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Frame Properties of Low Autocorrelation Random
Sequences
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Abstract. The goal is to construct random frames and study properties of such frames.
Starting with the construction of unimodular random sequences whose expected autocor-
relations can be made arbitrarily low outside the origin, these random sequences are used
to construct frames for Cd. Using recent theory of non-asymptotic analysis of random
matrices, the eigenvalue distribution of the corresponding frame operator is studied.
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1 Introduction

1.1 Motivation

Let R be the real numbers, Z the integers, C the complex numbers, and set T =
R/Z. A fundamental problem in harmonic analysis is to characterize the family
of positive bounded Radon measures F, whose inverse Fourier transforms are the
autocorrelations of bounded sequencesX. A special case of this is when F ≡ 1 on
T. Then the autocorrelation of X vanishes everywhere except at the origin, where
it is equal to 1. The construction of unimodular sequences 1 with such spike like
autocorrelation finds a lot of applications and is particularly relevant in the areas of
radar and communications. In the former, the sequences can play a role in effec-
tive target recognition, e.g., [1,4,8,10–12,15,16]; and in the latter they are used to
address synchronization issues in cellular (phone) access technologies, especially
code division multiple access (CDMA), e.g., [17,18]. There are two main reasons
that the sequences should be unimodular, that is, have constant amplitude. First, a
transmitter can operate at peak power if the signal has constant peak amplitude -
the system does not have to deal with the surprise of greater than expected ampli-
tudes. Second, amplitude variations during transmission due to additive noise can
be theoretically eliminated. The zero autocorrelation property ensures minimum

1 Often in the literature, the term waveform is used instead of sequence
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interference between signals sharing the same channel or between a signal and its
reflection as might be needed in radar target recognition.

Deterministic construction of unimodular sequences with an impulse-like au-
tocorrelation has been extensively studied in [3]. Here the focus is on random
unimodular sequences with a probabilistic nature of construction. This might have
an added advantage in applications by making such sequences harder to intercept
by an adversary. The expectation of the autocorrelation is studied and it is desired
that the expected autocorrelation is small everywhere outside the origin. Previous
work on the use of stochastic sequences in radar can be found in [14], [13], [2]
where the sequences or waveforms are only real-valued and not unimodular. In
comparison, the sequences constructed here are complex valued and unimodular.

Frames are mathematical objects that can be thought of as redundant bases. In
fact, for a finite dimensional vector space, a finite frame is the same as a spanning
set. Frames have been widely popularized over the past two decades as standard
tools in signal processing. Frames offer robust signal representations that are re-
silient to noise and transmission losses. Another aspect of the work presented here
is to construct frames for Cd from low autocorrelation random sequences and to
study the frame properties of such frames.

1.2 Notation and preliminaries

The aperiodic autocorrelation AX : Z → C of a sequence X : Z → C is defined
as

∀k ∈ Z, AX(k) = lim
N→∞

1
2N + 1

N∑
m=−N

X(m+ k)X(m) (1.1)

provided the limit exists. Instead of aperiodic sequences that are defined on Z, in
some applications, it might be useful to construct periodic sequences with similar
vanishing properties of the autocorrelation function. Let n ≥ 1 be an integer and
Zn be the finite group {0, 1, . . . , n − 1} with addition modulo n. The periodic
autocorrelation AX : Zn → C of a sequence X : Zn → C is defined as

∀k = 0, 1, . . . , n− 1, AX(k) =
1
n

n−1∑
m=0

X(m+ k)X(m). (1.2)

It is said that X : Zn → C is a constant amplitude zero autocorrelation (CAZAC)
sequence if each |X(k)| = 1 and

∀k = 1, . . . , n− 1, AX(k) =
1
n

n−1∑
m=0

X(m+ k)X(m) = 0.
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The literature on CAZACs is overwhelming. A good reference on this topic is [8],
among many others. Comparison between periodic and aperiodic autocorrelation
can be found in [5]. Previously, a mathematical characterization of CAZACs in
terms of finite unit-normed tight frames (FUNTFs) has been done in [4]. Here the
focus is on infinite sequences and hence aperiodic autocorrelation.

Let X be a random variable with probability density function f. Assuming X
to be absolutely continuous, the expectation of X, denoted by E(X), is

E(X) =

∫
R
xf(x) dx.

The Gaussian random variable has probability density function given by f(x) =
1

σ
√

2π
e−

1
2 (
x−µ
σ

)2
. The mean or expectation of this random variable is µ and the vari-

ance, V (X), is σ2. In this case it is also said that X follows a normal distribution
and is written asX ∼ N(µ, σ2). The characteristic function ofX at t, E(eitX), is
denoted by φX(t). For further properties of expectation and characteristic function
of a random variable the reader is referred to [9].

LetH be a Hilbert space and let V = {vk, k ∈ K}, where K is some index set,
be a collection of vectors in H. Then V is said to be a frame for H if there exist
constants A and B, 0 < A ≤ B <∞, such that for any v ∈ H

A‖v‖2 ≤
∑
k∈K
|〈v, vk〉|2 ≤ B‖v‖2.

The constants A and B are called the frame bounds. The lower frame bound is
A while the upper frame bound is B. If A = B, the frame is said to be tight. If
A = B = 1, then the frame is called a Parseval frame. Orthonormal bases are
special cases of Parseval frames.

If V is a frame forH then the map F : H → `2(K) given by F (v) = {〈v, vk〉 :
k ∈ K} is called the analysis operator. The synthesis operator is the adjoint map
F ∗ : `2(K)→ H, given by

F ∗({ak}) =
∑
k∈K

akvk.

The frame operator S : H → H is given by S = F ∗F. For a tight frame, the
frame operator is just a constant multiple of the identity, i.e., S = AI, where I is
the identity map. Every v ∈ H can be represented as

v =
∑
k∈K
〈v, S−1vk〉vk =

∑
k∈K
〈v, vk〉S−1vk.
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Here {S−1vk} is also a frame and is called the dual frame. For a tight frame, S−1 is
just 1

AS. Tight frames are thus highly desirable since they offer a computationally
simple reconstruction formula that does not involve inverting the frame operator.
The minimum and maximum eigenvalues of S are the optimal lower and upper
frame bounds respectively [6]. Thus, for a tight frame all the eigenvalues of the
frame operator are equal to each other. For the general theory on frames one can
refer to [6], [7].

For a random vectorX ∈ Cn, the second moment matrix, which takes the place
of second moment of a random variable, is defined as

Σ = E(X ⊗X) = E(XX∗)

where ⊗ denotes outer product. A random vector is called isotropic if Σ(X) = I.
The following results [19] will be used to determine frame bounds for random
frames. The smallest and largest singular values of a matrix F are denoted by
smin(F ) and smax(F ), respectively. The probability of an event E is denoted by
P (E).

Lemma 1.1. [19] If for some δ > 0, a matrix F satisfies

‖F ∗F − I‖ ≤ max(δ, δ2)

then
1− δ ≤ smin(F ) ≤ smax(F ) ≤ 1 + δ.

Theorem 1.2. [19] Let F be an M × d matrix whose rows vk are independent
random vectors in Rd with common second moment matrix Σ = E(vk ⊗ vk). For
each k, suppose ‖vk‖ ≤ m almost surely, for some constant m. Then for every
t ≥ 0,

P

(∥∥∥∥ 1
M
F ∗F − Σ

∥∥∥∥ ≤ max
(
‖Σ‖1/2δ, δ2

))
≥ 1− de−ct2

where δ = t
√

m
M and c > 0 is an absolute constant.

1.3 Outline

In Section 2, random sequencesX : Z→ C are constructed such that the expected
autocorrelation of X can be made arbitrarily small outside the origin, and for all
n ∈ Z, |X[n]| = 1. The higher dimensional case of constructing X : Z → Cd
is also addressed. Section 3 discusses the construction of frames from low auto-
correlation random sequences. Using random matrix theory, the frame properties
of these random frames are also studied in Section 3. Section 4 includes some
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comments on the variance of the autocorrelation of the random sequences con-
structed in Section 2, as well as on the applicability of random frames in signal
transmission.

2 Low autocorrelation unimodular random sequences

In this section unimodular sequences, X : Z → C, are constructed from random
variables such that the expectation of the autocorrelation can be made arbitrarily
small everywhere except at the origin. First, such a construction is done using the
Gaussian random variable. Next, a general characterization of all random variables
that can be used for the purpose is given.

Let {Y`}`∈Z be independent identically distributed (i.i.d.) random variables such
that Y` ∼ N(0, σ2). Define X : Z→ C by

∀n ∈ Z, X(n) = e
2πi
ε
Yn (2.1)

where i is
√
−1 and ε is a constant to be chosen. For each n, |X(n)| = 1 and thus

X is unimodular. As introduced in Section 1.2, the autocorrelation of X at k ∈ Z
is

AX(k) = lim
N→∞

1
2N + 1

N∑
n=−N

X(n+ k)X(n)

where the limit is in the sense of probability.

Theorem 2.1. Given ε > 0, the waveform X : Z → C defined in (2.1) has auto-
correlation AX such that

E(AX(k)) =

{
1 if k = 0

e−σ
2( 2π

ε )
2

if k 6= 0.

Proof. (i) When k = 0,

AX(0) = lim
N→∞

1
2N + 1

N∑
n=−N

X(n)X(n) = 1.

and so E(AX(0)) = 1.
(ii) Let k 6= 0. One would like to calculate

E(AX(k)) = E

(
lim
N→∞

1
2N + 1

N∑
n=−N

X(n+ k)X(n)

)
.
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Let gN (X) = 1
2N+1

∑N
n=−N X(n+ k)X(n). Then |gN (X)| ≤ 1. Let h(X) = 1.

Then for each N, |gN (X)| ≤ h(X) and E(h(X)) = 1. Thus, by the Dominated
Convergence Theorem [9], which justifies the interchange of limit and integration
below, one obtains

E(AX(k)) = E

(
lim
N→∞

1
2N + 1

N∑
n=−N

X(n+ k)X(n)

)

= lim
N→∞

1
2N + 1

N∑
n=−N

E(X(n+ k)X(n))

= lim
N→∞

1
2N + 1

N∑
n=−N

E(e
2πi
ε
(Yn+k−Yn))

= lim
N→∞

1
2N + 1

N∑
n=−N

E
(
e

2πi
ε
Yn+k

)
E
(
e−

2πi
ε
Yn
)

= E
(
e

2πi
ε
Y1
)
E
(
e−

2πi
ε
Y1
)
=

[
φY1

(
2π
ε

)]2

where the last line uses the fact that the Y`s are i.i.d. random variables. Here
φY1

( 2π
ε

)
is the characteristic function at 2π

ε of Y1 which is the same as that of
any other Y` due to their identical distribution. Since the characteristic function
of a Gaussian random variable is even, φY1

(2π
ε

)
= φY1

(
−2π

ε

)
. The characteristic

function at 2π
ε of a Gaussian random variable with mean 0 and variance σ2 is

e−
σ2
2 (

2π
ε )

2

. Thus

E(AX(k)) = e−σ
2( 2π

ε )
2

.

As can be seen, the autocorrelation can be made arbitrarily small for k 6= 0 by
choosing ε to be small. This construction can be generalized to other random
variables.

Theorem 2.2. Let {Y`}`∈Z be a sequence of i.i.d. random variables with charac-
teristic function φY . Suppose that the probability density function of the Y`s is
even and that φY (t) goes to 0 as t goes to infinity. Then, given ε, the sequence
X : Z→ C given by

X(n) = e
2π
ε
iYn
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has autocorrelation that can be made arbitrarily small outside the origin and is
given by

E(AX(k)) =

{
1 when k = 0[

φY
(2π
ε

)]2
when k 6= 0.

Proof. By unimodularity of the sequence, E(AX(0)) = 1. Since the density func-
tion of each Y` is even this means that the characteristic function is real valued [9].
Following the calculation in the proof of Theorem 2.1, the expected autocorrela-
tion of X for k 6= 0 is

E(AX(k)) =

[
φY

(
2π
ε

)]2

and this goes to zero with ε by the hypothesis.

Example 2.3. Suppose the Y`s follow a bilateral distribution that has density e−|x|

with x ∈ (−∞,∞) and characteristic function φY (t) = 1
1+t2 . Then for k 6= 0,

E(AX(k)) =

[
1

1 +
( 2π
ε

)2

]2

and this can be made arbitrarily small with ε.

Example 2.4. Suppose that the Y`s follow the Cauchy distribution with density
function 1

π(1+x2)
. Note that disregarding the constant π, this is the characteristic

function of the random variable considered in Example 2.3. The characteristic
function of the Y`s is now e−|t|, the same as the distribution function in Exam-
ple 2.3. For k 6= 0,

E(AX(k)) =

[
φY1

(
2π
ε

)]2

= e−
4π
ε

which can be made arbitrarily small with ε.

For the Gaussian case, the variance of the autocorrelation is calculated in Section 4.

Higher dimensional case: Here one is interested in constructing sequences v :
Z → Cd, d ≥ 2. It is desired that v has unit norm and the expectation of its
autocorrelation can be made arbitrarily small. Define a sequence X in C as
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X(n) = e
2π
ε
iYn , Yn ∼ N(0, σ2). The following is motivated by the higher di-

mensional treatment in the deterministic case [4]. A sequence v : Z→ Cd is then
defined as

∀m ∈ Z, v(m) =
1√
d


X(m)

X(m+ 1)
...

X(m+ d− 1)

 . (2.2)

In this case, the autocorrelation is given by

Av(k) = lim
N→∞

1
2N + 1

N∑
n=−N

〈v(n+ k), v(n)〉 (2.3)

where 〈., .〉 is the usual inner product in Cd. The norm of any v(m) is thus given
by

‖v(m)‖2 = 〈v(m), v(m)〉.

From (2.2),

‖v(m)‖2 =
1
d

d−1∑
n=0

X(m+ n)X(m+ n) =
d

d
= 1.

Thus the v(m)s are unit-normed. The following Theorem 2.5 shows that the ex-
pected autocorrelation of v can be made arbitrarily small everywhere except at the
origin.

Theorem 2.5. Given ε > 0, the sequence v : Z → Cd defined in (2.2) has auto-
correlation Av such that

E(Av(k)) =

{
1 if k = 0

e−σ
2( 2π

ε )
2

if k 6= 0.

Proof. When k = 0,

Av(0) = lim
N→∞

1
2N + 1

N∑
n=−N

‖v(n)‖2 = 1.

Thus,
E(Av(0)) = 1.
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Consider k 6= 0.

E(Av(k)) = lim
N→∞

1
2N + 1

N∑
n=−N

E(〈v(n+ k), v(n)〉)

= lim
N→∞

1
2N + 1

N∑
n=−N

E

(
1
d

d−1∑
m=0

X(n+ k +m)X(n+m)

)

= lim
N→∞

1
2N + 1

N∑
n=−N

1
d

d−1∑
m=0

E
(
X(n+ k +m)X(n+m)

)

= lim
N→∞

1
2N + 1

N∑
n=−N

1
d

d−1∑
m=0

E
(
e

2π
ε
i(Yn+m+k−Yn+m)

)

= lim
N→∞

1
2N + 1

N∑
n=−N

1
d

d−1∑
m=0

[
φY1

(
2π
ε

)]2

= e−σ
2( 2π

ε
)2

where the last step uses the fact that the Y`s are i.i.d. random variables and the
characteristic function of the Gaussian.

Remark 2.6. As in the one dimensional case, one can see that here too the con-
struction can be done with random variables other than the Gaussian. In fact, all
random variables that can be used in the one dimensional case, i.e., ones satis-
fying the properties of Theorem 2.2, can also be used for the higher dimensional
construction.

Remark 2.7 (Remark on the periodic case). It can be shown that the periodic case
follows the same nature as the aperiodic case. The sequence X : Zn → C is
defined in the same way as in the start of Section 2, i.e.,

∀m ∈ {0, 1, . . . , n− 1}, X(m) = e
2π
ε
iYm

where Ym ∼ N(0, σ2). Following the definition given in (1.2), when k = 0,

AX(0) =
1
n

n−1∑
m=0

X(m)X(m) = 1.

When k 6= 0, the expectation of the autocorrelation is

E(AX(k)) =
1
n

n−1∑
m=0

E(X(m+ k)X(m))
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which can be calculated as

E(AX(k)) =
1
n

n−1∑
m=0

E(e
2πi
ε
(Ym+k−Ym)) =

1
n

n−1∑
m=0

[
E
(
e

2πi
ε
Y1
)]2

=
[
E
(
e

2πi
ε
Y1
)]2

=

[
φY1

(
2π
ε

)]2

= e−σ
2( 2π

ε )
2

where one uses the fact that the Yms are i.i.d.. This suggests that the autocorre-
lation can be made arbitrarily small, depending on ε, for all non-zero values of
k. Also, as in the aperiodic case, this result can be obtained for random variables
other than the Gaussian.

3 Frames from low autocorrelation random sequences

Let {Ymn}m,n∈Z be i.i.d. random variables following a Gaussian distribution 2

with mean zero and variance σ2, i.e., Ymn ∼ N(0, σ2). For a given ε,

E(e
2π
ε
iYmn) = e−

σ2
2 (

2π
ε )

2

and the variance

V (e
2π
ε
iYmn) = 1− e−σ2( 2π

ε )
2

.

For m,n ∈ Z, define

Xmn = e
2π
ε
iYmn − e−

σ2
2 (

2π
ε )

2

.

ThenXmn has mean zero and variance σ̂2 = 1−e−σ2( 2π
ε )

2

. Consider the mapping
v : Z→ Cd given by

v(`) := v` =
1√
d


X`1

X`2
...

X`d

 . (3.1)

2 All work shown in this section can be carried out with random variables following other distri-
butions such as those given in Examples 2.3 and 2.4.
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Consider the set of M vectors V = {v1, v2, . . . , vM} in Cd. Assuming M ≥ d,
the analysis operator of the set V is

F =
1√
d


X11 X12 · · · X1d

X21 X22 · · · X2d
...

... · · ·
...

XM1 XM2 · · · XMd

 =


− v1 −
− v2 −

...
− vM −

 (3.2)

so that S = F ∗F is the frame operator. The matrix F has i.i.d. entries with mean

zero and variance σ̂2 = 1
d(1− e

−σ2( 2π
ε )

2

). Thus, for each k,

Σ = E(vk ⊗ vk) =
1
d
E


|Xk1|2 Xk1Xk2 · · · Xk1Xkd

Xk2Xk1 |Xk2|2 · · · Xk2Xkd

...
... · · ·

...
XkdXk1 XkdXk2 · · · |Xkd|2



=
1
d


V (Xk1) 0 · · · 0

0 V (Xk2) · · · 0
...

...
. . .

...
0 0 · · · V (Xkd)

 =
1
d

(
1− e−σ2( 2π

ε )
2
)
I.

3.1 Frame tightness

In this subsection, it will be shown that by taking ε to be small, the singular values
of the analysis operator F or the eigenvalues of the frame operator S can be made
close to each other with a high probability. For each k, the kth row of F satisfies

‖vk‖ ≤ m where m = 1 + e−
σ2
2 (

2π
ε )

2

. The matrix F for the frame V satisfies
the conditions of Theorem 1.2. To make things look less cumbersome, let ρ =

1− e−σ2( 2π
ε )

2

. Then the second moment matrix for each row of F is Σ = ρ
dI. By

Theorem 1.2, 3 for every t ≥ 0, with probability at least 1− de−ct2∥∥∥∥ 1
M
F ∗F − ρ

d
I
∥∥∥∥ ≤ max

(
‖Σ‖1/2δ, δ2

)
(3.3)

3 It should be noted that even though Theorem 1.2 is for matrices with real entries, it is applicable
in the present since the entries of F can be parametrized by elements on T. Further, the results
on non-asymptotic analysis of random matrices as discussed in [19] are all valid for complex
entries with different constants.
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where δ = t
√

m
M and c is an absolute constant. Note that ‖Σ‖ = ρ

d . For any t ≥ 0,
let

ε̂ = max
(
t

√
ρm

dM
,
t2m

M

)
.

The event in (3.3) can be reduced as follows∥∥∥∥ 1
M
S − ρ

d
I
∥∥∥∥ ≤ ε̂

=⇒
∥∥∥∥dρ 1

M
S − I

∥∥∥∥ ≤ d

ρ
ε̂

=⇒
∥∥∥∥dρ 1

M
S − I

∥∥∥∥ ≤ max(δ̂, δ̂2); δ̂ =
t
√
dm√
Mρ

=⇒ 1− δ̂ ≤ smin

(√
d

ρM
F

)
≤ smax

(√
d

ρM
F

)
≤ 1 + δ̂ (by Lemma 1.1)

=⇒ (1− δ̂)2 ≤ λmin

(
d

ρM
S

)
≤ λmax

(
d

ρM
S

)
≤ (1 + δ̂)2

=⇒ ρM

d
(1− δ̂)2 ≤ λmin(S) ≤ λmax(S) ≤

ρM

d
(1 + δ̂)2.

Since ρ = 1 − e−σ2( 2π
ε )

2

, for sufficiently small ε, ρ ≈ 1, m ≈ 1, and δ̂ ≈ t
√
d√
M
.

This leads to the following.

Theorem 3.1. For ε sufficiently small, for every t ≥ 0,

P

M
d

(
1− t

√
d

M

)2

≤ λmin(S) ≤ λmax(S) ≤
M

d

(
1 + t

√
d

M

)2
 ≥ 1−de−ct2

where the norm of the frame vectors is bounded above by m and c > 0 is an
absolute constant.

Theorem 3.1 gives a sense of how the lower and upper frame bounds of V are
distributed. For a frame with high redundancy (M � d), for a suitable t, the
eigenvalues of the frame operator S are all close to each other and close to M

d with
a high probability. Roughly speaking, due to (3.3), when ρ ≈ 1, the norm of the
difference between S and M

d I can be made small with a high probability.
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3.2 Equiangularity of random frames

Keeping other notation same as before, let Xk` = e
2πi
ε
Yk` , so that unlike Sec-

tion 3.1, Xk` is not centered. Define a vector fj ∈ Cd as

fj =
1√
d


Xj1

Xj2
...

Xjd

 .

Consider the set {f1, . . . , fM}. This is a set of unit-normed random vectors in
Cd. The expectation of the inner products among such random vectors is estab-
lished here. The inner product of unit-normed vectors is a measure of the anglular
distance them. Note that |Xk`| = 1 for all k and `. For integers k 6= ` and i 6= j,

E(XkiX`jXkj X`i) =

[
φ

(
2π
ε

)]4

= e−2σ2(2π/ε)2
. (3.4)

Using (3.4),

E(|〈fk, f`〉|2) = E(〈fk, f`〉〈fk, f`〉)

=
1
d2E

 d∑
i=1

|Xki|2|X`i|2 +
∑
i 6=j

XkiXkj X`iX`j


=

1
d2 (d+ d(d− 1)e−2σ2(2π/ε)2

) =
1
d
+
d− 1
d

e−2σ2(2π/ε)2
. (3.5)

When ε is small, E(|〈fk, f`〉|2) ≈ 1
d for k 6= `. The variance of the cross correla-

tion can be calculated as follows.

V (|〈fk, f`〉|2) = E(|〈fk, f`〉|4)−
(
E
(
|〈fk, f`〉|2

))2
.

From (3.5),

(
E
(
|〈fk, f`〉|2

))2
=

1
d2 +

2(d− 1)
d2 e−2σ2(2π/ε)2

+
(d− 1)2

d2 e−4σ2(2π/ε)2
.
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E(|〈fk, f`〉|4) =
1
d4E

 d∑
i=1

|Xki|2|X`i|2 +
∑
i 6=j

XkiXkj X`iX`j

2

=
1
d4E

d+∑
i 6=j

XkiXkj X`iX`j

2

=
1
d2 +

2
d3E

∑
i 6=j

XkiXkj X`iX`j

+
1
d4E

∑
i 6=j

XkiXkj X`iX`j

2

.

(3.6)

Further,

E

∑
i 6=j

XkiXkj X`iX`j

 = d(d− 1)
(
φ

(
2π
ε

))4

= d(d− 1)e−2σ2( 2π
ε )

2

,

(3.7)∑
i 6=j

XkiXkj X`iX`j

2

=
∑
i 6=j

X2
kiXkj

2
X`i

2
X2
`j

+ 2
∑
i 6=j

∑
p 6=i

∑
q 6=j

XkiXkj X`iX`jXkpXkq X`pX`q,

E

∑
i 6=j

X2
kiXkj

2
X`i

2
X2
`j

 = d(d− 1)
(
φ

(
4π
ε

))4

= d(d− 1)e−2σ2( 4π
ε )

2

,

(3.8)
and

E

∑
i 6=j

∑
p 6=i

∑
q 6=j

XkiXkj X`iX`jXkpXkq X`pX`q

 = d0φ

(
2π
ε

)8

= d0e
−4σ2( 2π

ε )
2

(3.9)
where d0 = d4 − d3 − d2 − d. Using (3.7), (3.8), and (3.9) in (3.6) gives

E(|〈fk, f`〉|4) =
1
d2 +

2(d− 1)
d2 e−2σ2( 2π

ε )
2

+
d− 1
d3 e−2σ2( 4π

ε )
2

+
2d0

d4 e
−4σ2( 2π

ε )
2

and consequently the variance is given by

V (|〈fk, f`〉|2) =
d− 1
d3 e−2σ2( 4π

ε )
2

+
d3 − 3d− 2

d3 e−4σ2( 2π
ε )

2

.
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4 Discussion

Variance of the autocorrelation: The variance of the autocorrelation is given
by

V (AX(k)) = E(|AX(k)|2)− |E(AX(k))|2.
Restricting all calculations to the Gaussian random variable case,

|E(AX(k))|2 = e−2σ2( 2π
ε )

2

.

|AX(k)|2 = AX(k)AX(k)

= lim
N,M→∞

1
(2N + 1)(2M + 1)

N∑
n=−N

M∑
m=−M

X(n+ k)X(n) X(m+ k)X(m)

= lim
N,M→∞

1
(2N + 1)(2M + 1)

N∑
n=−N

M∑
m=−M

e
2π
ε
i(Yn+k−Yn−Ym+k+Ym)

= lim
N,M→∞

1
(2N + 1)(2M + 1)

∑
n=m

1

+ lim
N,M→∞

1
(2N + 1)(2M + 1)

∑
n6=m

e
2π
ε
i(Yn+k−Yn−Ym+k+Ym)

= lim
N,M→∞

1
(2N + 1)(2M + 1)

∑
n6=m

e
2π
ε
i(Yn+k−Yn−Ym+k+Ym).

On taking the expectation, the terms in the summation on the right are either

e−σ
2( 2π

ε )
2

, e−2σ2( 2π
ε )

2

, or e−3σ2( 2π
ε )

2

. Therefore,

E(|Ax(k)|2) ≤ lim
N,M→∞

1
(2N + 1)(2M + 1)

∑
n6=m

e−σ
2( 2π

ε )
2

≤ e−σ2( 2π
ε )

2

,

and
0 ≤ V (Ax(k)) ≤ e−σ

2( 2π
ε )

2

− e−2σ2( 2π
ε )

2

.

When the receiver knows part of a random frame: As described in Sec-
tion 3, consider a random frame {f1, f2, . . . , fM} ⊂ Cd without centering so that
‖fi‖2 = 1 for all i. A signal x ∈ Cd is transmitted by sending the coefficients
{〈x, fi〉}Mi=1. Denoting the frame operator by S, x can be reconstructed as

x =
M∑
i=1

〈x, fi〉S−1fi.
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Suppose the receiver has access to part of the frame and does not know the entire
frame that was used to compute the coefficients {〈x, fi〉}Mi=1. For instance, the
receiver may not know the kth vector fk. If the receiver knows how the random
vectors were generated then fk can be replaced by f̂k where the realization of
the random variable used will most likely be different from the one used by the
transmitter. Let Ŝ denote the frame operator of {f1, . . . , fk−1, f̂k, fk+1, . . . , fM}.
The receiver then reconstructs x as

x̂ =
∑
i 6=k
〈x, fi〉Ŝ−1fi + 〈x, fk〉Ŝ−1f̂k

and
x− x̂ =

∑
i 6=k
〈x, fi〉(Ŝ−1 − S−1)fi + 〈x, fk〉(Ŝ−1f̂k − S−1fk).

Using the triangle inequality and the fact that ‖fi‖2 = 1 for all i,

‖x− x̂‖2 ≤ ‖
∑
i 6=k
〈x, fi〉(Ŝ−1 − S−1)fi‖2 + ‖〈x, fk〉(Ŝ−1f̂k − S−1fk)‖2

≤
∑
i 6=k
|〈x, fi〉|‖Ŝ−1 − S−1‖‖fi‖2 + |〈x, fk〉|

(
‖Ŝ−1‖‖f̂k‖2 + ‖S−1‖‖fk‖2

)
=

∑
i 6=k
|〈x, fi〉|‖Ŝ−1 − S−1‖+ |〈x, fk〉|

(
‖Ŝ−1‖+ ‖S−1‖

)

≤ (‖Ŝ−1‖+ ‖S−1‖)
M∑
i=1

|〈x, fi〉| ≤ (‖Ŝ−1‖+ ‖S−1‖)M‖x‖2.

The relative error is therefore bounded by

‖x− x̂‖2

‖x‖2
≤M(‖Ŝ−1‖+ ‖S−1‖).

Note that both S−1 and Ŝ−1 have the same distribution of the frame bounds com-
ing from the inverse of the frame bounds of the corresponding frame operator.
One might be able to justify, following the result in Theorem 3.1, that with a high
probability the frame bounds are close to d

M . Then with a high probability, the
relative error is bounded above by twice the dimension. Further study on the role
of random frames in signal recovery when the receiver has part of the frame or
when there are lost coefficients form part of future work. In the case of traditional
frames, if the receiver does not know some part of the frame then, depending on
how much is not known, the receiver may not be able to recover the signal at all.
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