CS 502 – Directed Studies Course: Adversarial Machine Learning

Total Credits: 3

Instructor: Alex Vakanski, vakanski@uidaho.edu

Semester: Fall 2020 (August 24 – December 18, 2020)

Hybrid course

Course Description

The course introduces students to adversarial attacks and defenses on machine learning models. The particular focus is on adversarial examples in deep learning models, due to its prevalence in modern machine learning applications. Covered topics include evasion attacks against white-box and black-box machine learning models, data poisoning attacks, privacy attacks, defense strategies against common adversarial attacks, generative adversarial networks, and robust machine learning models. The course also provides an overview of explainable machine learning and self-supervised machine learning, with an emphasis on deep learning models.

This course is delivered in a hybrid method. The dates for class meetings are indicated in the Course Outline section. In preparation for the class meetings, the students are expected to read the papers listed as required reading in the Course Outline section.

Textbook

There is no required textbook. The required readings for each week are listed in the Course Outline section.

Learning Outcomes

- 1. Explain the different types of adversarial attacks against machine learning models.
- 2. Describe the approaches for improved robustness of machine learning models against adversarial attacks.
- 3. Implement adversarial attacks and defense methods against adversarial attacks on generalpurpose image datasets and medical image datasets.
- 4. Understand the importance of explainability and self-supervised learning in machine learning.

Prerequisites

Machine Learning or Deep Learning

Grading

Four homework assignments, each worth 25 marks.

Date	Topics, Readings, Assignments
Wednesday	Lecture 1 (zoom meeting): Introduction to Adversarial Machine
August 26	Learning
Wednesday	Lecture 2 (zoom meeting): Deep Learning Overview
September 2	
Wednesday	Lecture 3: Adversarial Machine Learning in Medical Image Processing
September 9	Required readings:

Course Outline (Tentative)

	1. Ma et al. (2019) Understanding Adversarial Attacks on Deep Learning
	Based Medical Image Analysis Systems (pdf)
	2. Paschali et al. (2018) Generalizability vs. Robustness: Adversarial
	Examples for Medical Imaging (<u>pdf</u>)
	Optional readings:
	1. Finlayson (2019) Adversarial Attacks against Medical Deep Learning
	Systems (<u>pdf</u>)
Wednesday September 16	Lecture 4 (zoom meeting): Mathematics for Machine Learning
	Lecture 5: Evasion Attacks Against Machine Learning Models
	Required readings:
	1. Carlini et al. (2017) Towards Evaluating the Robustness of Neural
	2 Xiao et al. (2018) Spatially Transformed Adversarial Examples (pdf)
Wednesday	Ontional readings:
Sentember 23	1 Goodfelow et al (2014) Explaining and Harnessing Adversarial Examples
	(pdf)
	2. Szagedy et al. (2014) Intriguing Properties of Neural Networks (pdf)
	3. Eykholt et al. (2018) Robust Physical-World Attacks on Deep Learning
	Models (<u>pdf</u>)
	Due: Assignment 1
	Lecture 6 (zoom meeting): Evasion Attacks Against Blackbox Models
	Required readings:
	1. Brendel et al. (2017) Decision-Based Adversarial Attacks: Reliable Attacks
Madaaaday	Against Black-Box Machine Learning Models (pdf)
Vveunesuay	2. Bhagoji et al. (2017) Exploring the Space of Black-box Attacks on Deep
September 30	Neural Networks (<u>pdf</u>)
	Optional readings:
	1. Papernot et al. (2016) Transferability in Machine Learning: from
	Phenomena to Black-Box Attacks using Adversarial Samples (pdf)
	Lecture 7: Poisoning Attacks Against Machine Learning Models
	Required readings:
	1. Liu et al. (2018) Trojaning Attack on Neural Networks (pdf)
	2. Shafahi et al. (2018) Poison Frogs! Targeted Clean-Label Poisoning
	Attacks on Neural Networks (pdf)
vvednesday	Optional readings:
October 7	1. Biggio et al. (2012) Poisoning Attacks against Support Vector Machines
	2. Jagielski et al. (2018) Manipulating Machine Learning: Poisoning Attacks
	and Countermeasures for Regression Learning (pdf)
	3. Mei et al. (2015) Using Machine Teaching to Identify Optimal Training-Set
	Attacks on Machine Learners (pdf)
	Lecture 8 (zoom meeting – presented by Matt): Defenses Against
vvednesday	Poisoning Attacks
October 14	Required readings:

	 Wang et al. (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks (pdf)
	 Gu et al. (2019) BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain (pdf)
	Optional readings:
	1. Steihhardt et al. (2017) Certified Defenses for Data Poisoning Attacks (pdf)
	2. Liu et al. (2016) Robust High-Dimensional Linear Regression (pdf)
	3. Munoz-Gonzalez et al. (2017) Towards Poisoning of Deep Learning
	Algorithms with Back-Gradient Optimization (pdf)
	Due: Assignment 2
	Lecture 9: Privacy Attacks Against Machine Learning Models
	Required readings:
	1. Shokri et al. (2018) Membership Inference Attacks Against Machine
Wednesday	Learning Models (pdf)
October 21	Lens (ndf)
	Optional readings:
	1. Hitai et al. (2017) Deep Models Under the GAN: Information Leakage from
	Collaborative Deep Learning (pdf)
	Lecture 10 (zoom meeting - presented by Shoukun): Generative
	Adversarial Networks for AML
	Required readings:
	1. Xiao et al. (2018) Generating Adversarial Examples with Adversarial
	Networks (<u>pdf</u>)
Madaaaday	2. Samangouei et al. (2018) Defense-GAN: Protecting Classifiers Against
October 29	Adversarial Attacks Using Generative Models (pdf)
October 20	Optional readings:
	1. Afora et al. (2017) Generalization and Equilibrium in Generative
	2 Arora et al. (2017) Theoretical limitations of Encoder-Decoder GAN
	architectures (pdf)
	3. Yang (2020) Defending against GAN-based Deepfake Attacks via
	Transformation-aware Adversarial Faces (pdf)
	Lecture 11: Defenses Against Adversarial Attacks
	Required readings:
	1. Xu et al. (2019) Adversarial Attacks and Defenses in Images, Graphs and
Wednesday November 4	Text: A Review (<u>pdf</u>)
	2. Tramer et al. (2018) Ensemble Adversarial Training: Attacks and
	Detenses (<u>par</u>)
	Optional readings:
	Adversarial Attacks (pdf)
	2. Papernot et al. (2016) Distillation as a Defense to Adversarial Perturbations
	against Deep Neural Networks (pdf)
	3. Meng et al. (2017) MagNet: a Two-Pronged Defense against Adversarial
	Examples (<u>pdf</u>)

	Lecture 12 (zoom meeting – presented by Haotian): Defenses Against
	Adversarial Attacks – Part II
	Required readings:
	1. Raghunathan et al. (2018) Certified Defenses against Adversarial
	Examples (<u>pdf</u>)
	2. Zhang et al. (2019) Theoretically Principles Trade-off between
Wednesday	Robustness and Accuracy (<u>poi</u>)
November 11	1 Jamb et al. (2019) Fortified Networks: Improving the Pobustness of Deep
	1. Lamb et al. (2016) Fortilied Networks. Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations (pdf)
	2. Gowal et al. (2019) On the Effectiveness of Interval Bound Propagation for
	Training Verifiably Robust Models (<u>pdf</u>)
	3. Wong et al. (2018) Provable Defenses against Adversarial Examples via
	the Convex Outer Adversarial Polytope (pdf)
	Due: Assignment 3
	Lecture 13: Defenses Against Privacy Attacks
	Required readings:
	1. Papernot et al. (2018) Scalable Private Learning with PATE (pdf)
Wadaaaday	2. Bindschaedler et al. (2016) Plausible Deniability for Privacy-Preserving
Neumesuay	Data Synthesis (par)
NOVERTIDET TO	1 Abodi et al. (2016) Deep Learning with Differential Briveou (adf)
	Abadi et al. (2016) Deep Learning with Differential Privacy (<u>por</u>) Dwork et al. (2018) Privacy-preserving Prediction (pdf)
	3 Nasr et al. (2018) Machine Learning with Membership Privacy using
	Adversarial Regularization (pdf)
	Lecture 14 (zoom meeting): Explainability in Machine Learning
	Required readings:
	1. Belle et al. (2020) Principles and Practice of Explainable Machine
	Learning (<u>pdf</u>)
Wednesday	2. Sundararajan et al. (2017) Axiomatic Attribution for Deep Networks (pdf)
December 2	Optional readings:
	1. Arrieta et al. (2019) Explainable Artificial Intelligence (XAI): Concepts,
	2 Coogle (2010) AL Explainability Whitepaper (pdf)
	2. Google (2019) Al Explainability Whitepaper (put) 3. Montayon et al. (2017) Explaining Nonlinear Classification Decisions with
	Deep Taylor Decomposition (pdf)
	Lecture 15: Robustness in Machine Learning
	Required readings:
	1. Ilvas et al. (2019) Adversarial Examples Are Not Bugs, They Are Features
Wednesday December 9	(<u>pdf</u>)
	2. Weng et al. (2018) Evaluating the Robustness of Neural Networks: An
	Extreme Value Theory Approach (<u>pdf</u>)
	Optional readings:
	1. Yang et al. (2020) A Closer Look at Accuracy vs. Robustness (pdf)
	Due: Assignment 4
Wednesday	Lecture 16 (zoom meeting): Self-supervised Learning

December 16	Required readings:
	1. Chen et al. (2020) A Simple Framework for Contrastive Learning of Visual
	Representations (pdf)
	2. Jing et al. (2019) Self-supervised Visual Feature Learning with Deep Neural
	Networks: A Survey (<u>pdf</u>)
	Optional readings:
	1. Oord et al. (2018) Representation Learning with Contrastive Predictive
	Coding (pdf)