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Lecture 16

Self-Supervised Learning
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Lecture Outline

• Self-supervised learning

 Motivation

 Self-supervised learning versus other machine learning techniques

• Image-based approaches

 Geometric transformation recognition (image rotation)

 Patches (relative patch position, image jigsaw puzzle)

 Generative modeling (context encoders, image colorization, cross-channel prediction, 
image super-resolution)

 Automated label generation (deep clustering, synthetic imagery)

 Contrastive learning (CPC, SimCLR, other contrastive approaches)

• Video-based approaches

 Frame ordering, tracking moving objects, video colorization

• Approaches for natural language processing
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Supervised vs Unsupervised Learning

• Supervised learning – learning with labeled data

 Approach: collect a large dataset, manually label the data, train a model, deploy

 It is the dominant form of ML at present

 Learned feature representations on large datasets are often transferred via pre-trained 
models to smaller domain-specific datasets 

• Unsupervised learning – learning with unlabeled data

 Approach: discover patterns in data either via clustering similar instances, or density 
estimation, or dimensionality reduction …  

• Self-supervised learning – representation learning with unlabeled data

 Learn useful feature representations from unlabeled data through pretext tasks

 The term “self-supervised” refers to creating its own supervision (i.e., without 
supervision, without labels)

 Self-supervised learning is one category of unsupervised learning
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Self-Supervised Learning

• Self-supervised learning example

 Pretext task: train a model to predict the rotation degree of rotated images with cats 
and dogs (we can collect million of images from internet, labeling is not required)

 Downstream task: use transfer learning and fine-tune the learned model from the 
pretext task for classification of cats vs dogs with very few labeled examples

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning



6

CS 502, Fall 2020

Self-Supervised Learning

• One more depiction of the general pipeline for self-supervised learning is shown 
in the figure

 For the downstream task, re-use the trained ConvNet base model, and fine-tune the 
top layers on a small labeled dataset

Picture from: Jing and Tian (2019) Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
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Self-Supervised Learning

• Why self-supervised learning?

 Creating labeled datasets for each task is an expensive, time-consuming, tedious task

o Requires hiring human labelers, preparing labeling manuals, creating GUIs, creating storage 
pipelines, etc.

o High quality annotations in certain domains can be particularly expensive (e.g., medicine)

 Self-supervised learning takes advantage of the vast amount of unlabeled data on the 
internet (images, videos, text)

o Rich discriminative features can be obtained by training models without actual labels

 Self-supervised learning can potentially generalize better because we learn more about 
the world

• Challenges for self-supervised learning

 How to select a suitable pretext task for an application 

 There is no gold standard for comparison of learned feature representations

 Selecting a suitable loss functions, since there is no single objective as the test set 
accuracy in supervised learning
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Self-Supervised Learning

• Self-supervised learning versus unsupervised learning 

 Self-supervised learning (SSL)

o Aims to extract useful feature representations from raw unlabeled data through pretext tasks

o Apply the feature representation to improve the performance of downstream tasks

 Unsupervised learning

o Discover patterns in unlabeled data, e.g., for clustering or dimensionality reduction

 Note also that the term “self-supervised learning” is sometimes used interchangeably 
with “unsupervised learning”

• Self-supervised learning versus transfer learning 

 Transfer learning is often implemented in a supervised manner

o E.g., learn features from a labeled ImageNet, and transfer the features to a smaller dataset

 SSL is a type of transfer learning approach implemented in an unsupervised manner

• Self-supervised learning versus data augmentation

 Data augmentation is often used as a regularization method in supervised learning

 In SSL, image rotation of shifting are used for feature learning in raw unlabeled data 
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Image-Based Approaches

• Image based approaches

 Geometric transformation recognition

o Image rotation

 Patches

o Relative patch position, image jigsaw puzzle

 Generative modeling

o Context encoders, image colorization, cross-channel prediction, image super-resolution

 Automated label generation

o Deep clustering, synthetic imagery

 Contrastive learning

o Contrastive predictive coding (CPC), SimCLR, and other contrastive approaches
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Image Rotation

• Geometric transformation recognition 

 Gidaris (2018) - Unsupervised Representation Learning by Predicting Image Rotations

• Training data: images rotated by a multiple of 90° at random

 This corresponds to four rotated images at 0°, 90°, 180°, and 270°

• Pretext task: train a model to predict the rotation degree that was applied

 Therefore, it is a 4-class classification problem

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1803.07728
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Image Rotation

• A single ConvNet model is used to predict one of the four rotations

 The model needs to understand the location and type of the objects in images to 
determine the rotation degree
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Image Rotation

• Evaluation on the PASCAL VOC dataset for classification, detection, and 
segmentation tasks

 The model (RotNet) is trained in SSL manner, and fine-tuned afterwards

 RotNet outperformed all other SSL methods

 The learned features are not as good as the supervised learned features based on 
transfer learning from ImageNet, but they demonstrate a potential

Supervised feature learning

Proposed self-supervised  
feature learning
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Relative Patch Position

• Relative patch position for context prediction

 Dorsch (2015) Unsupervised Visual Representation Learning by Context Prediction

• Training data: multiple patches extracted from images

• Pretext task: train a model to predict the relationship between the patches

 E.g., predict the relative position of the selected patch below (i.e., position # 7)

o For the center patch, there are 8 possible neighbor patches (8 possible classes)

https://arxiv.org/abs/1505.05192
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Relative Patch Position

• The patches are inputted into two ConvNets with shared weights

 The learned features by the ConvNets are concatenated

 Classification is performed over 8 classes (denoting the 8 possible neighbor positions)

• The model needs to understand the spatial context of images, in order to predict 
the relative positions between the patches

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Relative Patch Position

• The training patches are sampled in the following way:

 Randomly sample the first patch, and consider it the middle of a 3x3 grid

 Sample from 8 neighboring locations of the first central patch (blue patch) 

• To avoid the model only catching low-level trivial information:

 Add gaps between the patches

 Add small jitters to the positions of the patches

 Randomly downsample some patches to reduced resolution, and then upsample them

 Randomly drop 1 or 2 color channels for some patches
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Relative Patch Position

• For instance, predict the position of patch # 3 with respect to the central patch

• Input: two patches

• Prediction:  Y = 3
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Relative Patch Position

• Example: predict the position of patch B with respect to patch A
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Image Jigsaw Puzzle

• Predict patches position in a jigsaw puzzle

 Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw 
Puzzles

• Training data: 9 patches extracted in images (similar to the previous approach) 

• Pretext task: predict the positions of all 9 patches

 Instead of predicting the relative position of only 2 patches, this approach uses the 
grid of 3×3 patches and solves a jigsaw puzzle

https://arxiv.org/abs/1603.09246
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Image Jigsaw Puzzle

• A ConvNet model passes the individual patches through the same Conv layers 
that have shared weights

 The features are combined and passed through fully-connected layers

 Output is the positions of the patches (i.e., the shuffling permutation of the patches)

 The patches are shuffled according to a set of 64 predefined permutations

o Namely, for 9 patches, in total there are 362,880 possible puzzles

o The authors used a small set of 64 shuffling permutations with the highest hamming distance
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Image Jigsaw Puzzle

• The model needs to learn to identify how parts are assembled in an object, 
relative positions of different parts of objects, and shape of objects

 The learned representations are useful for downstream tasks in classification and 
object detection

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Context Encoders

• Predict missing pieces, also known as context encoders, or inpainting

 Pathak (2016) Context Encoders: Feature Learning by Inpainting

• Training data: remove a random region in images

• Pretext task: fill in a missing piece in the image

 The model needs to understand the content of the entire image, and produce a 
plausible replacement for the missing piece

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1604.07379
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Context Encoders

• The initially considered model uses an encoder-decoder architecture 

 The encoder and decoder have multiple Conv layers, and a shared central fully-
connected layer

 The output of the decoder is the reconstructed input image

 A Euclidean ℓ2 distance is used as the reconstruction loss function ℒrec
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Context Encoders

• The authors found that the reconstruction loss alone couldn't capture fine details 
in the missing region

• Improvement was achieved by adding a GAN branch, where the generator of the 
GAN learns to reconstruct the missing piece

 The overall loss function is a weighted combination of the reconstruction and the 
GAN losses, i.e., ℒ = 𝜆recℒrec+𝜆ganℒgan
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Context Encoders

• The joint loss function ℒ = 𝜆recℒrec+𝜆ganℒgan resulted in improved prediction of 

the missing piece

Input image Encoder-decoder 
with reconstruction 

loss ℒrec

GAN with loss ℒgan Joint loss 
ℒ = 𝜆recℒrec+
𝜆ganℒgan
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Context Encoders

• Additional examples comparing the used loss functions

 The joint loss produces the most realistic images
Input image Reconstruction loss ℒrec GAN loss ℒgan Joint loss
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Context Encoders

• The removed regions can have different shapes

 Random region and random block masks outperformed the central region features

Central region Random block Random region
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Context Encoders

• Evaluation on PASCAL VOC for several downstream tasks 

 The learned features by the context encoder are not as good as supervised features

 But are comparable to other unsupervised methods, and perform better than 
randomly initialized models

o E.g., over 10% improvement for segmentation over random initialization
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Image Colorization

• Image colorization

 Zhang (2016) Colorful Image Colorization

• Training data: pairs of color and grayscale images

• Pretext task: predict the colors of the objects in grayscale images

 The model needs to understand the objects in images and paint them with a suitable 
color 

 Right image: learn that the sky is blue, cloud is white, mountain is green

Sky is blue
Cloud is white
Mountain is green

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1603.08511
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Image Colorization

• Input examples



30

CS 502, Fall 2020

Image Colorization

• An encoder-decoder architecture with convolutional layers is used 

 ℓ2 loss between the actual color image and the predicted colorized image is used for 
training

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Cross-channel Prediction

• Split-brain autoencoder or cross-channel prediction

 Zhang (2017) Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel 
Prediction

• Training data: remove some of the image color channels

• Pretext task: predict the missing channel from the other image channels

 E.g., use the grayscale channel to predict the color channels in the image

https://arxiv.org/abs/1611.09842
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Cross-channel Prediction

• The input image (e.g., tomato) is split into grayscale and color channels 

 Two encoder-decoders are trained: F1 predicts the color channels from the gray 
channel, and F2 predicts the gray channel from the color channels

 The two predicted images are combined to reconstruct the original image

o A loss function (e.g., cross-entropy) is selected to minimize the distance between the original 
and reconstructed image
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Cross-channel Prediction

• The general model is shown below, in comparison to a traditional autoencoder

 Any combinations of image channels X1 and X2 can be used with this SSL approach for 
training and reconstruction

 The reconstructed images are denoted with a “hat” notation ( ෠𝑋1, ෠𝑋2)
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Cross-channel Prediction

• It is also possible the split-brain autoencoder to predict HHA depth channels in 
images

 The HHA format encodes three channels for each pixel, including the horizontal 
disparity, height above ground, and angle with gravity 

• The two autoencoders predict depth from color and color from depth, and 
combine their outputs into a single representation
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Image Super-Resolution

• Image Super-Resolution

 Ledig (2017) Photo-Realistic Single Image Super-Resolution Using a Generative 
Adversarial Network

• Training data: pairs of regular and downsampled low-resolution images

• Pretext task: predict a high-resolution image that corresponds to a downsampled
low-resolution image

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1609.04802
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Image Super-Resolution

• SRGAN (Super-Resolution GAN) is a variant of GAN for producing super-
resolution images

 The generator takes a low-resolution image and outputs a high-resolution image using 
a fully convolutional network

 The discriminator uses a loss function that combines L2 and content loss to distinguish 
between the actual (real) and generated (fake) super-resolution images

o Content loss compares the feature content between the actual and predicted images

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Deep Clustering

• Deep clustering of images

 Caron (2019) Deep Clustering for Unsupervised Learning of Visual Features

• Training data: clusters of images based on the content

 E.g., clusters on mountains, temples, etc. 

• Pretext task: predict the cluster to which an image belongs

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1807.05520
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Deep Clustering

• The architecture for SSL is called deep clustering

 The model treats each cluster as a separate class

 The output is the number of the cluster (i.e., cluster label) for an input image

 The authors used k-means for clustering the extracted feature maps

• The model needs to learn the content in the images in order to assign them to the 
corresponding cluster

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Synthetic Imagery

• Synthetic imagery

 Ren (2017) Cross-Domain Self-supervised Multi-task Feature Learning using Synthetic 
Imagery

• Training data: synthetic images generated by game engines and real images

 Graphics engines in games can produce realistically looking synthetic images

• Pretext task: predict whether an input image is synthetic or real, based on 
predicted depth, surface normal, and instance contour maps

 The learned features are useful for segmentation and classification downstream tasks

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1711.09082
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Synthetic Imagery

• The model has weight-shared ConvNets that are trained on both real and 
synthetic images 

 The discriminator learns to distinguish real from synthetic images, based on the 
surface normal, depth, and edge maps

 The model is trained in an adversarial manner (as in GANs), by simultaneously 
improving both the generator and discriminator

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Synthetic Imagery

• Learned depth, surface normal, and instance contour maps, and the 
corresponding ground truth in synthetic images
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Contrastive Predictive Coding

• Contrastive Predictive Coding (CPC)

 Van der Oord (2018) Representation Learning with Contrastive Predictive Coding

• Training data: extracted patches from input images

• Pretext task: predict the order for a sequence of patches using contrastive 
learning

 E.g., how to predict the next (future) patches based on encoded information of 
previous (past) patches in the image 

• The approach was implemented in different domains: speech audio, images, 
natural language, and reinforcement learning

Picture from: William Falcon – A Framework for Contrastive Self-Supervised Learning and Designing a New Approach

https://arxiv.org/abs/1807.03748
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Contrastive Predictive Coding

• Contrastive learning is based on grouping similar examples together

 E.g., cluster the shown images into groups of similar images

• Noise-Contrastive Estimation (NCE) loss is commonly used in contrastive 
learning

 The NCE loss minimizes the distance between similar images (positive examples) and 
maximizes the distance to dissimilar images (negative examples)

 Other used terms are InfoNCE loss, or contrastive cross-entropy loss

 (A forthcoming slide explains the NCE loss in more details)

Maximize 
distance

Picture from: William Falcon – A Framework for Contrastive Self-Supervised Learning and Designing a New Approach
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Contrastive Predictive Coding

• For an input image resized to 256×256 pixels, the authors extracted a grid of 7×7 
patches of size 64×64 pixels with 50% overlap between the patches

 Therefore, there are 49 overlapping patches in total for each image

Picture from: Pieter Abbeel, Lecture 7 – Self-Supervised Learning
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Contrastive Predictive Coding

• An encoder genc is used to project each patch into a low-dimensional latent space 

 The latent representation obtained by encoders is often referred to as code (or context)

• E.g., the leftmost portion of the image depicts extracting patches of 64×64 pixels 
size with 50% overlap between the patches 

 A ResNet-101 encoder is used for projecting the patch 𝑥𝑡 into a code representation 𝑧𝑡
 The middle image shows the outputs of the encoder genc for each patch, 𝑧𝑡 = 𝑔enc 𝑥𝑡
 For the 49 patches (7×7 grid), the outputs are 7×7×1,024 tensors (i.e., 𝑧1, 𝑧2, … , 𝑧49)
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Contrastive Predictive Coding

• CPC considers the patches as an ordered sequence (e.g., like video frames)

 An autoregressive model gar is used to predict the future patches in the sequence

o The output of the autoregressive model for the shown red patch 𝑐𝑡 (in row 3 and column 4) is 
the sum of all vectors 𝑔ar 𝑧≤𝑡 for the previous patches in the sequence (e.g., all patches in the 
above rows and right columns of the red patch)

 The code representation of the patch 𝑐𝑡 is used to predict the blue patches in the next 
rows and the same column as the red patch, denoted 𝑧𝑡+2, 𝑧𝑡+3 and 𝑧𝑡+4

 The authors predicted up to five rows for each patch in the grid
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Contrastive Predictive Coding

• The NCE loss is used for training the model on each patch in the image

 The patch at position t is considered a positive sample, and all other patches are 
considered negative samples

• For a set of 𝑁 random patches X = 𝑥1, … , 𝑥𝑁 , containing one positive sample 𝑥𝑡
and 𝑁 − 1 negative samples, the NCE loss is: 

ℒ𝑁 = −𝔼 log
𝑓𝑘 𝑥𝑡+𝑘 , 𝑐𝑡

σ𝑥𝑗∈𝑋
𝑓𝑘 𝑥𝑗 , 𝑐𝑡

• 𝑐𝑡 is the code representation of the patch at position t, i.e., 𝑐𝑡 = 𝑔ar 𝑧≤𝑡
• 𝑥𝑡+𝑘 is a predicted patch in the sequence at position 𝑡 + 𝑘

• 𝑓𝑘 𝑥𝑡+𝑘 , 𝑐𝑡 is a density function that approximates the probability 𝑝𝑘 𝑥𝑡+𝑘|𝑐𝑡 of 
estimating the patch 𝑥𝑡+𝑘 for a given code representation 𝑐𝑡
 The authors used a log-bilinear model 𝑓𝑘 𝑥𝑡+𝑘 , 𝑐𝑡 = 𝑒𝑥𝑝 𝑧𝑡+𝑘

𝑇 𝑊𝑘𝑐𝑡 , where 𝑊𝑘 is the 
matrix of weights for the prediction step k

• The numerator of the NCE loss represents the distance to the positive sample, 
and the denominator represents the distance to the negative samples
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Contrastive Predictive Coding

• The name of the approach is based on the following:

 Contrastive: representations are learned by contrasting positive and negative 
examples, which is implemented with the NCE loss

 Predictive: the model needs to predict future patches in the sequences of overlapping 
patches for a given position in the sequence

 Coding: the model performs the prediction in the latent space, i.e., using code 
representations from an encoder and an auto-regressive model

• Here is one more example with images from MNIST, where a positive sequence 
contains sorted numbers, and a negative sequence contains random numbers

Picture from: David Tellez – Contrastive predictive coding
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CPC v2

• Contrastive Predictive Coding v2

 Henaff (2019) Data-efficient Image Recognition with Contrastive Predictive Coding

• This is an extension of the initial CPC work by the same authors

• The approach surpasses supervised ML methods for image classification on the 
ImageNet dataset, achieving an increase in Top-5 accuracy by 1.3% (right table)

 It also surpasses supervised approaches for object detection on PASCAL VOC by 2%

https://arxiv.org/abs/1905.09272


50

CS 502, Fall 2020

CPC v2

• The differences in CPC v2 versus the initial CPC approach include:

 Use ResNet-161 instead of ResNet-101 to increase the model capacity

 Apply layer normalization (i.e., normalize the inputs across the features)

 For predicting, use patches not only from above the current patch position, but also 
from below, left, and right to the patch

 Data augmentation by randomly dropping two or three color channels in each patch, 
and applying random shearing, rotation, and elastic transformations

• The new architecture of CPC v2 delivered improved results over the initial CPC
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CPC v2

• Each patch is encoded with a feature extractor 𝑓𝜃 (blue) followed by average-
pooling (vector z) 

 The autoregressive context network 𝑔𝜑 (red) aggregates the feature vectors z into a 

context vector c, which is used to predict the future patches 
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SimCLR

• SimCLR, a Simple framework for Contrastive Learning of Representations

 Chen (2020) A Simple Framework for Contrastive Learning of Visual Representations

• SimCLR is an approach for contrastive learning, similar to CPC

• It achieved state-of-the-art in SSL, surpassing the Top-1 accuracy by a supervised 
ResNet-50 on ImageNet

https://arxiv.org/abs/2002.05709
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SimCLR

• Approach:

 Randomly sample a mini-batch of n inputs 𝒙, and apply two different data 
augmentation operations 𝑡 and 𝑡′, resulting in 2𝑛 samples ෥𝒙𝑖 = 𝑡 𝒙 and ෥𝒙𝒋 = 𝑡′ 𝒙

o Data augmentation includes random crop, resize with random flip, color distortions, and 
Gaussian blur (data augmentation is crucial for contrastive learning)

 Apply a base encoder 𝑓 ∙ to ෥𝒙𝑖 and ෥𝒙𝒋 to obtain the code representations 𝒉𝑖 = 𝑓 ෥𝒙𝑖
and 𝒉𝒋 = 𝑓 ෥𝒙𝒋

 Apply another prediction head encoder 𝑔 ∙ (one fully-connected layer) to 𝒉𝑖 and 𝒉𝒋 to 

obtain the code representations 𝒛𝑖 = 𝑔 𝒉𝑖 and 𝒛𝑗 = 𝑔 𝒉𝑗

Base encoder f: 
ResNet + global average pooling

Prediction head g:
One fully-connected layer
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SimCLR

• For one positive pair of samples 𝒛𝑖 and 𝒛𝑗 and for the remaining 2 𝑛 − 1

samples treated as negative, a cosine similarity is calculated as 

sim 𝒛𝑖 , 𝒛𝑗 =
𝒛𝑖
𝑇𝒛𝑗

𝒛𝑖 𝒛𝑖
• The contrastive prediction task aims for a given sample ෥𝒙𝑖 to identify a positive 

pairing sample ෥𝒙𝒋

• The NCE loss for the instances ෥𝒙𝑖 and ෥𝒙𝒋 is calculated as:

ℒ𝑖,𝑗 = − log
exp sim 𝒛𝑖 , 𝒛𝑗 /𝜏

σ𝑘=1
2𝑛 𝟏 𝑘≠𝑖 exp sim 𝒛𝑖 , 𝒛𝑗 /𝜏

 𝟏 𝑘≠𝑖 has a value of 1 if 𝑘 ≠ 𝑖 and 0 otherwise, 𝜏 is a temperature hyperparameter

• The overall loss σ𝑖,𝑗 ℒ𝑖,𝑗 is calculated across all positive pairs ෥𝒙𝑖 and ෥𝒙𝒋 in a mini-

batch

• For downstream tasks, the head 𝑔 ∙ is discarded and only the representation 𝒉𝑖
is used
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SimCLR

• Data augmentation
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SimCLR

• Experimental results on 10 image datasets

 SimCLR outperformed supervised models on most datasets
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Other Contrastive SSL Approaches

• Other recent self-supervised approaches based on contrastive learning include:

 Augmented Multiscale Deep InfoMax or AMDIM

o Bachman (2019) Learning Representations by Maximizing Mutual Information Across Views

 Momentum Contrast or MoCo

o He (2019) Momentum Contrast for Unsupervised Visual Representation Learning

 Bootstrap Your Own Latent or BYOL

o Grill (2020) Bootstrap your own latent: A new approach to self-supervised Learning

 Swapping Assignments between multiple Views of the same image or SwAV

o Caron (2020) Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

 Yet Another DIM or YADIM

o Falcon (2020) A Framework for Contrastive Self-Supervised Learning and Designing a New 
Approach

https://arxiv.org/abs/1906.00910
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.09882
https://arxiv.org/abs/2009.00104
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Contrastive SSL Approaches

• The contrastive SSL approaches are computationally expensive

 Estimated costs for some of these approaches as reported in this blog post

 The costs are based on 23dn.24xlarge AWS instance at $31.212 per hour

https://towardsdatascience.com/a-framework-for-contrastive-self-supervised-learning-and-designing-a-new-approach-3caab5d29619
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Video-based Approaches

• Video-based approaches

• SSL methods are often used for learning useful feature representations in videos

• Videos provide richer visual information than images

 The consistency of spatial and temporal information across video frames lend them 
suitable for learning from raw videos without labels

 Models based on recurrent NNs in combination with ConvNets are naturally more 
often encountered in SSL for videos, due to the temporal character

• The following video-based approaches are briefly reviewed next

 Frame ordering, tracking moving objects, video colorization

• A detailed overview of video-based SSL approaches can be found in the review 
paper by Jing and Tian (see References)
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Frame Ordering

• Frame ordering also known as shuffle and learn

 Misra (2016) Shuffle and Learn: Unsupervised Learning using Temporal Order 
Verification

• Training data: videos of objects in motion with shuffled order of the frames

• Pretext task: predict if the frames are in the correct temporal order

 The frames are shuffled, and pairs of videos with correct and shuffled order are used 
for training the model

 The model needs to learn the object classes, as well as it needs to learn the temporal 
ordering of the objects’ positions across the frames

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning

https://arxiv.org/abs/1603.08561
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Frame Ordering

• The model employs ConvNets with shared weights

 The output is a binary prediction on whether the frames are in the correct order or not

Picture from: Amit Chaudhary – The Illustrated Self-Supervised Learning
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Frame Ordering

• Example

Picture from: Andrew Zisserman – Self-Supervised Learning
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Tracking Moving Objects

• Tracking moving objects

 Wang (2015) Unsupervised Learning of Visual Representations using Videos

• Training data: videos of moving objects

• Pretext task: predict the location of a patch with a moving object across frames

 An optical flow approach based on a SURF feature extractor is used for matching 
feature points across video frames

 A ConvNet model is designed for predicting the patch location in the next frames

 The model learns representations by minimizing the distance (in the latent space) to 
the tracked patch across the frames

https://arxiv.org/abs/1505.00687
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Video Colorization

• Video colorization or temporal coherence of color

 Vondrick (2018) Tracking Emerges by Colorizing Videos

• Training data: pairs of color and grayscale videos of moving objects

• Pretext task: predict the color of moving objects in other frames

 The learned representations are useful for downstream segmentation, object tracking, 
and human pose estimation tasks

Picture from: Andrew Zisserman – Self-Supervised Learning

https://arxiv.org/abs/1806.09594


65

CS 502, Fall 2020

Video Colorization

• Inputs and predicted outputs for video segmentation and human skeleton pose 
prediction in videos
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Video Colorization

• The goal is to copy colors from a reference frame in color to another target frame 
in grayscale

• The model needs to employ the temporal consistency of the objects across frames 
in order to learn how to apply colors to the grayscale frames

 This includes tracking correlated pixels in different frames

 The reference and target frames should not be too far apart in time
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Video Colorization

• Video colorization examples
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NLP

• Self-supervised learning has driven the recent progress in the Natural Language 
Processing (NLP) field 

 Models like ELMO, BERT, RoBERTa, ALBERT, Turing NLG, GPT-3 have demonstrated 
immense potential for automated NLP

• Employing various pretext tasks for leaning from raw text produced rich feature 
representations, useful for different downstream tasks

• Pretext tasks in NLP:

 Predict the center word given a window of surrounding words

o The word highlighted with green color needs to be predicted

 Predict the surrounding words given the center word

Picture from: Amit Chaudhary – Self-Supervised Representation Learning in NLP
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NLP

• Pretext tasks in NLP:

 From three consecutive sentences, predict the previous and the next sentence, given 
the center sentence

 Predict the previous or the next word, given surrounding words

 Predict randomly masked words in sentences

Picture from: Amit Chaudhary – Self-Supervised Representation Learning in NLP
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NLP

• Pretext tasks in NLP:

 Predict if the ordering of two sentences is correct

 Predict the order of words in a randomly shuffled sentence

 Predict masked sentences in a document

Picture from: Amit Chaudhary – Self-Supervised Representation Learning in NLP
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GPT-3

• GPT-3 stands for Generative Pre-trained Transformer

 It was created by OpenAI, and introduced in May 2020

• Transformers are currently the most common model architecture for NLP tasks

 They employ attention blocks for discovering correlation in text

• GPT-3 generates text based on initial input prompt from the end-user

 It is trained using next word prediction on huge amount of raw text from the internet

 The quality of text generated is often undistinguishable from human-written text

 GPT-3 can also be used for other tasks, such as answering questions, summarizing 
text, automated code generation, and many others

• It is probably the largest NN model at the present, having 175 billion parameters

 The cost for training GPT-3 reportedly is $ 12 million

 For comparison, Microsoft’s Turing NLG (Natural Language Generation) model has 17 
billion parameters

• Currently, OpenAI allows access to GPT-3 only to selected applicants

• Controversies: GPT-3 just memorizes text from other sources, risk of abuse by 
certain actors

https://en.wikipedia.org/wiki/OpenAI
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Additional References

1. Lilian Weng – Self-Supervised Representation Learning, link: Lil’Log

2. Pieter Abbeel, UC Berkley, CS294-158 Deep Unsupervised Learning, Lecture 7 –
Self-Supervised Learning

3. Amit Chaudhary – The Illustrated Self-Supervised Learning, link

4. Jing and Tian (2019) Self-supervised Visual Feature Learning with Deep Neural 
Networks: A Survey 

5. William Falcon – A Framework for Contrastive Self-Supervised Learning and 
Designing a New Approach, link

6. Andrew Zisserman – Self-Supervised Learning, slides from: Carl Doersch, 
Ishan Misra, Andrew Owens, Carl Vondrick, Richard Zhang

7. Amit Chaudhary –Self-Supervised Representation Learning in NLP, link

https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://amitness.com/2020/02/illustrated-self-supervised-learning/
https://towardsdatascience.com/a-framework-for-contrastive-self-supervised-learning-and-designing-a-new-approach-3caab5d29619
https://amitness.com/2020/05/self-supervised-learning-nlp/

