
2

A+B
S( f −gk−1),k ≥ 1. (15)

Then

‖ f −gk‖ ≤
(

B−A
B+A

)k

‖ f‖.

It should be noted in Lemma 4 above that if B is much larger than A then the conver-
gence is slow. There are acceleration algorithms based on the Chebyshev method
and the conjugate gradient method [14] that improve the speed of convergence in
(15). Other algorithms on approximating the inverse frame operator include work in
[20, 5]. An interesting project might be the following.

Research Project 5. Compare the various existing algorithms for inverting a
frame operator and study other techniques to improve existing methods.
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4.5 Reconstruction in Presence of Random Noise

Assume that during transmission the frame coefficients get corrupted by some ran-
dom noise so that what is received are the corrupted coefficients {〈v, fi〉+ηi}n

i=1
where each ηi has mean zero and variance σ2. Further, for i 6= j, ηi and η j are un-
correlated. The reconstruction of the signal x from the noisy coefficients is done as
follows:

x̂ =
n

∑
i=1

[〈v, fi〉+ηi]S−1 fi = x+
n

∑
i=1

ηiS−1 fi.

Due to the assumptions,
E[x̂] = x.

Assuming an unbiased estimator, the mean-squared error (MSE) is the trace of the
covariance matrix of x̂. It has been shown in [13] that for a single erasure (or lost
coefficient), among all unit normed frames, tight frames minimize the MSE. It is
also shown in [13] that under a single erasure from a unit normed frame, the MSE
averaged over all erasures is minimized if and only if the starting frame is tight. In
[13], a uniform distribution is taken for the erasure model, i.e., each coefficient is
equally likely to be lost. This leads to the following.

Research Project 6. Study the effect of a general distribution for the erasure
model, and investigate the properties of the starting frame that would min-
imize the MSE. As one example, how well do k-angle tight frames, as de-
scribed in Subsection 3.1, perform in the face of erasures?

For more than two erasures, it is known that all tight frames do not minimize
the two-erasure MSE. It has been shown in [16] that under two erasures the opti-
mal frames are ones that are equiangular. So far, it has been assumed that when a
frame vector has been erased the remaining vectors still form a frame. In this case,
assuming that the location of the loss is known, the signal recovery is done using the
frame operator of the new frame. However, it may be the case that eliminating just
a single vector leaves a set that is no longer a frame. This consideration can lead to
other areas of research.

It might also be interesting to investigate the effect of random noise or other
random phenomena on equiangularity of an ETF.

Research Project 7. Starting from an ETF, estimate the deviations of the
frame from being equiangular or being tight by adding random perturbations
to the frame vectors.
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A preliminary analysis of this is done in [7].
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