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Abstract. Capturing global contextual information plays a critical role
in breast ultrasound (BUS) image classification. Although convolutional
neural networks (CNNs) have demonstrated reliable performance in tu-
mor classification, they have inherent limitations for modeling global and
long-range dependencies due to the localized nature of convolution op-
erations. Vision Transformers have an improved capability of capturing
global contextual information but may distort the local image patterns
due to the tokenization operations. In this study, we proposed a hybrid
multitask deep neural network called Hybrid-MT-ESTAN, designed to
perform BUS tumor classification and segmentation using a hybrid ar-
chitecture composed of CNNs and Swin Transformer components. The
proposed approach was compared to nine BUS classification methods
and evaluated using seven quantitative metrics on a dataset of 3,320
BUS images. The results indicate that Hybrid-MT-ESTAN achieved the
highest accuracy, sensitivity, and F1 score of 82.7%, 86.4%, and 86.0%,
respectively.

Keywords: Breast Ultrasound · Classification · Multitask Learning ·
Hybrid CNN-Transformer.

1 Introduction

Breast cancer is the leading cause of cancer-related fatalities among women.
Currently, it holds the highest incidence rate of cancer among women in the U.S.,
and in 2022 it accounted for 31% of all newly diagnosed cancer cases [1]. Due
to the high incidence rate, early breast cancer detection is essential for reducing
mortality rates and expanding treatment options. BUS imaging is an effective
screening option because it is cost-effective, nonradioactive, and noninvasive.
However, BUS image analysis is also challenging due to the large variations in
tumor shape and appearance, speckle noise, low contrast, weak boundaries, and
occurrence of artifacts.

In the past decade, deep learning-based approaches achieved remarkable ad-
vancements in BUS tumor classification [2,3]. The progress has been driven by
the capability of CNN-based models to learn hierarchies of structured image
representations as semantics. To extract deep context features, CNNs apply a
series of convolutional and downsampling layers, frequently organized into blocks
with residual connections. Nevertheless, one disadvantage of such architectural
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choice is that the feature representations in the deeper layers become increasingly
abstract, leading to a loss of spatial and contextual information. The intrinsic
locality of convolutional operations hinders the ability of CNNs to model long-
range dependencies while preserving spatial information in images effectively.

Vision Transformer (ViT) [7] and its variants recently demonstrated supe-
rior performance in image classification tasks. These models convert input images
into smaller patches and utilize the self-attention mechanism to model the rela-
tionships between the patches. Self-attention enables ViTs to capture long-range
dependencies and model complex relationships between different regions of the
image. However, the effectiveness of ViT-based approaches heavily relies on ac-
cess to large datasets for learning meaningful representations of input images.
This is primarily because the architectural design of ViTs does not rely on the
same inductive biases in feature extraction which allow CNNs to learn spatially
invariant features.

Accordingly, numerous prior studies introduced modifications to the origi-
nal ViT network specifically designed for BUS image classification [15,25,16]. In
addition, several works proposed network architectures that combined Trans-
formers and CNNs [17,18,6]. For instance, Mo et al. [17] proposed a hybrid
CNN-Transformer incorporating BUS anatomical priors. Qu et al. [18] employed
squeeze and excitation blocks to enhance the feature extraction capacity in a
hybrid CNN-based VGG16 network and ViT. Similarly, Iqbal et al. [6] designed
two hybrid CNN-Transformer networks intended either for classification or seg-
mentation of multi-modal breast cancer images. Despite the promising results
of such hybrid approaches, effectively capturing the local patterns and global
long-range dependencies in BUS images remains challenging [6,7,26].

Multitask learning leverages shared information across related tasks by jointly
training the model. It constrains models to learn representations that are rele-
vant to all tasks rather than learning task-specific details. Moreover, multitask
learning acts as a regularizer by introducing inductive bias and prevents over-
fitting [27] (particularly with ViTs), and with that, can mitigate the challenges
posed by small BUS dataset sizes. In [3], the authors demonstrated that multi-
task learning outperforms single-task learning approaches for BUS classification.

In this study, we introduce a hybrid multitask approach, Hybrid-MT-ESTAN,
which encompasses tumor classification as a primary task and tumor segmenta-
tion as a secondary task. Hybrid-MT-ESTAN combines the advantages of CNNs
and Transformers in a framework incorporating anatomical tissue information in
BUS images. Specifically, we designed a novel attention block named Anatomy-
Aware Attention (AAA), which modifies the attention block of Swin Transformer
by considering the breast anatomy. The anatomy of the human breast is cat-
egorized into four primary layers: the skin, premammary (subcutaneous fat),
mammary, and retromammary layers, where each layer has a distinct texture
and generates different echo patterns. The primary layers in BUS images are
arranged in a vertical stack, with similar echo patterns appearing horizontally
across the images. The kernels in the introduced AAA attention blocks are or-
ganized in rows and columns to capture the anatomical structure of the breast
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tissue. In the published literature, the closest approach to ours is the work by
Iqbal et al. [6], in which the authors used hybrid single-task CNN-Transformer
networks for either classification or segmentation of BUS images. Conversely,
Hybrid-MT-ESTAN employs a multitask approach and introduces novel archi-
tectural design. The main contributions of this work are summarized as:

• The proposed architecture effectively integrates the advantages of CNNs for
extracting hierarchical and local patterns in BUS images and Swin Trans-
formers for leveraging long-range dependencies.

• The designed Anatomy-Aware Attention (AAA) block improves the learning
of contextual information based on the anatomy of the breast.

• The multitask learning approach leverages the shared representations across
the classification and segmentation tasks to improve the model performance.

Fig. 1. Hybrid-MT-ESTAN consists of MT-ESTAN and AAA encoders, a segmentation
branch, and a classification branch.

2 Proposed Method

2.1 Hybrid-MT-ESTAN

The architecture of Hybrid-MT-ESTAN is shown in Fig. 1, and consists of:
(1) the MT-ESTAN encoder [3], and a Swin Transformer-based encoder with
Anatomy-Aware Attention (AAA) blocks, (2) a decoder branch for the segmen-
tation task, and (3) a branch with fully-connected layers for the classification
task. MT-ESTAN [3] is a CNN-based multitask learning network that simultane-
ously performs BUS classification and segmentation. The encoder sub-network
of MT-ESTAN is ESTAN [19], which employs row-column-wise kernels to learn
and fuse context information in BUS images at different context scales (see Fig.
2). Specifically, each MT-ESTAN block is composed of two parallel branches con-
sisting of four square convolutional kernels and two consecutive row-column-wise
kernels. These specialized convolutional kernels effectively extract contextual in-
formation of small tumors in BUS images. Refer to [19], [24], and [3] for the
implementation details of ESTAN and MT-ESTAN. The source codes of these
works are available at http://busbench.midalab.net.

http://busbench.midalab.net
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Fig. 2. MT-ESTAN blocks include parallel convolutional branches with different kernel
size, followed by 1x1 convolution and a pooling layer.

2.2 Anatomy-Aware Attention (AAA) Block

Swin Transformer [20] is a hierarchical transformer-based approach that uses
shifted windows to model global context information. Swin Transformer parti-
tions an input image into non-overlapping patches of size 4×4, where each patch
is treated as a ”token”. A linear layer receives the patches and projects them into
an arbitrary dimension. Each Swin Transformer block consists of a LayerNorm
layer (LN) layer, a multi-head self-attention module (MSA), and a multi-layer
perceptron (MLP) with GELU activation. To model long-range dependencies,
the original Swin Transformer relies on shifted windows, where the window-
based multi-head self-attention (W-MSA) and shifted window-based multi-head
self-attention (SW-MSA) modules are employed in each consecutive Swin block.
The Swin block is formulated as follows.

f̂ l = W-MSA(LN(f l−1)) + f l−1 (1)

f l = MLP(LN(f̂ l)) + f̂ l (2)

f̂ l+1 = SW-MSA(LN(f l)) + f l (3)

f l+1 = MLP(LN(f̂ l+1)) + f̂ l+1 (4)

where f l and f̂ l are the output features of the MLP module and the (S)W-
MSA module for block l, respectively; in the proposed Anatomy-Aware Atten-
tion (AAA) block, we redesigned the Swin blocks to enhance their ability to
model both global and local features by adding an attention block based on the
breast anatomy (see Fig. 3). The additional layers are defined by

yi = M(f l+1) (5)

Bi = U(MAX-P(yi) +AVG-P(yi)) (6)

Oi = yi · (σ(A(B))) (7)

Concretely, we first reconstruct the i-th feature map (yi) by merging (M) all
patches, and afterward, we applied average pooling (AVG-P) and max pooling
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(MAX-P) layers with size (2, 2). The outputs of (AVG-P) and (MAX-P) layers
are concatenated and up-sampled (U) with size (2, 2) and stride (2, 2). Row-
column-wise kernels (A) with size (9 , 1) and (1 , 9) are then employed to
adapt to the anatomy of the breast, and finally a sigmoid function (σ) is applied
to the output of (A) multiplied by the input feature map (yi).

Fig. 3. Anatomy-Aware Attention (AAA) block.

2.3 Segmentation and Classification Branches/Tasks

The segmentation branch in Fig. 1 outputs dense mask predictions of BUS tu-
mors. It consists of four Up Blocks, each with three convolutional layers and
one upsampling layer (with size (2, 2) and stride (2, 2)). The settings of the
convolutional layers are adopted from [3]. In addition, the blocks receive four
skip connections from the MT-ESTAN encoder, i.e., there is a skip connection
from each MT-ESTAN block 1 to 4. The classification branch consists of three
dense layers, a dropout layer (50%), and the final dense layer that predicts the
tumor class into benign or malignant.

2.4 Loss Function

We applied a multitask loss function (Lmt) that aggregates two terms: a focal loss
LFocal for the classification task and dice loss LDice for the segmentation task.
Therefore, the composite loss function is Lmt = w1 · LFocal + LDice, where the
weight coefficient w1 is set to apply greater importance to the classification task
as the primary task. Since in medical image diagnosis achieving high sensitivity
places emphasis on the detection of malignant lesions, we employed the focal loss
for the classification task to trade off between sensitivity and specificity. Because
malignant tumors are more challenging to detect due to greater differences in
margin, shape, and appearance in BUS images, focal loss forces the model to
focus more on difficult predictions. Specifically, focal loss adds a factor (1− pi)

γ

to the cross-entropy loss where γ is a focusing parameter, resulting in LFocal =
−1/N

∑N
i=1[(α·ti ·(1−pi)

γ ·log(pi)+(1−α)·pi ·log(1−pi)]. In the formulation, α
is a weighting coefficient, N denotes the number of image samples, ti is the target
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label of the ith training sample, and pi denotes the prediction. The segmentation
loss is calculated using the commonly-employed Dice loss (LDice) function.

3 Experimental Results

3.1 Datasets

We evaluated the performance of Hybrid-MT-ESTAN using four public datasets,
HMSS [11], BUSI [4], BUSIS [22], and Dataset B [8]. We combined all four
datasets to build a large and diverse dataset with a total of 3,320 B-mode BUS
images, of which 1,664 contain benign tumors and 1,656 have malignant tumors.
Table 1 shows the detailed information for each dataset. HMSS dataset does not
provide the segmentation ground-truth masks, and for this study we arranged
with a group of experienced radiologists to prepare the masks for HMSS. Refer
to the original publications of the datasets for more details.

Table 1. Breast ultrasound (BUS) datasets. ’b’ denotes benign tumor and ’m’ is ma-
lignant tumor.

BUS dataset No. of images Distribution Source

HMSS 1,948 b:812, m:1136 Netherlands
BUSI 647 b:437, m:210 Egypt
BUSIS 562 b:306, m:256 China
Dataset B 163 b:109, m:54 Spain

Total 3,320 b: 1,664, m: 1,656

3.2 Evaluation Metrics

For performance evaluation of the classification task, we used the following met-
rics: accuracy (Acc), sensitivity (Sens), specificity (Spec), F1 score, Area Under
the Curve of Receiver Operating Characteristic (AUC), false positive rate (FPR),
and false negative rate (FNR). To evaluate the segmentation performance, we
used dice similarity coefficient (DSC) and Jaccard index (JI).

3.3 Implementation Details

The proposed approach was implemented with Keras and TensorFlow libraries.
All experiments were performed on a machine with NVIDIA Quadro RTX 8000
GPUs and two Intel Xeon Silver 4210R CPUs (2.40GHz) with 512 GB of RAM.
All BUS images in the dataset were zero-padded and reshaped to form square
images. To avoid data leakage and bias, we selected the train, test, and validation
sets based on the cases, i.e., the images from one case (patient) were assigned
to only one of the training, validation, and test sets. Furthermore, we employed
horizontal flip, height shift (20%), width shift (20%), and rotation (20 degrees)
for data augmentation. The proposed approach utilizes the building blocks of
ResNet50 and Swin-Transformer-V2, pretrained on ImageNet dataset. Namely,
MT-ESTAN uses pretrained ResNet50 as a base model for the five encoder blocks
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Table 2. Performance metrics of the compared methods for BUS image classification
and segmentation.

Classification Segmentation

Methods Acc↑ Sens.↑ Spec.↑ F1↑ Auc↑ FNR↓ FPR↓ DSC↑ JI↑
SHA-MTL [10] 69.6 48.1 90.8 0.58 69.5 51.9 9.2 72.2 60.7
MobileNet [21] 71.0 82.0 61.0 0.74 71.5 18.0 39.0 - -
VGGA-ViT [18] 73.6 61.8 79.8 0.61 70.8 38.2 20.2 74.9 64.9
DenseNet121 [9] 73.0 74.0 71.0 0.73 72.5 26.0 29.0 - -
EMT-Net [14] 74.1 79.4 69.1 0.75 74.3 20.6 30.9 76.7 67.0
ViT [7] 72.1 74.1 69.3 0.73 71.7 25.9 30.7 - -
Chowdery [5] 77.4 77.3 77.3 0.77 77.3 22.7 22.7 77.0 67.9
Swin Transformer 77.4 72.6 82.5 0.74 77.6 27.4 17.5 - -
MT-ESTAN 78.6 83.7 72.6 0.83 78.2 16.3 27.4 78.2 69.3
Ours 82.8 86.4 79.2 0.86 82.8 13.6 20.8 84.1 75.7

Note: A dash ’-’ in the Segmentation column indicates that the model uses single-
task learning.

(the implementation details of MT-ESTAN can be found in [3]). The encoder
with AAA blocks uses the SwinTransformer V2 Base 256 pretrained model as
a backbone. For the composite loss function, we adopted a weight coefficient
w1 = 3, and in the focal loss α = 0.5 and γ = 2. For model training we utilized
Adam optimizer with a learning rate of 10−5 and mini batch size of 4 images.

3.4 Performance Evaluation and Comparative Analysis

We compared the performance of Hybrid-MT-ESTAN for BUS classification to
nine deep learning approaches commonly used for medical image analysis. The
compared models include CNN-based, ViT-based, and hybrid approaches. CNN-
based networks are SHA-MTL [10], MobileNet [21], DenseNet121 [9], and EMT-
Net [14]. ViT-based approaches include the original ViT [7], Chowdery [5], and
Swin Transformer [20]. VGGA-ViT [18] is a hybrid CNN-Transformer network.
The values of the performance metrics are shown in Table 2, indicating that the
proposed Hybrid-MT-ESTAN outperformed all nine approaches by achieving the
best accuracy, sensitivity, F1 score, and AUC with 82.8%, 86.4%, 86.0%, and
82.8%, respectively. Although SHA-MTL [10] obtained the highest specificity of
90.8% and FPR of 9.2%, the trade-off between sensitivity and specificity should
be taken into consideration, as that approach had sensitivity of 48.1%. The pre-
ferred trade-off in medical image analysis typically is high sensitivity without
significant degradation in specificity.
We evaluated the segmentation performance of Hybrid MT-ESTAN and com-
pared the results to five multitask approaches, including SHA-MTL [10], EMT-
Net [14], Chowdery [5], MT-ESTAN [3], and VGGA-ViT [18]. As shown in Ta-
ble 2,the proposed Hybrid MT-ESTAN achieved the highest performance and
increased DSC and JI by 5.9% and 6.4%, respectively compared to MT-ESTAN.
Note that results of single-task models in Table 2 are not provided.
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Table 3. Ablation study for evaluating the components of Hybrid-MT-ESTAN.

Classification Segmentation

Methods Acc↑ Sens.↑ Spec.↑ F1↑ Auc↑ FNR↓ FPR↓ DSC↑ JI↑
MT-ESTAN [5] 78.6 83.7 72.6 0.83 78.2 16.3 27.4 78.2 69.3
Swin Trans. 77.4 72.6 82.5 0.74 77.6 27.4 17.5 - -
MT-ESTAN + Swin Trans. 80.3 84.2 76.3 0.83 80.2 15.8 23.7 82.3 73.6
Ours 82.8 86.4 79.2 0.86 82.8 13.6 20.8 84.1 75.7

3.5 Effectiveness of the Anatomy-Aware Attention (AAA) Block

To verify the effectiveness of the Anatomy-Aware Attention (AAA) block, we
conducted an ablation study that quantified the impact of the different com-
ponents in Hybrid-MT-ESTAN on the classification and segmentation perfor-
mance. Table 3 presents the values of the performance metrics for MT-ESTAN
(pure CNN-based approach), Swin Transformer (pure Transformer network), a
hybrid architecture of MT-ESTAN and Swin Transformer, and our proposed
Hybrid-MT-ESTAN with AAA block. According to the results in Table 3, MT-
ESTAN achieved better sensitivity and F1 score than Swin Transformer, with
83.7% and 83%, respectively. The hybrid architectures of MT-ESTAN with Swin
Transformer improved the classification performance and has higher accuracy,
sensitivity, F1 score, and AUC with 80.3%, 84.2%, 83%, and 80.2%, compared
to MT-ESTAN and Swin Transformer individually. The proposed approach,
Hybrid-MT-ESTAN with AAA block, further improved accuracy, sensitivity, F1
score, and AUC by 2.5%, 2.2%, 3%, and 2.6%, respectively, relative to the hybrid
model without the AAA block.

To evaluate the segmentation performance, we compared the proposed ap-
proach with and without the AAA block and Swin Transformer. As shown in
Table 3, MT-ESTAN combined with Swin Transformer improved DSC and JI by
4.1% and 4.3%, respectively compared to MT-ESTAN. Employing the proposed
AAA block further improved DSC and JI by 1.8% and 2.1%, respectively.

4 Conclusion

In this paper, we introduced the Hybrid-MT-ESTAN, a multitask learning ap-
proach for BUS image analysis that alleviates the lack of global contextual in-
formation in the low-level layers of CNN-based approaches. Hybrid-MT-ESTAN
concurrently performs BUS tumor classification and segmentation, with a hy-
brid architecture that employs CNN-based and Swin Transformer layers. The
proposed approach exploits multi-scale local patterns and global long-range de-
pendencies provided by MT-ESTA and AAA Transformer blocks for learning fea-
ture representations, resulting in improved generalization. Experimental valida-
tion demonstrated significant performance improvement by Hybrid-MT-ESTAN
in comparison to current state-of-the-art models for BUS classification.
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