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ABSTRACT 

Despite recent medical advancements, breast cancer remains one of the most prevalent and deadly 

diseases among women. Although machine learning-based Computer-Aided Diagnosis (CAD) 

systems have shown potential to assist radiologists in analyzing medical images, the opaque nature 

of the best-performing CAD systems has raised concerns about their trustworthiness and 

interpretability. This paper proposes MT-BI-RADS, a novel explainable deep learning approach 

for tumor detection in Breast Ultrasound (BUS) images. The approach offers three levels of 

explanations to enable radiologists to comprehend the decision-making process in predicting tumor 

malignancy. Firstly, the proposed model outputs the BI-RADS categories used for BUS image 

analysis by radiologists. Secondly, the model employs multi-task learning to concurrently segment 

regions in images that correspond to tumors. Thirdly, the proposed approach outputs quantified 

contributions of each BI-RADS descriptor toward predicting the benign or malignant class using 

post-hoc explanations with Shapley Values. 

Index Terms—Breast ultrasound, explainable deep learning, multitask classification and 

segmentation  

1. INTRODUCTION 

Breast cancer is a devastating disease that affects millions of women worldwide [1], and therefore, 

development of accurate diagnosis systems is crucial for improving patient outcomes. Medical 

imaging, including mammography, MRI, and ultrasound imaging, plays a critical role in the early 

detection and diagnosis of breast cancer [2]. Breast Ultrasound (BUS) has several important 

advantages in comparison to the other imaging modalities, since it is a non-invasive imaging 

technique that uses sound waves to create images of breast tissue [3].  

The use of machine learning (ML) algorithms for analysis of medical images has shown 

potential for improved accuracy of the CAD systems for breast cancer detection [4, 5]. However, 

healthcare  is  a  high-risk  domain, and healthcareprofessionals have yet to widely embrace ML-

based models in their daily work. The lack of transparency and interpretability remains one of the 

primary obstacles to the adoption of ML approaches in clinical practice. 

To overcome such challenges, explainable AI (XAI) techniques were developed that enable 

humans to understand and interpret the predictions by AI methods. An important category of XAI 

techniques involves post-hoc visualizations (e.g., based on CAM [6], Grad-CAM [7]), that use 

saliency maps, heatmaps, and other forms to provide visual explanations of a previously trained 

model. The objective is to highlight the regions of the image that contributed the most to the 

classification decision. However, because a specific region of an image can contain multiple 
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patterns, post-hoc visualizations cannot confirm whether all relevant patterns for explainability 

have been captured. Conversely, ad-hoc explainable methods provide direct explanations, either 

by virtue of the structure or the decision-making process of the model. Still, such inherently 

explainable models can compromise the accuracy of the predictions, which introduces a trade-off 

between explainability and accuracy. 

In this paper, we introduce a novel explainable deep learning (DL) model for breast cancer 

detection in BUS images, MT-BI-RADS, which uses a hybrid ad-hoc and post-hoc explainability 

approach. The proposed method provides both visual and quantitative explanations. Specifically, 

the model outputs the predicted category of each BI-RADS descriptor, as well as, provides visual 

explanations via highlighting tumor regions in the images by employing image segmentation. In 

addition, SHAP technique [8] is applied to provide post-hoc quantitative explanations of the 

significance of each BI-RADS descriptor toward the model predictions. Experimental validation 

using a dataset of BUS images demonstrated comparatively high accuracy, sensitivity, and 

specificity of the proposed model. Our approach aims to enhance human-aided diagnosis by 

providing information to assist clinicians in understanding the predicted tumor class and verifying 

the accuracy of the CAD system's predictions. 

Although previous works in the literature have introduced DL architectures for predicting the 

BI-RADS descriptors in BUS images [9, 10], the majority of the works did not employ XAI 

techniques, making it challenging to understand how the models arrived at the conclusions.  

Several works made efforts to bridge this gap by introducing explainability techniques. The closest 

to ours is the approach by Zhang et al. [11] referred to as BI-RADS-Net, which introduced an ad-

hoc explainability approach to output the category of each BI-RADS descriptor and the probability 

of malignancy of masses in BUS images. Our proposed approach MT-BIRADS builds upon 

similar concepts introduced in BI-RADS-Net, and extends it by employing image segmentation 

techniques and post-hoc explanations to provide important additional insights regarding the 

decision-making process of the model. 

The main contributions of the proposed work include: 

• Development of an ad-hoc explainable multitask learning approach for breast cancer 

detection that concurrently outputs BI-RADS descriptors, tumor segmentation masks, and the 

tumor class. 

• Improvement in the predictive abilities of the model by incorporating branches for BI-

RADS descriptors classification and tumor segmentation into a multi-task learning framework. 

• Providing post-hoc explanations using Shapley Values to quantify the contributions of the 

BI-RADS descriptors to the tumor classification into benign or malignant categories. 

2. RELATED WORKS 

Breast Ultrasound is a safe and non-invasive imaging technique that uses high-frequency sound 

waves to produce detailed images of the internal structures of the breast. Recent progress in ML-

based image processing resulted in a large body of work for analysis of BUS images. Prevalent 

has been the DL methods for image classification based on Convolutional Neural Networks, such 

as AlexNet, DenseNet, VGG, ResNets, etc. [4, 5]. Recent works also introduced various attention 

mechanisms [12] and Vision Transformers [13] for this task. Furthermore, numerous works 
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proposed ML models for breast tumor segmentation, among which the U-Net architecture [14] has 

been the most commonly used. 

Several related studies introduced XAI methods for breast cancer detection based on the BI-

RADS lexicon. For example, Shen et al. [15] introduced an explainable ML classifier for locating 

suspected lesions in mammograms. Wu et al. [16] proposed DeepMiner, a DL architecture for 

tumor classification that uses BI-RADS descriptors for generating text explanations in 

mammography. Also, Kim et al. [17] developed DL models that utilized the tumor shape and 

margin in mammograms to predict the class label and BI-RADS category. A major drawback of 

these approaches in mammography is that they rely on two or three BI-RADS descriptors, which 

may not provide enough information to fully elucidate the complex process of tumor classification. 

Among the XAI methods for BUS images, Zhang et al. [18] employed only the shape and 

margin BI-RADS descriptors to predict the tumor class. In [19],  an ensemble model was proposed 

with explanations based on statistical texture features of BUS images, which are less useful for 

radiologists. Additionally, approaches that concentrated on generating textual reports for 

explaining NN models for BUS [20] were proposed in the literature. BI-RADS-Net [11] proposed 

an ad-hoc explainable DL model for tumor classification. Despite the advancements from the 

efforts in related works, explainability of CAD systems for breast cancer diagnosis is still an open 

research problem that requires further attention.  

3. PROPOSED METHOD 

3.1. BI-RADS Lexicon 

The BI-RADS system developed by the American College of Radiology has played a pivotal role 

in standardizing breast imaging assessment and reporting for mammography, ultrasound, and MRI. 

The system provides a comprehensive lexicon for mass findings categorized into the seven 

assessment categories presented in Table I. The assessment categories range from 0 to 6, indicating 

the likelihood of malignancy on a scale of 0% to 100%. These categories are crucial for cancer 

risk management, where patients categorized as 0 to 3 category undergo short-term follow-up 

imaging, while those categorized as 4 and 5 undergo diagnostic biopsy.  

In addition to the assessment categories, the BI-RADS lexicon also provides standardized 

terminology for describing various features of mass findings in BUS, including shape, orientation, 

margin, echo pattern, and posterior features. The standardized terms of the descriptors and their 

respective classes can be found in Table II. The BI-RADS system serves as a valuable tool in 

ensuring consistent and accurate breast cancer screening and diagnosis. 

3.2. Data 

The proposed model was trained using 2,186 BUS images obtained by combining three datasets: 

BUSI [21], BUSIS [22], and HMSS [23]. BUSIS dataset consists of 562 images, of which 306 

images contain benign and 256 contain malignant tumors. BUSI dataset includes 630 images that 

contain mass findings, of which 421 have benign and 209 have malignant tumors. Also, HMSS 

contains 1,725 images of which 731 have benign and 994 have malignant tumors.    
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TABLE Ӏ. BI-RADS ASSESSMENT CATEGORIES 

Category Assessment Likelihood of 

Malignancy 

Management 

0 Incomplete N/A Additional imaging required 

1 Negative No cancer detected Annual screening 

2 Benign 0% Annual screening 

3 Probably benign 0-2% Follow-up in 6 months 

4A Suspicious 2-10% Tissue diagnosis 

4B Suspicious 10-50% Tissue diagnosis 

4C Suspicious 50-95% Tissue diagnosis 

5 Malignant >95% Tissue diagnosis 

6 Biopsy-proven malignancy Cancer present Surgical excision 

 

TABLE ӀӀ. BI-RADS DESCRIPTORS FOR BUS IMAGES 

BI-RADS Descriptors Descriptors Class 

Shape Oval, Round, Irregular 

Orientation Parallel, Not parallel 

Margin Circumscribed, Not circumscribed (Indistinct, Angular, 

Microlobulated, Spiculated) 

Echo Pattern Anechoic, Hypoechoic, Isoechoic, Hyperechoic, Complex cystic 

and solid, Heterogeneous 

Posterior Features No posterior features, Enhancement, Shadowing, Combined pattern 

 

The patterns of benign tumors in BUS images are typically characterized by being parallel to 

the skin surface, oval-shaped, and having a circumscribed margin. In contrast, malignant samples 

exhibit a more diverse range of appearances and can vary significantly from image to image. 

Accordingly, learning feature representations of malignant tumors in BUS is more challenging in 

comparison to benign tumors. Additionally, missing a malignant tumor has more detrimental 

outcomes in comparison to incorrectly classifying a benign tumor as malignant. Accordingly, for 

experimental validation, we used solely the malignant samples from the HMSS dataset with the 

other two datasets. 

For more information on BUSI, BUSIS, and HMSS, please refer to their respective sources 

[21, 22, 23]. 
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3.3. Network Architecture 

The architecture of MT-BI-RADS is depicted in Fig 1. It consists of a shared backbone network 

(encoder), a segmentation decoder for reconstructing the tumor masks, and a second branch for 

predicting the BI-RADS descriptors and tumor class. The encoder employs convolutional and 

max-polling layers for extracting relevant features in BUS images. The feature maps are utilized 

by the BI-RADS descriptors branch to predict the descriptors presented in Table II. The resulting 

predictions are merged and used as an intermediate input to the tumor classification branch, which 

predicts whether the tumor is benign or malignant. Concurrently, the output of the encoder is fed 

into the segmentation branch which uses a U-Net-like decoder sub-network, which upsamples the 

representations of the backbone network and constructs a segmentation mask that identifies the 

location of the tumor.  

Hence, the multitask model includes the following tasks: BI-RADS descriptors (Task 1-5), 

sub-classes for the margin BI-RADS descriptor (Task 6-9), tumor classification (Task 10), and 

image segmentation (Task 11). For the classification tasks cross-entropy loss ℒ𝐶𝐸  is utilized, 

whereas for the segmentation task Dice loss ℒ𝐷𝑖𝑐𝑒 is used. The loss function is ℒ =

∑ 𝜆𝑖ℒ𝐶𝐸(𝑋𝑖, 𝑌𝑖) +  𝜆11ℒ𝐷𝑖𝑐𝑒
𝐾
𝑖=1 , and it is a weighted sum of the losses for the individual tasks where 

𝑋𝑖 and 𝑌𝑖 are the predicted and ground-truth values, and 𝜆𝑖 denote the weight coefficients, 

respectively.  

MT-BI-RADS is an extended version of BI-RADS-Net [11], which has similarity to the upper 

part in Fig. 1, and contains branches that output the BI-RADS descriptors and the tumor class. 

However, BI-RADS-Net does not offer information about the tumor locations in BUS images or 

quantifiable contributions of the BI-RADS descriptors to the tumor class. To address these 

limitations, MT-BI-RADS introduces a segmentation branch and leverages SHAP values to 

quantify the contributions of the BI-RADS descriptors. 

 

Fig. 1. Network architecture of the proposed MT-BI-RADS method for BUS analysis. The model consists of a backbone 

network for feature extraction, shared by a branch for tumor segmentation and a branch for classification of the BI-

RADS descriptors and the tumor class (benign or malignant). The tumor segmentation branch combines a VGG-16-like 

encoder with a corresponding U-Net-like decoder by upsampling the representations from the convolutional layer 

outputs of VGG-16 and concatenating them with skip connections from VGG-16. 
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3.4. SHAP Method 

Our work employs SHAP to determine the contributions by the BI-RADS descriptors to the tumor 

class prediction. It is based on the concept of Shapley values [24] from cooperative game theory 

that allocates the payoff of a cooperative game among the players based on their contributions. In 

the context of ML, Shapley values are used to measure the contribution of each input feature to 

the output of a model. The Shapley value for a feature represents the average change in the model 

output when that feature is included in all possible subsets of features, weighted by the number of 

subsets that include that feature. Shapley values are calculated based on: 

𝜙𝑖(ƒ) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|! 
𝑆⊆𝐹\{𝑖}

[ ƒ(𝑆 ∪ {𝑖}) − ƒ(𝑆)] 

where 𝜙𝑖(ƒ) is the Shapley value of feature i in instance ƒ. The sum is taken over all subsets S of 

features that do not include i, and ƒ(𝑆 ∪ {𝑖}) − ƒ(𝑆) is the marginal contribution of the feature i 

when it is added to the subset S. 

SHAP (SHapley Additive exPlanations) [8] extends the concept of Shapley values for 

decomposing the prediction of a model into the contributions from each input feature. We used 

SHAP method as a post-hoc explanation technique for a trained model that assigns contribution 

values to each BI-RADS descriptor regarding the tumor class. The contribution values allow 

radiologists to understand which BI-RADS descriptors played the most significant role in 

predicting the class (benign or malignant) for each BUS image. 

3.5. Implementation Details 

To ensure that important features such as tumor shape and orientation are not distorted in resized 

images, the original BUS images were first cropped to the largest square segment containing the 

tumor before being resized to 256×256 pixels. Additionally, to create a more consistent set of 

images, each single-channel gray BUS image was added to two more channels. One channel was 

created through histogram equalization, and another by smoothing the gray channel.  

The set of images was split into 80% training and 20% testing sets using five-fold cross-

validation, with 15% of the images in the training set reserved for validation. The backbone 

network used for the encoder is a VGG-16 pre-trained on the ImageNet dataset. During training, 

all layers in the encoder were updated. Data augmentation techniques were applied to the images, 

including zoom (20%), width shift (10%), rotation (5 degrees), shear (20%), and horizontal flip. 

A batch size of six images was used, and the models were trained using adaptive moment estimator 

optimization (Adam) with an initial learning rate of 10-5, which was reduced to 10-6 if the loss of 

the validation set did not decrease for 15 epochs. The training was stopped when the loss of the 

validation set did not reduce for 20 epochs. For the weight coefficients 𝜆1 to 𝜆11 in the loss, the 

following values were adopted: 0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.5, 0.6, assigned to the 

orientation, shape, margin, echo pattern, posterior features, indistinct margin, angular margin, 

spiculated margin, microlobulated margin, tumor classification, and image segmentation branches, 

respectively. The largest weights were assigned to the tumor classification and segmentation 

branches. 
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4. EXPERIMENTAL RESULTS 

4.1. Ad-hoc Explanations 

The results from the experimental validation of MT-BI-RADS are shown in Table III. The 

proposed approach furnishes ad-hoc explainability concurrently with the training/testing phases, 

by offering explanations regarding the tumor class, BI-RADS descriptors, and segmented tumor 

region. The model achieved tumor class accuracy of 91.3%, and over 80% accuracy for all five 

BI-RADS descriptors. Importantly, sensitivity reached 94%. Due to space limitation, the results 

for the margin sub-classes are not presented in the table, however, for all 4 sub-classes the accuracy 

exceeded 80%. The table also presents the results of an ablation study performed to evaluate the 

impact of the different components in the design of MT-BI-RADS. The study assesses the 

contributions by data augmentation, pretrained network parameters, additional image channels 

with histogram equalization and smoothing, and cropping of the original images to square-size 

segments. In addition, the performance metrics for models using different backbone networks 

(DenseNet12, ResNet50, and MobileNet) and BI-RADS-Net are presented in the table. 

 

TABLE ӀӀӀ. ABLATION STUDY OF THE IMPACT OF DIFFERENT COMPONENTS IN THE NETWORK DESIGN ON THE 

PERFORMANCE 

Method 

Tumor Class BI-RADS Descriptors Segmentation 

Accuracy Sensitivity Specificity Orientation Shape Margin 
Echo. 

Pat 

Post. 

Feat 
Dice Score 

MT-BI-RADS 0.913 0.940 0.858 0.845 0.884 0.886 0.806 0.839 0.827 

Without 

Augmentation* 

0.892 0.897 0.880 0.850 0.887 0.875 0.808 0.835 0.813 

Without 

Pretraining* 

0.876 0.895 0.837 0.778 0.841 0.838 0.696 0.718 0.790 

Single Channel 

Images* 

0.828 0.917 0.650 0.765 0.823 0.810 0.664 0.689 0.781 

Without Image 

Cropping* 

0.790 0.931 0.508 0.734 0.788 0.777 0.646 0.654 0.742 

DenseNet 

Backbone 

0.908 0.912 0.898 0.850 0.874 0.880 0.815 0.805 0.837 

ResNet 

Backbone 

0.903 0.925 0.856 0.864 0.882 0.891 0.814 0.820 0.842 

MobileNet 

Backbone 

0.909 0.930 0.869 0.848 0.885 0.807 0.796 0.867 0.841 

BI-RADS-Net 

[11] 

0.900 0.923 0.885 0.848 0.877 0.887 0.814 0.834 N/A 

 

* The ablation steps are progressively applied, i.e., the model without augmentation is afterward evaluated without pretrained 

weights, etc. 
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 4.2. Post-hoc Explanations 

We considered two approaches for post-hoc explanations of the trained model: SHAP and LIME 

(Local Interpretable Model-Agnostic Explanations) [25]. The results of the two approaches were 

comparable for most cases, however for more challenging cases SHAP explanations were more 

consistent, and consequently, we adopted the SHAP approach. Examples of SHAP explanations 

for four BUS images are presented in Figs. 2-5.  

Fig. 2 displays the predicted segmentation mask and the SHAP values for a benign sample. 

The values indicate that the probability of the sample being parallel to the skin is 99.87%, having 

a circumscribed margin is 99.99%, having a hypoechoic echo pattern is 100%, as well as there is 

a fairly low probability of the sample having lobulated and angular margins. These explanations 

imply that the model correctly interpreted that all these descriptors led to the benignancy of the 

prediction, as expected. 

 

 

a) Tumor image 

 
 

b) SHAP explanations 

 

c) Segmentation mask 

Fig. 2. Image, segmentation mask, and post-hoc explanations of a benign case with parallel orientation, 

circumscribed margin, and hypoechoic echo pattern. 

 

Fig. 3 displays the output mask of MT-BI-RADS for a benign tumor sample. The SHAP 

explanations reveal that although the attributes of having a hypoechoic echo pattern and low 

probability of being oval shaped and low probability of spiculated margin contributed towards the 

tumor’s malignancy (indicated by the blue bar), still the posterior enhancement, being parallel to 

the skin, and having a circumscribed margin were stronger predictors of benignancy, ultimately 

leading to being classified as benign.  

 

 

a) Tumor image 

 
 

b) SHAP explanations  

c) Segmentation mask 

 

Fig. 3. Image, segmentation mask, and post-hoc explanations of a benign case with a circumscribed margin, 

parallel orientation, enhancement posterior feature, hypoechoic echo pattern, spiculation, and oval shape, having 

both malignancy and benignancy signs. 
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Fig. 4 displays the output mask of the model for a malignant case. According to the SHAP 

explanations, the spiculated margin, angular margin, not being parallel to the skin, not having a 

circumscribed margin, and having an irregular shape contributed the most to the malignancy. This 

is expected, as these are well-known malignancy characteristics of breast tumors. Although the 

isoechoic echo pattern contributed to the prediction, this is not a typical malignancy sign and 

requires further analysis.  

 

a) Tumor image 

 
 

b) SHAP explanations  

c) Segmentation mask 

Fig. 4. Image, segmentation mask, and post-hoc explanations of a malignant case with a non-circumscribed 

margin, isoechoic echo pattern, spiculated and angular margin, irregular shape, and an orientation not parallel to 

the skin. 

 

Fig. 5 displays the output mask of the model for a malignant case with a non-circumscribed 

margin, irregular shape, acoustic shadowing, microlobulated margin, angular margin, and 

hypoechoic echo pattern. SHAP explanations show that these characteristics have significantly 

contributed to the malignant prediction, whereas being parallel to the skin had small benign 

contributions. These explanations match well the malignancy characteristics of breast tumors. 

 

 

a) Tumor image 

 
 

b) SHAP explanations  

c) Segmentation mask 

Fig. 5. Image, segmentation mask, and post-hoc explanations of a malignant case with a non-circumscribed 

margin, shadowing, irregular shape, lobulated and angular margin, hypoechoic echo pattern, an orientation 

parallel to the skin, and acoustic shadowing. 

5. CONCLUSION 

This paper proposes an explainable DL model for breast cancer detection in BUS images based on 

BI-RADS descriptors and multitask classification and segmentation learning. The approach uses 

image segmentation and Shapley Values to provide both ad-hoc and post-hoc explanations for its 

predictions. MT-BI-RADS achieves high levels of accuracy, sensitivity, and specificity, and 

provides quantitative and visual explanations of the tumor regions. The proposed approach has the 

potential to improve the accuracy and interpretability of CAD systems for breast cancer detection, 
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and could serve as a valuable tool for medical professionals in their efforts toward enhanced 

diagnosis. 
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