G	iANs	s for
	A№	1L

Shoukun Sun

Introduction of GANs Basic

GANs in AML

Attack Throug GANs

Defense Through GANs

GANs for AML

Shoukun Sun

October 28, 2020

GANs for AML

Shoukun Sun

Introduction of GANs Basic Variants

1 Introduction of GANs

- Basic
- Variants

2 GANs in AML

- Attack Through GANs
- Defense Through GANs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generative Modeling

GANs for AML

Shoukun Sun

Introduction of GANs

Basic

Variants

GANs in AML

Attack Throug GANs

Defense Through GANs Question: can we build a model to approximate a data distribution?

Formally we are given x ~ p_{data}(x) and a finite sample from this distribution

$$X = \{x | x \sim p_{data}(x)\}, |X| = n$$

Problem: can we find a model such that

$$p_{model}(x; heta) pprox p_{data}(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic of GANs

GANs for AML

Introduction of GANs

Basic

Variants

GANs in AML

Attack Through GANs

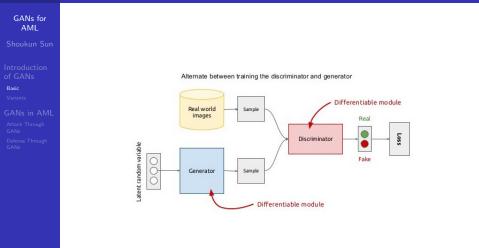
Defense Through GANs Generative Adversarial Networks (GANs) is a framework for estimating generative models via an adversarial process. This process simultaneously train two models:

- a generative model *G* that captures the data distribution;
- a discriminative model *D* that judges if a sample comes from training data rather than *G*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

These two model contest with each other in the zero-sum game.

Training GANs



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Training GANs

GANs for AML

Shoukun Sun

Introduction of GANs

Basic

Variants

GANs in AML

Attack Throug GANs

Defense Through GANs **Algorithm 1** Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

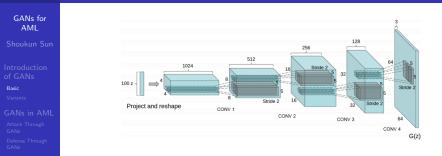
$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

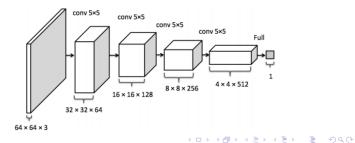
end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Training GANs





Examples

GANs for AML

Shoukun Sun

Introduction of GANs

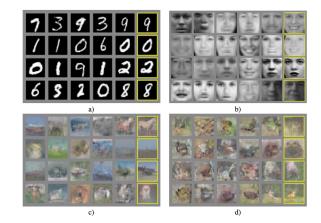
Basic

Variants

GANs in AML

Attack Throu GANs

Defense Through GANs



The application of GANs is not limited to images, but can also be extended to text and music.

Challenges of Training GANs

GANs for AML

Shoukun Sun

Introduction of GANs

Basic

Variants

GANs in AML

Attack Through GANs

Defense Through GANs

- Vanishing Gradient
 If the D is too good, G training can fail due to vanishing gradients.
- Mode Collapse

The generator produces the same output (or a small set of outputs).

 Failure to Converge GANs frequently fail to converge as its complexity.

Figure: Mode Collapse

(日) (四) (日) (日) (日)

Pix2pix

GANs for AML

Shoukun Sun

Introduction of GANs

Variants

GANs in AML

Attack Throug GANs

Defense Through GANs

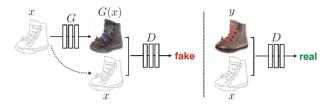
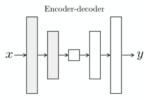
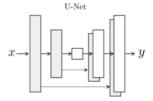


Figure: Pix2pix process



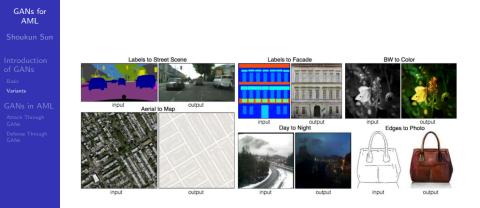


ヘロト 人間ト 人間ト 人間ト

æ

Figure: Generator

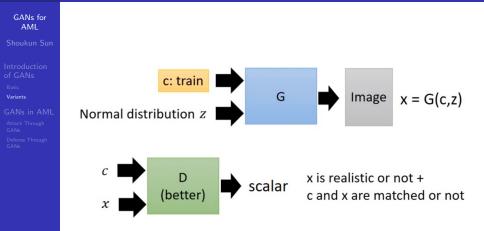
Pix2pix Examples



Online demo: https://affinelayer.com/pixsrv/

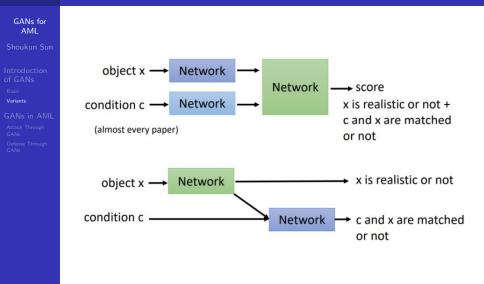
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Conditional GAN



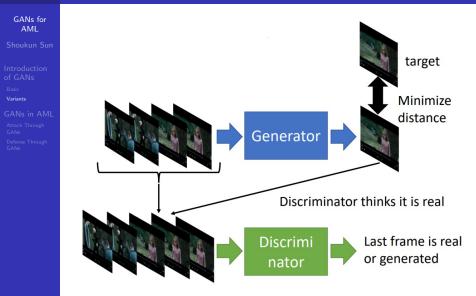
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conditional GAN Architecture



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Conditional GAN Application



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

StyleGAN

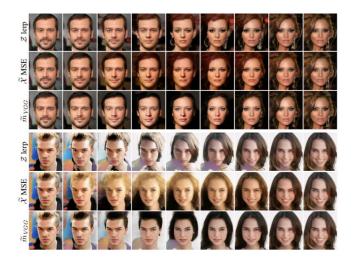
GANs for AML

Shoukun Sun

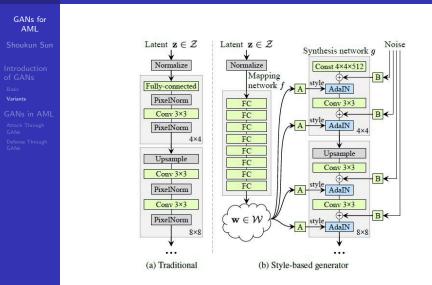
Introduction of GANs Basic Variants

GANs in AML

- Attack Throug GANs
- Defense Through GANs



StyleGAN



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

AdvGAN

GANs for AML

Shoukun Sun

Introduction of GANs Basic Variants

GANs in AML

Attack Through GANs

Defense Through GANs

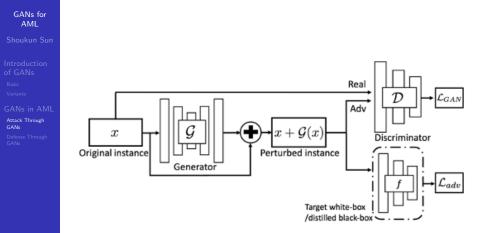
- Title: Generating Adversarial Examples with Adversarial Networks.
- Semi-whitebox;black-box

Semi-whitebox: once the generator is trained, it can generate perturbations efficiently for any instance, no need to access the classifier.

Time consuming while training; efficiently while generating perturbations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Training AdvGAN



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Results of AdvGAN

GANs for AML

Shoukun Sun

Introduction of GANs Basic Variants

GANs in AML

Attack Through GANs

Defense Through GANs

00000	0 0 vini@-600	0 2 2 3	556BRA
11274	エキキオ	A17.7	+ \$ \$ 7 \$ \$
azaza	AAAAA	2223	みをひまるり
ゆをひろう	53333	かみみろ	矢万万百万多
944444	44499	4444	4 4 4 4 4 4 4
02255	55555	8555	556389
66666	66566	6660	666666
22777	テタファフ	委主主主	苄苯苯子辛辛
88888	88888	8883	888888
99999	99999	9999	9999999

Results of AdvGAN

GANs for AML

Shoukun Sun

Basic

Variants

GANs in AML

Attack Through GANs

Defense Through GANs

	FGSM	Opt.	Trans.	AdvGAN
Run time	0.06s	>3h	-	<0.01s
Targeted Attack	✓	~	Ens.	~
Black-box Attack			~	~

Table 1: Comparison with the state-of-the-art attack methods. Run time is measured for generating 1,000 adversarial instances during test time. Opt. represents the optimization based method, and Trans. denotes black-box attacks based on transferability.

	MNIST(%)			CIFAR-10(%)		
Model	A	В	C	ResNet	Wide ResNet	
Accuracy (p)	99.0	99.2	99.1	92.4	95.0	
Attack Success Rate (w)	97.9	97.1	98.3	94.7	99.3	
Attack Success Rate (b-D)	93.4	90.1	94.0	78.5	81.8	
Attack Success Rate (b-S)	30.7	66.6	87.3	10.3	13.3	

Table 2: Accuracy of different models on pristine data, and the attack success rate of adversarial examples generated against different models by AdvGAN on MNIST and CIFAR-10. p: pristine test data; w: semi-whitebox attack; b-D: black-box attack with dynamic distillation strategy: b-S: black-box attack with attaci distillation strategy.

Data	Model	Defense	FGSM	Opt.	AdvGAN
		Adv.	4.3%	4.6%	8.0%
	A	Ens.	1.6%	4.2%	6.3%
Μ		Iter.Adv.	4.4%	2.96%	5.6%
N		Adv.	6.0%	4.5%	7.2%
I	В	Ens.	2.7%	3.18%	5.8%
S		Iter.Adv.	9.0%	3.0%	6.6%
Т		Adv.	2.7%	2.95%	18.7%
	C	Ens.	1.6%	2.2%	13.5%
		Iter.Adv.	1.6%	1.9%	12.6%
С		Adv.	13.10%	11.9%	16.03%
I	ResNet	Ens.	10.00%	10.3%	14.32%
F		Iter.Adv	22.8%	21.4%	29.47%
Α	Wide	Adv.	5.04%	7.61%	14.26%
R	ResNet	Ens.	4.65%	8.43%	13.94 %
10	Real vet	Iter.Adv.	14.9%	13.90%	20.75%

Table 3: Attack success rate of adversarial examples generated by AdvGAN in semi-whitebox setting, and other white-box attacks under defenses on MNIST and CIFAR-10.

		MNI	ST	CIFAR-10			
Defense	FGSM	Opt.	AdvGAN	FGSM	Opt.	AdvGAN	
			11.5%	13.58%	10.8%	15.96%	
Ens.	2.5%	3.4%				12.47%	
Iter.Adv.	2.4%	2.5%	12.2%	22.96%	21.70%	24.28%	

Table 4: Attack success rate of adversarial examples generated by different black-box adversarial strategies under defenses on MNIST and CIFAR-10

Defense-GAN

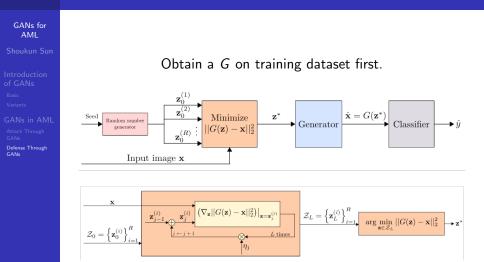
GANs for AML

- Shoukun Sun
- Introduction of GANs Basic Variants
- GANs in AML
- Attack Through GANs
- Defense Through GANs

- Title: Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
- 'denoise' adversarial examples
- Defense-GAN is trained to model the distribution of unperturbed images.
- Defense-GAN can be used with any classification model and does not modify the classifier structure or training procedure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Training Defense-GAN



Results of Defense-GAN

GANs for AML

Shoukun Sun

Introduction of GANs Basic

Variants

GANs in AML

Attack Throug GANs

Defense Through GANs Table 1: Classification accuracies of different classifier and substitute model combinations using various defense strategies on the MNIST dataset, under FGSM black-box attacks with $\epsilon = 0.3$. Defense-GAN has L = 200 and R = 10.

Classifier/	No	No	Defense-	Defense-	MagNet	Adv. Tr.	Adv. Tr.
Substitute	Attack	Defense	GAN-Rec	GAN-Orig	Magnet	$\epsilon = 0.3$	$\epsilon = 0.15$
A/B	0.9970	0.6343	0.9312	0.9282	0.6937	0.9654	0.6223
A/E	0.9970	0.5432	0.9139	0.9221	0.6710	0.9668	0.9327
B/B	0.9618	0.2816	<u>0.9057</u>	0.9105	0.5687	0.2092	0.3441
B/E	0.9618	0.2128	0.8841	0.8892	0.4627	0.1120	0.3354
C/B	0.9959	0.6648	0.9357	0.9322	0.7571	0.9834	0.9208
C/E	0.9959	0.8050	0.9223	0.9182	0.6760	0.9843	0.9755
D/B	0.9920	0.4641	0.9272	0.9323	0.6817	0.7667	0.8514
D/E	0.9920	0.3931	0.9164	0.9155	0.6073	0.7676	0.7129

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Results of Defense-GAN

GANs for AML

Shoukun Sun

Introduction of GANs

Basic

Variants

GANs in AML

Attack Throug GANs

Defense Through GANs Table 4: Classification accuracies of different classifier models using various defense strategies on the MNIST (top) and F-MNIST (bottom) datasets, under FGSM, RAND+FGSM, and CW white-box attacks. Defense-GAN has L=200 and R=10.

Attack	Classifier Model	No Attack	No Defense	Defense- GAN-Rec	MagNet	Adv. Tr. $\epsilon = 0.3$
	A	0.997	0.217	0.988	0.191	0.651
FGSM	В	0.962	0.022	0.956	0.082	0.060
$\epsilon = 0.3$	C	0.996	0.331	0.989	0.163	0.786
	D	0.992	0.038	0.980	0.094	0.732
	A	0.997	0.179	0.988	0.171	0.774
RAND+FGSM	В	0.962	0.017	0.944	0.091	0.138
$\epsilon=0.3,\alpha=0.05$	C	0.996	0.103	0.985	0.151	0.907
	D	0.992	0.050	0.980	0.115	0.539
	A	0.997	0.141	0.989	0.038	0.077
CW	В	0.962	0.032	0.916	0.034	0.280
ℓ_2 norm	C	0.996	0.126	0.989	0.025	0.031
-	D	0.992	0.032	0.983	0.021	0.010

Attack	Classifier Model	No Attack	No Defense	Defense- GAN-Rec	MagNet	Adv. Tr. $\epsilon = 0.3$
	A	0.934	0.102	0.879	0.089	0.797
FGSM	B	0.747	0.102	0.629	0.168	0.136
$\epsilon = 0.3$	C	0.933	0.139	0.896	0.110	0.804
	D	0.892	0.082	0.875	0.099	0.698
	A	0.934	0.102	0.888	0.096	0.447
RAND+FGSM	В	0.747	0.131	0.661	0.161	0.119
$\epsilon = 0.3, \alpha = 0.05$	C	0.933	0.105	0.893	0.112	0.699
	D	0.892	0.091	0.862	0.104	0.626
	A	0.934	0.076	0.896	0.060	0.157
CW	B	0.747	0.172	0.656	0.131	0.118
ℓ_2 norm	C	0.933	0.063	0.896	0.084	0.107
	D	0.892	0.090	0.875	0.069	0.149

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙