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ABSTRACT Computer-aided Diagnosis (CADx) based on explainable artificial intelligence (XAI) can gain
the trust of radiologists and effectively improve diagnosis accuracy and consultation efficiency. This paper
proposes BI-RADS-Net-V2, a novel machine learning approach for fully automatic breast cancer diagnosis
in ultrasound images. The BI-RADS-Net-V2 can accurately distinguish malignant tumors from benign
ones and provides both semantic and quantitative explanations. The explanations are provided in terms
of clinically proven morphological features used by clinicians for diagnosis and reporting mass findings,
i.e., Breast Imaging Reporting and Data System (BI-RADS). The experiments on 1,192 Breast Ultrasound
(BUS) images indicate that the proposed method improves the diagnosis accuracy by taking full advantage
of the medical knowledge in BI-RADS while providing both semantic and quantitative explanations for the
decision.

INDEX TERMS Breast cancer, computer-aided diagnosis (CADx), explainable artificial intelligence, multi-
task learning.

I. INTRODUCTION
The Breast cancer is the most common cancer in women
and causes the second-highest number of deaths among all
cancers [1]. Early discovery and treatment can prevent breast
cancer from becoming severe and significantly increase the
survival rate [2]. Breast ultrasound is a highly effective imag-
ing method for diagnosing breast cancer. It is non-invasive,
painless, and does not involve exposure to radiation [3].

Artificial Intelligence (AI) technology is rapidly advanc-
ing, and many people anticipate that Computer-Aided
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Diagnosis (CADx) systems will have a significant impact
on diagnosing breast cancer using ultrasound, particularly
in areas with a shortage of medical resources [4]. In recent
years, CADx systems have demonstrated competitive or even
superior performance compared to human physicians [5]
while providing increased reproducibility [6]. However, the
widespread acceptance of CADx systems for sonography has
been limited by the lack of transparency and explainability in
these systems [7].

For breast cancer, the consequences of diagnostic errors
can be severe [8], with delayed or missed diagnoses poten-
tially delaying treatment and endangering patients’ lives.
Conversely, a misdiagnosis can result in heavy emotional and
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TABLE 1. The categories of BI-RADS assessments.

financial burdens on patients. Therefore, both physicians and
patients require an understanding of the internal mechanism
and decision-making process of the CADx system before
accepting a diagnosis.

As the importance of transparency and explainability in
CADx systems has been increasingly recognized, researchers
have developedmethods tomake these systemsmore explain-
able [9], [10], [11]. These methods can be broadly catego-
rized into two groups. The first group introduces explainable
or trackable components in the model, which are used to
make decisions [11], [12], [13]. However, these methods
often involve trade-offs between performance and explain-
ability. Additionally, some methods [9], [14], [15] gen-
erate visual explanations based on attention mechanisms,
but these explanations are not always well-accepted by
physicians [16], [17]. The second group of methods use
post-hoc analysis to interpret existing models [18] and have
no impact on the performance, but these explanations may be
difficult for patients and clinicians to understand, and further
research is needed to connect them to medical knowledge.

This paper presents a novel network architecture called
BI-RADS-Net-V2 for identifying breast cancer in ultrasound
images. The system consists of three key components: a core
classifier that predicts the type of mass (benign or malig-
nant), a multi-branched network that functions as a semantic
explainer by predicting Breast Imaging-Reporting and Data
System (BI-RADS) descriptors (as detailed in Section II-A),
and a quantitative explainer that approximates the classifier’s
decision by combining the BI-RADS descriptors and provid-
ing clear explanations. The proposed model offers several
advantages. By providing semantic explanations based on
BI-RADS, the output can be easily understood and accepted
by physicians and radiologists, as the BI-RADS descriptors
are based on morphological features they use daily. The
multi-task learning framework allows for medical knowledge
in BI-RADS to enhance the classifier’s generalization ability,
leading to better performance than single-task models. Addi-
tionally, the quantitative explainer provides insights into the
inner workings of the classifier for each sample, allowing
for a clearer understanding of the importance of different
BI-RADS descriptors in the diagnostic process.

The main contributions of this paper are as follows.

• A complete CAD system that concurrently outputs
the tumor class, BI-RADS likelihood of malignancy,

the BI-RADS descriptors, and the contributions of each
descriptor.

• A network architecture with a regression branch to
handle the inherent noise in the ground-truth labels
for the BI-RADS categories caused by inter-observer
variability.

• Increased tumor classification accuracy via learning fea-
ture representations related to clinical descriptors; and

• The capacity to assess uncertainties in the model outputs
for individual BUS images based on (dis)agreement in
the predictions by the different model branches.

The remaining content of this paper is organized as follows.
Section II reviews the current CAD for BUS images and
XAI research. Section III describes our BIRADS-Net model.
Section IV presents the experimental results on a combined
dataset and analyzes the results; and finally, section V sum-
marizes the paper and discusses future work.

II. RELATED WORK
A. BI-RADS
BI-RADS is a risk assessment system that standardizes the
assessment, reporting, and training for breast imaging diag-
nosis. Published and trademarked by the American College
of Radiology, BI-RADS has played an essential role in
breast cancer diagnosis and reporting worldwide. The system
applies to ultrasound, mammography, and MRI. BI-RADS
summarizes a mass finding for breast ultrasound by one
of the seven assessment categories (see Table 1). Except
for categories 0 (incomplete) and 6 (biopsy-proven malig-
nancy), the other categories correspond to the different odds
of malignancy. Category 1 (no mass detected), 2 (benign),
and 3 (risk malignancy 0-2%) indicate a meager chance of
cancer, and category 5 indicates an extremely high risk of
cancer. Category 4 is divided into three subcategories. Cate-
gory 4a indicates mass finding with low risk from 2% to 10%,
and category 4b indicates intermediate risk, 10% to 50%.
Category 4c indicates moderate risk (50% to 95%) of malig-
nancy. Clinically, follow-up is usually recommended for
categories 3 and 4a, while categories 4c and 5 usually require
biopsy examination.

BI-RADS standardizes diagnosis through pre-defined
representative descriptors. The pre-defined breast sono-
graphic image lexicon includes six morphologic features of
solid mass findings: shape, orientation, margin, boundary,
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internal echo pattern, and posterior acoustic features. Accord-
ing to the BI-RADS lexicon, the shape of a mass could be
oval, round, or irregular; the orientation could be parallel
or not parallel to the skin; the margin features of a mass
include circumscribed, microlobulated, indistinct, angular,
and spiculated; the echo pattern inside the mass could be
anechoic, hyperechoic, isoechoic, hypoechoic, and complex;
the boundary features include abrupt interface and echogenic
halo; the posterior acoustic features include shadowing, com-
bined, enhancement, and no posterior acoustic features. The
BI-RADS lexicon covers the most critical breast ultrasound
image features for diagnosis. Some of these features could
effectively identify benign mass frommalignant mass and are
accepted by doctors worldwide.

There are apparent advantages in building a diagnosis
system based on a proven and effective knowledge system.
Doctors and radiologists use BI-RADS daily for diagnosis.
Automated diagnostic systems based on BI-RADS are more
similar to the diagnostic thinking of physicians, and end-users
can easily understand the BI-RADS-based explanations given
by the system.

The descriptors in the BI-RADS lexicon are highly
discriminative, and the medical knowledge in them can
effectively improve the accuracy and generalization ability
of the system. Based on the above reasons, we introduce
BI-RADS into the CAD system and explain the system deci-
sions based on BI-RADS.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE
As modern machine learning techniques achieve extraor-
dinary success in a growing number of fields, the short-
comings of machine learning algorithms, especially deep
network models, in terms of lack of transparency and
interpretability, are increasingly drawing the attention of
researchers [19], [20]. XAI is becoming a popular research
area in recent years. Došilović et al. [21] categorize the
approaches to transparency and explainability into inte-
grated and post-hoc methods. The former uses transpar-
ent, human-understandable information to construct models
that can effectively explain the decision-making process.
However, the usage of these models is associated with a
trade-off between transparency and performance [22], [23].
The post-hocmethods extract information from existingmod-
els without impacting performance. Due to sample space and
methodological limitations, there is a risk that these methods
may not fully reflect the characteristics of the model and may
produce misleading interpretations.

The requirements for interpretability vary by application
type. Samek et al. [24] divided the interpretation meth-
ods into explaining learned representations [10], [25], [26],
[27], [28], [29], explaining individual predictions [30], [31],
[32], [33], explaining model behavior [34], and explaining
with representative examples [18], [35]. The widespread use
of neural network models has contributed significantly to
developing the first class of methods. However, due to the

complexity of modern machine learning methods, the effec-
tive explanation is still an open problem.

C. EXPLAINABLE ARTIFICIAL INTELLIGENCE IN
HEALTHCARE
High-stakes applications such as medical image diagnosis
require more explainability than general applications. The
majority of the current work on XAI in medical image diag-
nosis employed model saliency to outline important regions
in images that contributed the most to the model predic-
tion [36], [37]. Accordingly, the attention mechanism in the
neural network model is also used to label organs and tissues
to be focused on from medical images [38]. Explainable
models based on saliency or attention have a certain degree
of explanatory power. However, there are still some limita-
tions to the clinical meaning of these explanations and their
acceptance [16], [17], [39].

Based on the Thyroid Imaging Reporting and Data System
(TI-RADS), Zhang et al. [12] leveraged clinical features for
XAI of thyroid nodules diagnosis. Another trend is con-
currently processing medical images and creating textual
reports similar to clinicians’ reports when interpreting med-
ical images [40], [41]. Interpretable computer-aided diag-
nostic systems have great potential for application, while
at the same time, interpretability issues in medical images
present new challenges for the research community. These
challenges are due to the tremendous diagnostic risks and
include long-standing difficulties in the field of medical
image processing, such as small sample size, low contrast,
variety of image acquisition devices, and non-uniform image
formats, among others.

The explainable ML algorithm for breast cancer CADx has
been explored by researchers. Shen et al. [42] developed an
interpretable ML classifier capable of producing pixel-level
saliency maps to indicate the location of suspicious lesions in
mammograms. Similarly, Wu et al. [43] proposed a convolu-
tional network architecture called ‘DeepMiner,’ which used
expert annotation to correspond the feature map of the last
convolutional layer to the BI-RADS lexicon, thus giving a BI-
RADS lexicon-based explanation while providing prediction
about mass type. Kim et al. [9], [15] proposed a NN model
that used the shape andmargin features of themass to produce
a saliency map that justified the prediction given by the
model. Due to the use of visualization-based interpretation
methods, the above methods were weak in interpretation
and not easily understood by end-users. At the same time,
these methods utilized only a small portion of the medical
knowledge in BI-RADS, and there was still great potential
for BI-RADS-based interpretable diagnostic systems.

Although automatic breast ultrasound diagnosis systems
have gained significant progress in the accuracy of recog-
nition and segmentation, relatively little research has been
done on interpretability. Shan et al. [10] designed a series
of computational features based on BI-RADS and used a
bottom-up approach for feature selection. After comparing
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FIGURE 1. Network architecture of the proposed BI-RADS-Net-V2 for BUS CADx. The lines with arrows is the flow of data, and the numbers on
softmax blocks are the dimension of the vectors.

several classifiers, the authors conclude that margin-based
and orientation-based features have the most vital discrim-
inative power. Zhang et al. [11] designed an interpretable
BUS CAD system in which a pre-processing process was
introduced to enhance the shape and margin features in the
input BUS images. The authors then used a neural network
based on auto encoder-decoder (AED) to predict tumor types
and reconstruct the input images. The approach in [11] only
considered shape and margin descriptors, and the system did
not explicitly output the probabilities of these two descriptors
as an interpretation of the prediction results. In addition,
neural network models that can generate textual diagnostic
reports of breast ultrasound images have been reported in
the literature [44] and saliency-based methods for identi-
fying interpretable salient regions in breast histopathology
images [45]. Although some research exists, interpretable
automatic BUS CAD is still an open field for further research
and exploration.

III. PROPOSED EXPLAINABLE CADx SYSTEM FOR
BREAST CANCER DIAGNOSIS
This section presents the proposed CADx system with
integrated explainability, including the network structure,
loss function, available dataset, and implementation details.
We also present the evaluation metrics for the classifier,
Explainer I, and Explainer II, respectively.

A. NETWORK ARCHITECTURE
The architecture of the proposed BI-RADS-Net-V2 is given
in Figure 1. The architecture consists of a shared backbone

network and three functional components. The three func-
tional modules are a classifier that determines the category
of the mass, a multi-task semantic explainer that pre-
dicts BI-RADS descriptors and likelihood of malignancy
(BI-RADS assessment), and a quantitative explainer that pre-
dicts the contribution of each selected BI-RADS descriptor.
To simplify the notation, in the rest of the paper, the seman-
tic explainer and quantitative explainer are referred to as
Explainer I and Explainer II, respectively.

The backbone network employs pre-trained convolutional
layers and pooling layers to extract relevant features from the
input BUS images, and then the feature maps are shared by
the functional modules. In this subsection, we describe the
specific structure of each of the three functional modules.
The classifier is a convolutional neural network with binary
outputs. For an input BUS image, the classifier predicts
whether the mass finding contained in the image is benign
or malignant. The classifier’s input consists of the features
obtained by the backbone network and the judgments given
by Explainer I, which are the BI-RADS assessment and
descriptors. This design is because the BI-RADS assessment
and descriptors contain high-level medical knowledge that
helps the classifier make more accurate judgments.

1) SEMANTIC EXPLAINER
Explainer I consists of a regression branch that predicts the
BI-RADS likelihood of malignancy, and a group of clas-
sifications branches that output the BI-RADS descriptors
(see Table 2). In detail, the shape has 2 classes (parallel
and not parallel), orientation has 3 classes, echo pattern
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TABLE 2. BI-RADS Descriptors used in Explainer I.

has 6 classes, and posterior features has 4 classes. The margin
can have multiple annotations. For instance, a tumor with
a not circumscribed margin could be both indistinct and
spiculated. Therefore, we employed a different approach to
predict the margin descriptors. A margin branch predicts
whether the margin is circumscribed or not, and afterward,
four sub-branches are introduced to output binary values of
margin sub-classes, including indistinct, angular, microlobu-
lated, and spiculated.

The predictions of the multi-task branches are integrated
with the shared feature map, and then the features are fed to
the regression to predict the BI-RADS assessment. We use
the likelihood of malignancy, a continuous value from 0%
to 100%, to replace the discrete BI-RADS assessment. The
likelihood ofmalignancy reflects the probability that the input
BUS image contains a malignant tumor. The continuous like-
lihood values could be considered as the result of smoothing
over the discrete labels. It is more robust to inter-observer
variability than the discrete assessments and can reduce the
impact of label noise. The tumor classification branch pre-
dicts the tumor type by integrating the BI-RADS descriptors,
the likelihood of malignancy, and the shared feature map.

The objective of Explainer I is to explain the classification
results semantically. Explainability is achieved by report-
ing the BI-RADS descriptors and likelihood of malignancy.
We hold that this information would be beneficial and valu-
able to clinicians for interpreting BUS images. First, this
information provides a link between the information process-
ing by the CAD model and medical diagnosis by clinicians.
Namely, clinical interpretation involves observing the shape,
orientation, margin, echo pattern, and posterior features of
masses, in combination with associated features (duct, skin
changes), exceptional cases (implants), and considering addi-
tional information, such as the patient medical history, age,
lifestyle, or known risk factors. Therefore, CAD systems that
predict the BI-RADS descriptors can be valuable, as they
can be related to the mental process undertaken by clinicians
during BUS interpretation. Second, the provided informa-
tion can be helpful for the reporting phase. Third, all CAD
models inevitably make predicting errors (i.e., the accuracy
on unseen images is always less than 100%). Evaluating the
uncertainties in theMLpredictions on individual BUS images
is especially challenging: whenever there is a discrepancy
between a clinician’s interpretation and the CAD tumor class
prediction on an individual BUS image, the clinicianmight be
suspicious about the CAD prediction. Providing explanations
via the BI-RADS descriptors and the BI-RADS likelihood of

malignancy can assist clinicians in understanding the level
of uncertainties in the model’s output on individual BUS
images. Subsequently, the provision of explainability using
the BI-RADS lexicon can increase the trustworthiness of
clinicians in the CAD systems.

The explanations given by Explainer I differ from the
post-hoc explainability approaches for deep learning models,
where explanations of the decision-making process for a
model are provided after the training phase is completed.
Instead, we use a single end-to-end deep learning model that
furnishes explainability concurrently with the training/testing
phases. We justify this approach because we relied on a
clinically validated set of visual features—the BI-RADS
descriptors—to explain BUS image analysis.

It is worth mentioning in a separate note that training inde-
pendent NNs for the risk of malignancy and the BI-RADS
descriptors may achieve similar performance. However, the
output of these independent NNs is not considered an inter-
pretation of the classifier because it uses different features.
Explainer I shares the feature map with the classifier, pro-
viding Explainer I with the ability to explain the classifier.
Independent neural networks, on the other hand, do not have
the ability to explain.

2) QUANTITATIVE EXPLAINER
Explainer II constructs a quantitative explanation based on
the classifier and Explainer I. The core idea of Explainer II is
to approximate the classifier that is considered a ‘black-box’
with an explainable linear model. There have been methods
with similar ideas applied to other image data [46], [47].
The output of Explainer I is categorized into benign favor-
ing and malignant favoring groups. The benign favoring
group includes 5 descriptors, and the malignant favoring
group includes 11 descriptors. With the shared feature map
as input, Explainer II predicts two weight vectors for the
two groups, respectively. Then the dot products between the
feature group and the predicted weight are calculated. In this
way, Explainer II has two outputs, corresponding to benign
and malignant. We expect the two outputs of Explainer II
to be equal to the classifier output before the final SoftMax
layer. The residual (see section III-B) is defined as the average
differences between the explain II output and the classifier
output on benign and malignant to reflect the similarity
between Explainer II and the classifier. When the residual is
small enough, Explainer II could be considered to have the
same behavior pattern as the classifier, and the contribution
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of each descriptor could be evaluated by the corresponding
weight.

Explainer II can be considered as a post-hoc method. It can
use the same feature maps as the classifier and Explainer I,
or not. However, experimental results (see section 4.4) proved
that using shared feature map enhanced the explanation of
Explainer II. Quantitative interpretation is critical in inter-
pretable systems. It has been proved that different descriptors
are not equally important in the diagnostic process. For exam-
ple, the margin is a more significant feature in distinguishing
malignant tumors from benign ones. Therefore, it is necessary
to analyze the weights of the different descriptors in the
classifier and check whether the weights given by the clas-
sifier match the clinical experience. In addition, quantitative
analysis is an essential tool for our understanding of the
inner workings of classifiers. In particular, when the classifier
makes mistakes, the analysis of the quantitative explanations
allows us to find the reasons for the errors and thus to clarify
how to improve them.

B. LOSS FUNCTIONS
The training of BI-RADS-Net-V2 consists of two parts.
The first part is to train the classifier and the Explainer I
by using multi-task learning. In the multi-task model, Task
1 to 5 are the BI-RADS descriptors, Task 6 to 9 are the
sub-classes for the margin BI-RADS descriptor, Task 10 is
the BI-RADS likelihood of malignancy, and Task 11 is the
tumor classification branch. For each task k, the network loss
function is denoted by Lk (Xk ,Yk ), where Xk is the predicted
value and Yk is the ground-truth label (for classification) or
value (for regression). Since the outputs of the likelihood
of malignancy branch (Task 10) and the tumor classification
branch (Task 11) both reflect the level of risk that the present
tumor in the image is malignant, we added loss term La to
enforce the information shared between the two branches.
The total loss is calculated as the weighted sum of all tasks,
equation 1.

Lml =

K∑
i=1

λiLi(Xi,Yi) + λaLa(|X11 − X10|, |Y11 − Y10|)

(1)

In the Lml , the symbol λi denotes the weight coefficient of
task i, K = 11 is the number of tasks, and λa is the weight
coefficient for the La term. Cross-entropy loss is used for the
classification branches and mean-square error loss is used for
the regression branch. The output of the classifier, which was
denoted as Y11 in the above multi-task learning algorithm,
was used as the ground truth when training Explainer II. The
residual loss was calculated as equation 2.

Lr =
1
2

∑
l∈[B,M ]

|Wl × D− Y11| (2)

where D is a vector that reflects the presence of the selected
BI-RADS descriptors calculated based on Explainer I output,
and WB and WM are the weight vectors for benignity and

malignancy decisions, respectively. An efficient approxima-
tion of the classifier can be obtained by minimizing the
residual loss.

C. DATASET AND IMPLEMENTATION DETAILS
1) DATASET
The proposed model was validated using 1,192 BUS images,
which were obtained by combining two different datasets,
BUSIS [48] and BUSI [49], into one dataset. The BUSIS
dataset consists of 562 images, of which 306 images con-
tain benign masses and 256 contain malignant tumors. For
the BUSI dataset, we used a subset of 630 images that
contain mass findings, of which 421 have benign masses,
and 209 have malignant tumors. One BUS image that con-
tains a malignant was excluded due to the incompleted
BI-RADS label. Overall, the positive and negative sam-
ples in our experimental data are close to balance, as it
consists of 727 benign (negative) and 465 malignant (posi-
tive) images. All images were annotated with ground-truth
labels for the tumor class, BI-RADS assessment category,
and BI-RADS descriptors. There are differences in acqui-
sition equipment, imaging conditions, operators, and target
populations between the two datasets described above. It is
expected that these differences will lead to degradation of
the system in terms of metrics such as classification accu-
racy. However, diverse data can enhance the robustness of
the system and thus improve the performance of unob-
served data. The details regarding the BUSIS and BUSI
datasets are provided in the publications [48] and [49],
respectively.

2) PRE-PROCESSING
During the experiment, the size of the input image was
256 by 256 pixels. Unlike generic object recognition tasks,
directly adjusting the size and scale of the image can break
the morphological features of the tumor, and the shape
and orientation labels of some images would be incorrect
(e.g., the shape of some tumors can change from oval to round
when wide rectangular images are resized to square images).
In order to prevent distortion of the morphological features
of shape and orientation, the original BUS images were first
cropped to the largest squared segment that encompasses the
tumor, and afterward, the cropped segment was resized to
256×256 pixels.

Next, for the single-channel grayscale BUS images,
we added two additional channels. One channel was obtained
by performing histogram equalization to the gray channel,
and another channel was obtained by applying smoothing
to the gray channel. The experimental results show that this
simple pre-preprocessing step was beneficial to improving
the model performance [50]. We speculate that the reason
for this result is that histogram equalization and smoothing
reduced the variations across the images in BUSIS and BUSI
datasets and resulted in a more uniformly distributed set of
images.
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TABLE 3. BI-RADS Descriptors favoring different masses.

3) CROSS-VALIDATION
We used a five-fold cross-validation method in our exper-
iments. The total sample was randomly divided into five
subsets of the same size. For each round of experiments,
we used four subsets as the training set and the remaining one
as the test set, i.e., 80% of the samples were used as training
samples, and 20% were testing samples. In each round of
experiments, 15% of the training samples were used as the
validation data set. We observed the model’s performance
on the validation dataset to adjust the model’s learning rate
and determine when to stop training to avoid overfitting
the model. The system performance was evaluated based on
the average of the five experiments.

4) PARAMETER INITIALIZATION
The choice of backbone has a significant impact on sys-
tem performance. We compared the performance differences
resulting from different backbone choices. Since our data
volume is relatively small, using migration learning can
speed up the convergence and improve the system’s per-
formance. Therefore, all backbone networks were initial-
ized with pre-trained weights on the ImageNet database.
On the other hand, all parameters, including the parameters
of the backbone network, were updated during training to
acquire unique features of BUS images from the training data.

5) DATA AUGMENTATION
To improve the accuracy of the model, we performed data
augmentation on our BUS images. It is worth mentioning
that not all transformations are available in order to maintain
the morphological features of the tissues in the image and
the positional relationships between organs. We applied var-
ious types of data augmentation techniques, including zoom
(20%), width shift (10%), rotation (5 degrees), shear (20%),
and horizontal flip. Up-down flip wasn’t involved because it
changed the relative position of the tissues.

6) HYPERPARAMETERS
Hyperparameters in the training process were selected empir-
ically. We set the batch size as 6. The models were trained by
using the adaptive moment estimator optimized (Adam), with
an initial learning rate of 10−5, which was reduced to 10−6 if
the loss of the validation set did not reduce for 15 epochs. The
training was stopped when the loss of the validation set did
not reduce for 30 epochs to avoid over-fit. For the loss weight
coefficients λ1 to λ11, we adopted the following values:
(0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.2, 0.5). That is,

the largest weight was assigned to the tumor class branch.
The weight λa for the loss term La was set to 0.2 as well.
Considering that the goal of Explainer II was to approximate
the classifier, the hyperparameters set during training were
the same as those of the classifier training.

7) EVALUATION METRICS
The performance of the classifier is evaluated using accu-

racy, sensitivity, specificity, and F1-score [51]. Explainer I
includes both classification and regression branches. The
classification branches are evaluated using accuracy, sen-
sitivity, and specificity. The regression branch is evaluated
using R-Square (equation 3), MSE (equation 4), and RMSE
(equation 5), which are calculated as follows.

R2 = 1 −

∑
(ȳ− ŷ)2∑
(ȳ− yi)2

(3)

MSE =
1
N

∑
(y− ŷ)2 (4)

MSE =

√
1
N

∑
(y− ŷ)2 (5)

Explainer II is evaluated using the residual error, accuracy,
and relative contribution. The residual error could be cal-
culated according to equation 2. The smaller residual error
reflects that Explainer II is a better approximation of the
classifier and vice versa. The Accuracy of Explainer II w.r.t
biopsy ground instead of classifier output reflects whether
Explainer II learned adequate medical knowledge rather than
simply fitting the classifier. Moreover, we defined a new
matric named relative contribution to evaluate Explainer II.
Raza et al. [52] summarized the reports and categorized the
BI-RADS lexicons into three categories: favoring malignant,
favoring benign, and undetermined features (see Table 3).
Only the determinative descriptors are used in Explainer II.
The relative contribution is calculated as follows (equation 6).

RI =


1
N

∑
i∈1,...,N

(

∑
j∈PB c

j
i∑

j∈P c
j
i

), for I = B

1
N

∑
i∈1,...,N

(

∑
j∈PM c

j
i∑

j∈P c
j
i

), for I = M .

(6)

The relative contribution reflects whether the malignant
favoring features and benign favoring features contribute to
the malignant and benign decision, respectively. The benign
favoring features should have more immense contributions
than the malignant features for benign masses and vice versa.
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TABLE 4. The performance of tumor classification and BI-RADS assessment (in the form of likelihood of malignancy), regarding the impact of different
components in the network design.

TABLE 5. The performance of BI-RADS descriptors prediction, regarding the impact of different components in the network design.

IV. EXPERIMENTAL RESULTS
This section presents a series of experimental results to verify
the impact of different elements on the performance of the
system. These include pre-processing, the BI-RADS feature
set used, the choice of different feature generators, how infor-
mation is shared between different functional modules, and
so forth. Besides, we analyzed the explanations given by the
system for some typical cases, and the results corroborate
the medical knowledge in BI-RADS, and there are some new
findings.

A. DIAGNOSTIC PERFORMANCE
We divided the evaluation of BI-RADS-Net-V2 into two
parts, diagnostic performance evaluation and explanation
evaluation. The first part addresses the evaluation of the
diagnostic performance of the system, which is the core of
the system. The evaluation included the accuracy of tumor
type classification, likelihood prediction of malignancy, and
BI-RADS descriptor prediction.

As mentioned above, there are many factors in the exper-
iment that have an impact on the performance. We designed
an ablation study to evaluate the impact of the different
components in the design of BI-RADS-Net-V2. The results
are shown in Table 4 and Table 5.

The ablation study assesses the contributions by data aug-
mentation, pre-trained network parameters on the ImageNet
dataset, additional image channels with histogram equaliza-
tion and smoothing, and cropping the original images to
square-size segments. The results in Table 4 and Table 5
show that data augmentation, pre-trained weights, additional
image channels, and image cropping all contribute to the
system. Without pre-processing and trained from scratch,
the model achieved accuracy slightly lower than 80.0%,

71.5% sensitivity, 85.5% specificity, and a 73.3% F1 score on
the single channel ultrasound image. Removing the depen-
dence of features on location by cropping the images to
square increased the performance slightly to 81.7% accu-
racy, 72.6% sensitivity, 87.5% specificity, and 75.4% F1
score. Further, adding image channels created by smoothing
and histogram equalization raised the performance to 82.8%
accuracy, 74.6% sensitivity, 88.1% specificity, and 75.4%
F1 score. Instead of training from scratch, the introduction
of pre-trained weights helped the performance and achieved
86.8% accuracy, 78.9% sensitivity, 91.9% specificity, and
83.2% F1 score. Finally, the effect of data augmentation
(detailed in subsection III-C) was pronounced. The final
results indicate that the network achieved 88.9% accuracy,
83.8% sensitivity, 92.3% specificity, and 85.4% F1 score for
mass type classification and over 80% accuracy for all five
BI-RADS descriptors. Different backbone networks were
also tested, the results in Table 4 and Table 5 present that the
system with the VGG16 backbone outperformed the ResNet
and EfficientNet-B6 backbones in most aspects. Due to the
low resolution, brightness, and contrast of ultrasound images,
a simpler structured network is more likely to produce better
results.

With the hyperparameters determined, we compared the
proposed method with a group of most current meth-
ods concerning the diagnostic performance. The compared
methods include SHA-MAL [53], Ensemble Network [54],
CNNSVM [55], and Dual Sampling Network [56]. The
results are shown in Table 6.
From the results in Table 6, it can be found that the

BI-RADS-Net-V2 exhibits the highest accuracy and sen-
sitivity and the next highest but very close specificity on
the experimental data. This result demonstrates that medical
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TABLE 6. Comparison with existing breast cancer diagnosis algorithms.

TABLE 7. Pair-wise Wilcoxon signed rank test (w.r.t. BI-RADS-Net-V2) of the per image performance of tumor classification metrics.

knowledge in BI-RADS label information improves the clas-
sifier’s performance under the proposed multi-task learning
algorithm.

We used a Wilcoxon signed rank test to validate the sig-
nificance of our data, analyzing the distribution of metric
values. Accuracy, sensitivity, specificity, and F1 score were
calculated for each image, and we conducted a Wilcoxon
signed rank test to compare eachmethod against the proposed
BI-RADS-Net-V2. The results of the hypothesis testing are
presented in table 7. The cells with asterisks indicate rejection
of the null hypothesis with a P-value < 0.05 Accordingly, for
almost all metrics there is a statistically significant difference
in the median values by the test models in comparison to
BI-RADS-Net-V2.

B. SEMANTIC EXPLANATION
The semantic explanation can be evaluated from two per-
spectives. The first is correctness, i.e., the Explainer I must
accurately identify the BI-RADS descriptors. Correctness is
a fundamental prerequisite for semantic explanations to be
effective. From the results in Table 5, we found that the
accuracy of the network for shape, direction, margin, echo
pattern, and posterior features is around 85% on average,
based on the use of image cropping, enhancement, and the
introduced pre-training weights. Comparing with the doctor’s
conclusion, we believe the Explainer I output with the current
accuracy can constitute a valid explanation.

The second way to evaluate the semantic explanation
is perform case study. Figure 2 (b) and (d) give exam-
ples of the semantic explanations for benign and malignant
tumors, respectively. For the benign mass in Figure 2 (b),
the Explainer I predict the shape is oval, which is a benign
favoring feature; the margin is circumscribed, which is also
benign favoring. Besides the above two, the parallel orien-
tation, hypoechoic pattern, and enhanced posterior features
are all favoring benign. As a conclusion, Explainer I predict
the likelihood of malignancy is 0.21%, and this matches the
classifier decision and the clinical diagnosis.

Another example, Explainer I is very certain that the tumor
in Figure 2 (b) has an irregular shape and a group ofmalignant
favoring margin descriptors. Although it isn’t very certain

about the orientation (the ratio between height and width is
very close due to the irregular shape), it still gives the likeli-
hood of malignancy over 60%, which justifies the classifier
decision. In summary, by validating the correctness of the
BI-RADS descriptor prediction and the correlation between
Explainer I output and the classifier decision, we can con-
clude that Explainer I could effectively justify the classifier
decision and explains why the tumor was diagnosed as benign
or malignant.

C. QUANTITATIVE EXPLANATION
Explainer II provides a quantitative explanation based on
Explainer I. Explainer II is expected to have two essential
characteristics, correctness and explainability. The explain-
ability means the building blocks and calculations must
be understandable for the end-users. The explainability is
satisfied because Explainer II is a linear model based on
BI-RADS descriptors. Correctness has multiple meanings.
First, Explainer II should be a validated equivalent of the
classifier, which is, the difference between Explainer II and
the classifier should be minimized. And second, the expla-
nation is required to match the medical knowledge. The
correctness is evaluated using residual error, accuracy, and
relative contribution.

When evaluating Explainer II, we binarized the Explainer I
output and used 1 to indicate the presence of the BI-RADS
descriptors and 0 otherwise. Overall, 15 determinative
descriptors were used as the input of Explainer II, and the
undetermined descriptors were ignored. Besides, an extra
margin feature was added in Explainer II because the mar-
gin has the most positive correlation with the malignancy.
The descriptor indicates whether the mass margin is cir-
cumscribed, and the not circumscribed cases include at least
one from microlobulated, indistinct, angular, and spiculated.
Overall, Explainer II used 11malignant favoring and 5 benign
favoring descriptors.

1) MODEL SELECTION
Three models were investigated. The first model was a
single-layer MLP that took the Explainer I prediction as
input, and the expected output was the classifier prediction.
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FIGURE 2. (a) Conventional BUS CAD system output for a benign mass finding. The bars in the sub-figures indicate the predicted class probabilities
by the CAD systems.; (b) Output of the proposed explainable BUS CAD system for the same benign mass finding; (c) Conventional BUS CAD system
output for a malignant mass finding; (d) Output of the proposed explainable BUS CAD system for the same malignant mass finding.

There was no activation function in the model. Meanwhile,
the weights were restricted to be positive, and the bias was set
as zero. It is easy to understand that the normalized weights
are how vital the corresponding descriptor is for all train-
ing samples. The second model was a convolutional neural
network with the encoder of the network initialized using
the Imagenet weights. The model took the BUS images as
input, and the output was a weight vector for the input image.
The third model was similar to the second model, except
that the backbone network was initialized using the classifier
weights, and the parameters of the backbone network are
not trainable. Compared to the second model, Explainer II
shared the same feature with the classifier and Explainer I in
the third model. The configuration added tougher restrictions
but made the model more explainable. Five-folded cross-
validation was used for evaluation. The averaged residual
errors and deviations are presented in Figure 3.

The third model, which shared the same feature map with
the classifier, achieved significantly minimal residual error
compared to the other two models. The results proved that the
feature map played a key role when composing the classifier
output. Intuitively, the second model had fewer restrictions
and was expected to approximate the classifier better. How-
ever, the assumption is only feasible when a large number of
samples are given.

Moreover, the residual error helps us understand the behav-
iors of the classifier. The MLP model learned one weight

FIGURE 3. Residual Error using different models.

vector for all BUS images. The assumption behind the MLP
model was that the classifier always puts fixed weights on
descriptors and then integrates the contributions. The other
two models assumed that the classifier used different weight
vectors for different samples based on the input BUS images’
characteristics.

Besides the residual error, the weights learned using the
MLP model should have minor variations if the assump-
tion was valid. However, the experiments presented opposite
results. The variations of the weights are relatively large
(see Figure 4). The experimental results generally favored the
second assumption that the classifier used different weights
for different image samples.
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FIGURE 4. Average weights using MLP with errors.

TABLE 8. The correctness evaluation of explainer.

2) BACKBONE
The backbone was another essential factor. The results above
proved that using the shared feature map was the optimized
option. Thus, we only compared the models using shared fea-
ture maps. The evaluated networks included VGG16, ResNet,
and EfficientNet. The residual error, accuracy, and relative
contribution of benign and malignant masses were calculated
for each backbone. The results are presented in Table 8.

The VGG16 backbone that was initialized using classifier
weight outperformed the ResNet and EfficentNet regard-
ing the residual error, and all models achieved competitive
accuracy. Besides, the model with a VGG16 backbone had
a higher relative contribution regarding malignant masses.
This result explained the result in Table 4 that the structure
with VGG16 backbone had higher specificity and sensitivity.
Explainer II with VGG16 backbone achieved minimal resid-
ual error, competitive classification accuracy, and a higher
relative contribution on malignant masses.

3) CASE STUDY
Similar to the semantic explainer, we present a set of
representative cases as the case study of Explainer II.
Figure 5 (a) and (b) shows a true negative mass finding.
Based on Explainer II output, we could find that the cir-
cumscribed margin and the oval shape contributed the most
to the decision. Besides, the model put consideration on the
parallel orientation by a smaller portion. It could be seen that

the components matched the image feature and the biopsy
result. Another example, Figure 5 (c) and (d) present a true
positive sample. The model put heavyweights on the irregular
shape and not circumscribed margin for the tumor, and the
above two contribute the most to the final decision. These
two figures prove that Explainer II could effectively explain
the classifier output, and the explanation matched the clinical
experiences.

Meanwhile, we noticed that there were some errors
in the explanations. For the malignant mass finding in
Figure 5 (c) and (d), a small weight was put on the parallel
orientation, which is a benign favoring feature. We believe
these minor mismatches are from the BI-RADS features’
ambiguity and the training labels’ noise.

More than justifying the classifier output, another desired
expectation of the explainers is to reveal the reasons when the
classifier made a mistake. Figure 5 (e) and (f) show a false
negative example. It could be found that the classifier made
the wrong decision because that the malignant descriptors,
including complex posterior feature and echo pattern, were
undetected, and the benign favoring descriptors dominated
the decision. This reminded us to introduce more similar
samples into the training set to enhance Explainer I. Com-
paringly, Figure 5 (g) and (h) gives a more complex error,
where the tissues around the mass formed a margin-like area
that was considered as not circumscribed, and vague margin
caused uncertainty of the shape descriptor, which should
have a regular shape based on the clinicians. Thus, the mass
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FIGURE 5. Representative output on the BUSI dataset. (a) and (b) are the output and BUS image of a true negative sample; (c) and (d) are
the output and BUS image of a true positive example; (e) and (f) are the output and BUS image of a false positive example; (g) and (h) are
the output and BUS image of a false negative example.

was misclassified into the malignant class, where the
biopsy result was benign. The explanation reveals that the

image-based BI-RADS descriptors don’t cover all mass fea-
tures even confirmed by its clinical applications. In general,
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FIGURE 6. Average contributions of benign favoring descriptors.

FIGURE 7. Average contribution of malignant favoring descriptors.

the presented examples prove that Explainer II explanations
could help end-users understand the foundation of the clas-
sifier’s decision and reveal the possible reasons for making
mistakes.

Inspired by the above results, we calculate the average con-
tribution for all involved BI-RADS descriptors. The results
are presented in Figure 6 and Figure 7. The average con-
tribution shows that the most benign favoring descriptors
present strong distinguishing power, including the parallel
orientation, oval shape, circumscribed margin. The anechoic
and hyperechoic echo patterns didn’t affect much during
the process. The malignant favoring descriptors, not circum-
scribed margin, shadowing posterior feature, and indistinct
and microlobulated margin present reliable distinguishing
power. The rest descriptors contributed similarly to both
categories.

To summarize, we posit that explainability is task-
dependent and audience-dependent, and therefore, requires
ML models designed for specific tasks and targeted to end-
users. For instance, the practical relevance of our proposed
explainable model for BUS would diminish for other tasks
because they employ different image features for represen-
tation learning. Likewise, our approach may not provide
adequate explainability to a data scientist without medical
knowledge or patients. In this aspect, our model is designed
for providing explanations to and assisting BUS clinicians.

V. CONCLUSION AND FUTURE WORK
This paper designs an interpretable, deep network-based
breast ultrasound diagnostic system, BI-RADS-Net-V2. This
system provides reliable and efficient interpretation for
end-users by introducing medical expertise in BI-RADS. The
system has a high accuracy and is more likely to gain the trust
of end-users, which facilitates the diffusion of the automated
diagnostic system. It promotes the diffusion of early universal
breast cancer screening. The experimental results demon-
strate that the introduction of BI-RADS can enhance the
generalization ability of the diagnosticmodel and improve the
accuracy of the model under a multi-task learning framework.
In addition, systematic BI-RADS descriptor prediction can
effectively prove the correctness of the discriminative model.
The quantitative explanation based on knowledge distillation,
on the other hand, can analyze the causes of errors in the
discriminative model and indicate the direction to improve
the model performance.

The further work includes further expanding the BUS
image dataset and collecting BI-RADS description sub-
level labels. The analysis of existing samples is also used
to increase the interpretability of the model by cross-
corroborating with clinical BI-RADS diagnoses.
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