University of Idaho

CS 502 Directed Studies: Adversarial Machine Learning

Dr. Alex Vakanski

Lecture 1

Introduction to Adversarial Machine Learning

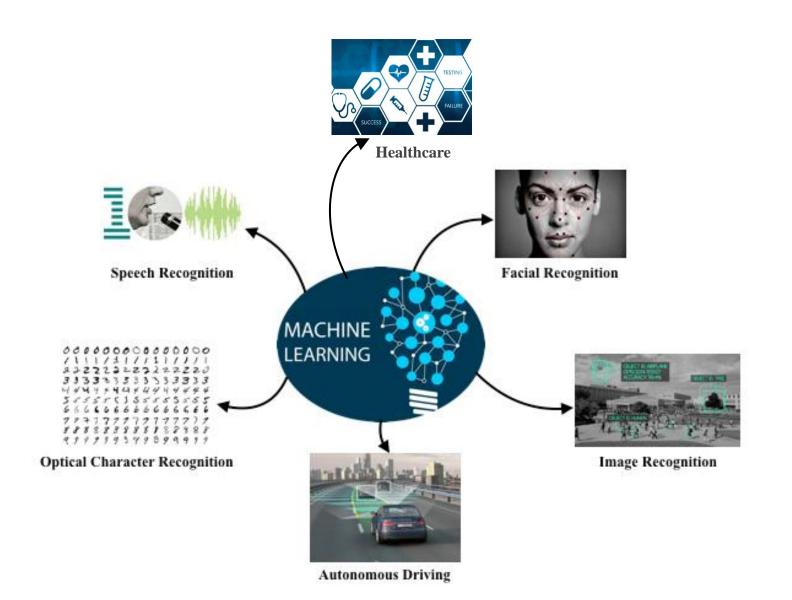
Lecture Outline

- Machine Learning (ML)
- Adversarial ML (AML)
 - Adversarial examples
- Attack taxonomy
- Common adversarial attacks
 - Noise, semantic attack, FGSM, BIM, PGD, DeepFool, CW attack
- Defense against adversarial attacks
 - Adversarial training, random resizing and padding, detect adversarial examples
- Conclusion
- References
- Other AML resources

Machine Learning (ML)

- ML tasks
 - Supervised, unsupervised, semi-supervised, self-supervised, meta learning, reinforcement learning
- Data collection and preprocessing
 - Sensors, cameras, I/O devices, etc.
- Apply a ML algorithm
 - Training phase: learn ML model (parameter learning, hyperparameter tuning)
 - Testing phase (inference): predict on unseen data

ML is Ubiquitous

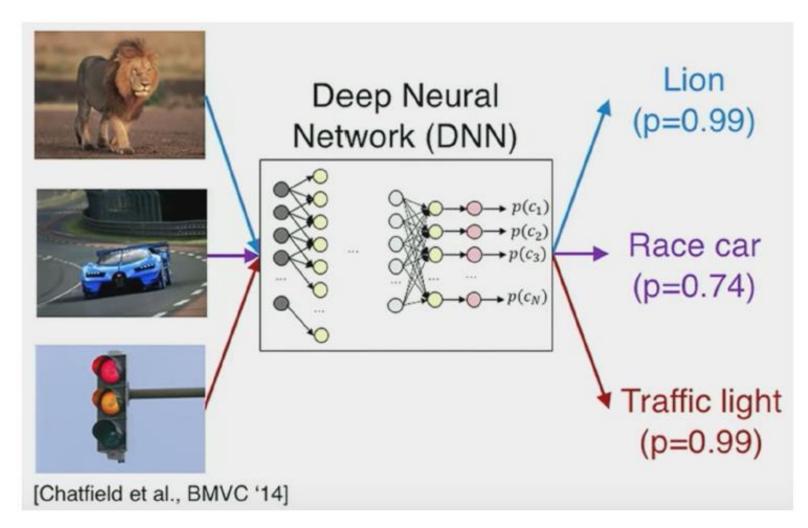


Adversarial ML

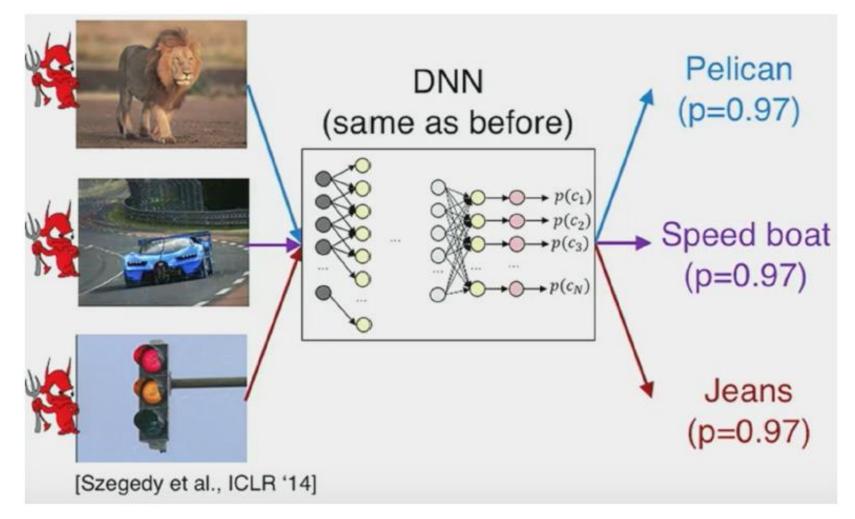
 The classification accuracy of GoogLeNet on MNIST under adversarial attacks <u>drops</u> from 98% to 18% (for ProjGrad attack) or 1% (DeepFool attack)

Attack	Lenet								
Noise	Dataset	Acc@1w/	Acc@5 w/	Acc@1 w/o	Acc@5 w/o				
	MNIST	0.984	1.0	0.9858	1.0				
	ILSVRC2012	NA	NA	NA	NA				
Semantic	Dataset	Acc@1 w/	Acc@5 w/	Acc@1 w/o	Acc@5 w/o				
	MNIST	0.233	0.645	0.986	1.0				
	ILSVRC2012	NA	NA	NA	NA				
Fast Gradient Sign Method	Dataset	Acc@1 w/	Acc@5 w/	Acc@1 w/o	Acc@5 w/o				
	MNIST	0.509	0.993	0.986	1.0				
	ILSVRC2012	NA	NA	NA	NA				
Projected Gradient Descent	Dataset	Acc@1 w/	Acc@5 w/	Acc@1 w/o	Acc@5 w/o				
	MNIST	0.187	0.982	0.986	1.0				
	ILSVRC2012	NA	NA	NA	NA				
DeepFool	Dataset	Acc@1w/	Acc@5 w/	Acc@1 w/o	Acc@5 w/o				
	MNIST	0.012	1.0	0.9858	1.0				
	ILSVRC2012	NA	NA	NA	NA				

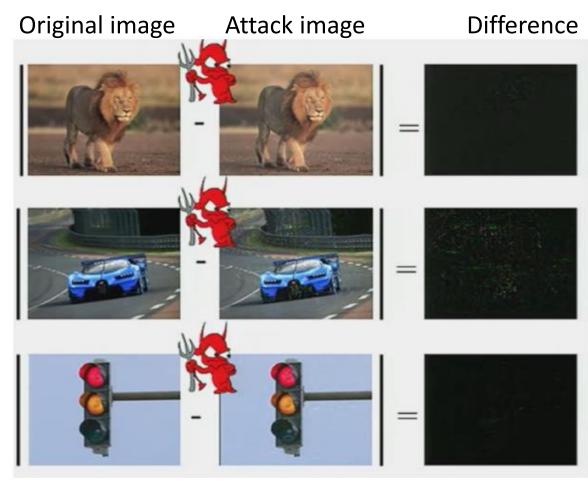
• What do you see?



• The classifier misclassifies adversarially manipulated images

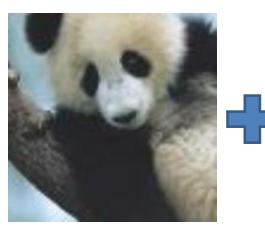


• The differences between the original and manipulated images are very small (hardly noticeable to the human eye)



- An adversarially perturbated image of a panda is misclassified as a gibbon
- The image with the perturbation to the human eye looks indistinguishable from the original image

Original image



Adversarial image

Gibbon

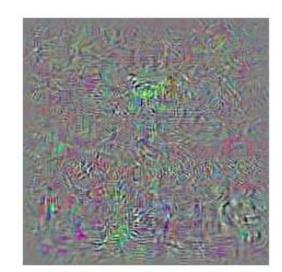
Classified as panda 57.7% confidence

Small adversarial noise

Classified as gibbon 99.3% confidence

• Similar example

Schoolbus

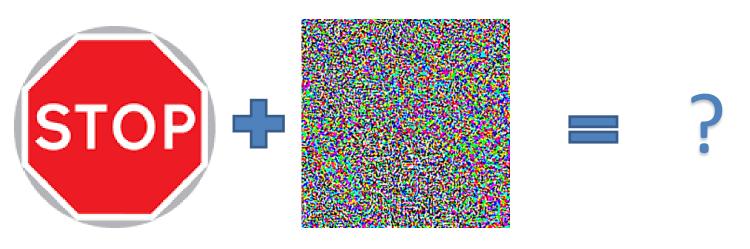


+

Perturbation (rescaled for visualization)

Ostrich

• If a stop sign is adversarially manipulated and it is not recognized by a self-driving car, it can result in an accident



Small adversarial noise

- Recent <u>work</u> manipulated a stop sign with adversarial patches
 - Caused the DL model of a self-driving car to classify it as a Speed Limit 45 sign (100% attack success in lab test, and 85% in field test)

Lab (Stationary) Test

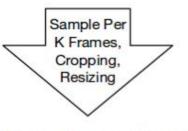
Physical road signs with adversarial perturbation under different conditions

Cropping, Resizing

Stop Sign → Speed Limit Sign

Field (Drive-By) Test

Video sequences taken under different driving speeds



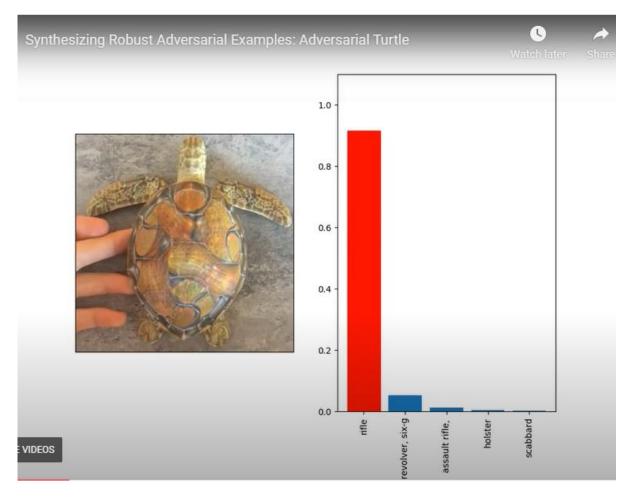
Stop Sign → Speed Limit Sign

• Lab test images for signs with a target class Speed Limit 45

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP	STOP
5' 15°	STOP		STOP	STOP	STOP
10' 0°				STOP	STOP
10′ 30°				STOP	STP
40′ 0°					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification

• In this <u>example</u>, a 3D-printed turtle is misclassified by a DNN as a rifle (video <u>link</u>)



• A person wearing an <u>adversarial patch</u> is not detected by a person detector model (YOLOv2)

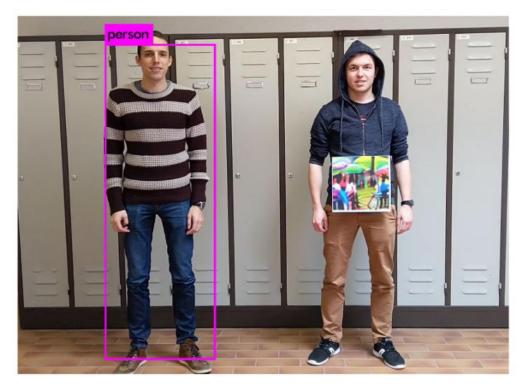
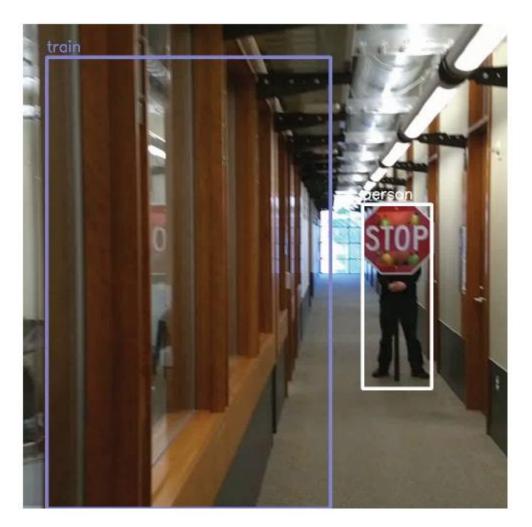


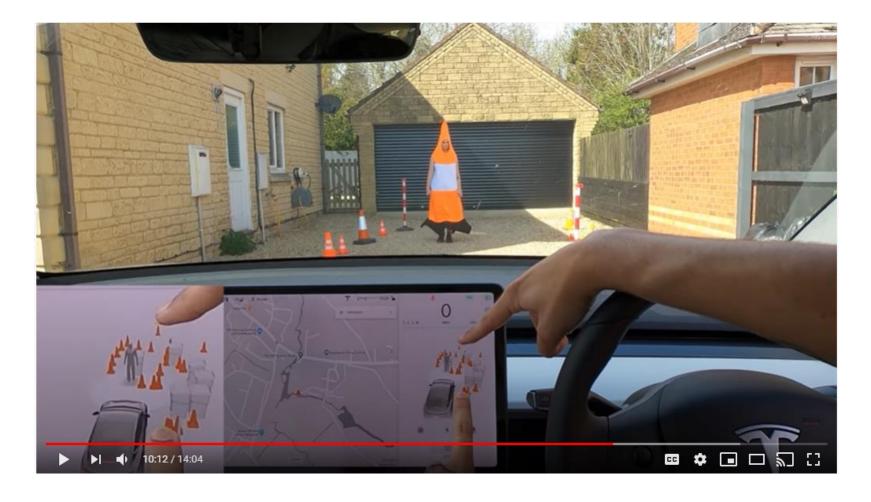
Figure 1: We create an adversarial patch that is successfully able to hide persons from a person detector. Left: The person without a patch is successfully detected. Right: The person holding the patch is ignored.

• A "train" in the hallway?



Picture from: Yevgeniy Vorobeychik, Bo Li - Adversarial Machine Learning Tutorial

• Non-scientific: a Tesla owner checks if the car can distinguish a person wearing a cover-up from a traffic cone (video <u>link</u>)



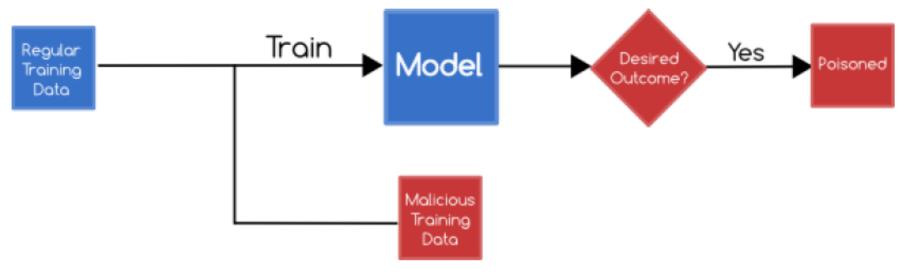
- Abusive use of machine learning
 - Using GANs to generate fake content (a.k.a. deep fakes)
 - Videos of politicians saying things they never said
 - Barak Obama's <u>deep fake</u>, or the House Speaker Nancy Pelosi appears drunk in a video
 - Bill Hader <u>impersonation</u> of Arnold Schwarzenegger
 - Can have strong societal implications: elections, automated trolling, court evidence

Adversarial ML

- AML is a research field that lies at the intersection of ML and computer security
 - E.g., network intrusion detection, spam filtering, malware classification, biometric authentication (facial detection)
- ML algorithms in real-world applications mainly focus on increased accuracy
 - However, few techniques and design decisions focus on keeping the ML models secure and robust
- Adversarial ML: ML in adversarial settings
 - Attack is a major component of AML
 - Bad actors do bad things
 - Their main objective is not to get detected (change behavior to avoid detection)

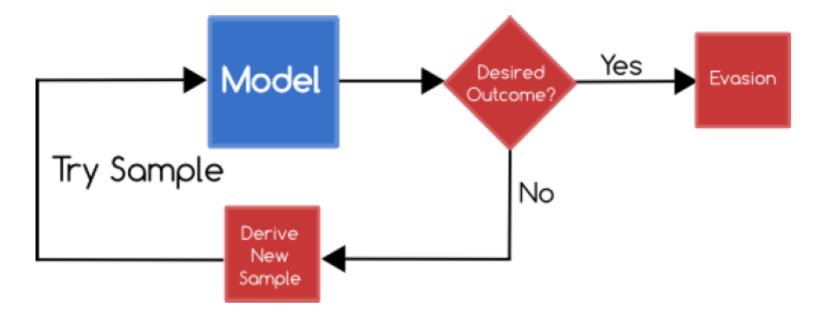
Attack Taxonomy

- *Data poisoning* (Causative attack):
 - Attack on the training phase
 - Attackers perturb the training set to fool the model
 - Insert malicious inputs in the training set
 - Modify input instances in the training set
 - Change the labels to training inputs
 - Attackers attempt to influence or corrupt the ML model or the ML algorithm itself



Attack Taxonomy

- *Evasion attack* (Exploratory attack):
 - Attack on the testing phase
 - Attackers do not tamper with the ML model, but instead cause it to produce adversary outputs
 - Evasion attack is the most common attack

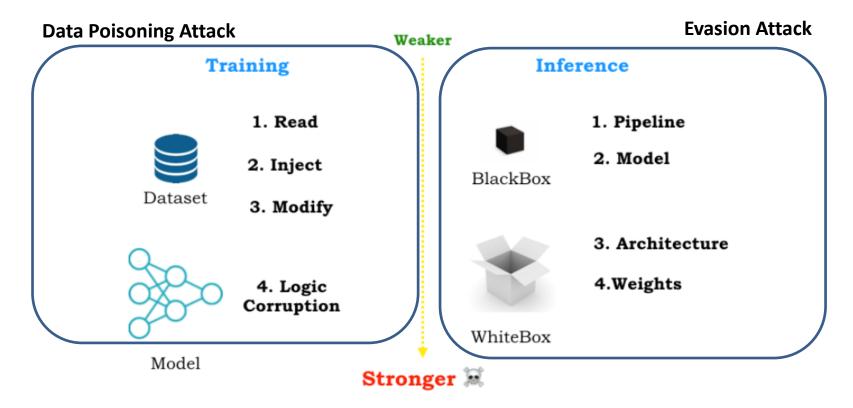


Evasion Attack

- Evasion attack can be further classified into:
 - White-box attack
 - Attackers have full knowledge about the ML model
 - I.e., they have access to parameters, hyperparameters, gradients, architecture, etc.
 - Black-box attack
 - Attackers don't have access to the ML model parameters, gradients, architecture
 - Perhaps they have some knowledge about the used ML algorithm
 - E.g., attackers may know that a ResNet50 model is used for classification, but they don't have access to the model parameters
 - Attackers may query the model to obtain knowledge (can get examples)

Attack Taxonomy

• Depiction of the adversarial attack taxonomy from Alessio's Adversarial ML presentation at FloydHub



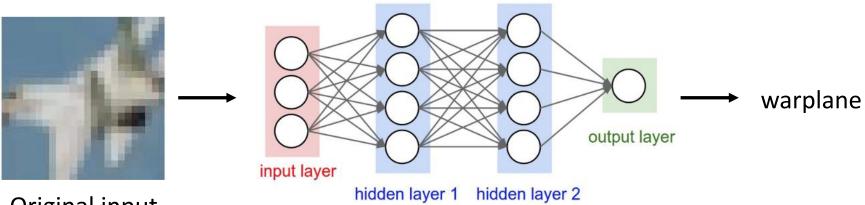
Adversarial Capabilities

Attack Taxonomy

- Each of the above attacks can further be:
 - *Non-targeted* attack
 - The goal is to mislead the classifier to predict any labels other than the ground truth label
 - Most existing work deals with this goal
 - E.g., perturb an image of a military tank, so that the model predicts it is any other class than a military tank
 - *Targeted* attack
 - The goal is to mislead the classifier to predict a target label for an image
 - More difficult
 - E.g., perturb an image of a turtle, so that the model predicts it is a riffle
 - E.g., perturb an image of a Stop sign, so that the model predicts it is a Speed Limit sign

Evasion Attacks

• Find a new input (*similar* to original input) but classified as another class (untargeted or targeted)



Original input

• Adversarial attack image

Evasion Attacks

- How to find adversarial images?
 - Given an image x, which is labeled by the classifier (e.g., LogReg, SVM, or NN) as class q, i.e., C(x) = q
 - Create an adversarial image x_{adv} by adding small perturbations δ to the original image, i.e., $x_{adv} = x + \delta$, such that the distance $D(x, x_{adv}) = D(x, x + \delta)$ is minimal
 - So that the classifier assigns a label to the adversarial image that is different than q, i.e., $C(x_{adv}) = C(x + \delta) = t \neq q$

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t \longrightarrow x + \delta$ is classified as target class t $x + \delta \in [0, 1]^n$ each element of $x + \delta$ is in [0,1] (to be a valid image)

Evasion Attacks

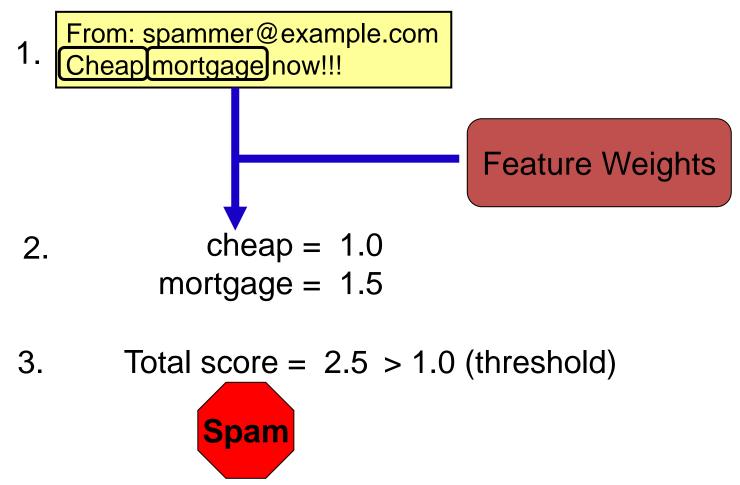
- Distance metrics between *x* and x_{adv} : $D(x, x_{adv})$
 - $-\ell_0$ norm: the number of elements in x_{adv} such that $x^i \neq x^i_{adv}$
 - Corresponds to the number of pixels that have been changed in the image x_{adv}
 - ℓ_1 norm: city-block distance, or Manhattan distance
 - $\ell_1 = |x^1 x_{adv}^1| + |x^2 x_{adv}^2| + \dots + |x^n x_{adv}^n|$
 - ℓ_2 norm: Euclidean distance, or mean-squared error

•
$$\ell_2 = \sqrt{(x^1 - x_{adv}^1)^2 + (x^2 - x_{adv}^2)^2 + \dots + (x^n - x_{adv}^n)^2}$$

- ℓ_{∞} norm: measures the maximum change to any of the pixels in the x_{adv} image
 - $\ell_{\infty} = max(|x^1 \neq x^1_{adv}|, |x^2 \neq x^2_{adv}|, \dots, |x^n \neq x^n_{adv}|)$

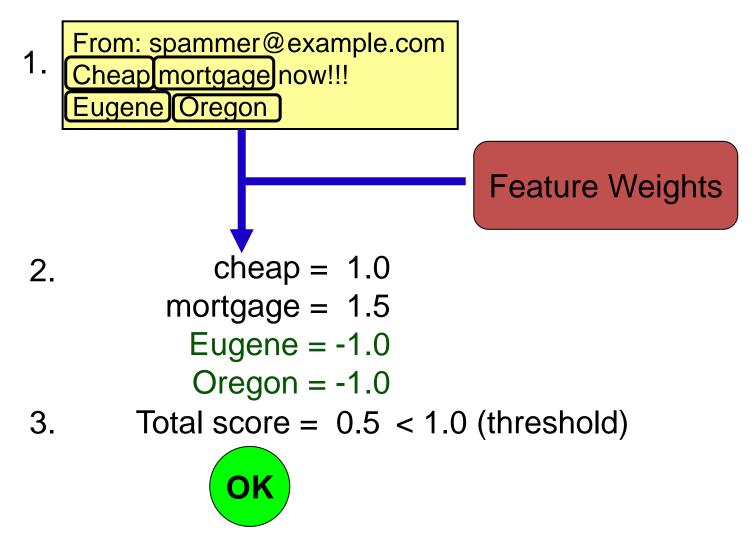
Spam Filtering Adversarial Game

• Based on cumulative weights assigned to words, an email is classified as a spam or a legitimate message



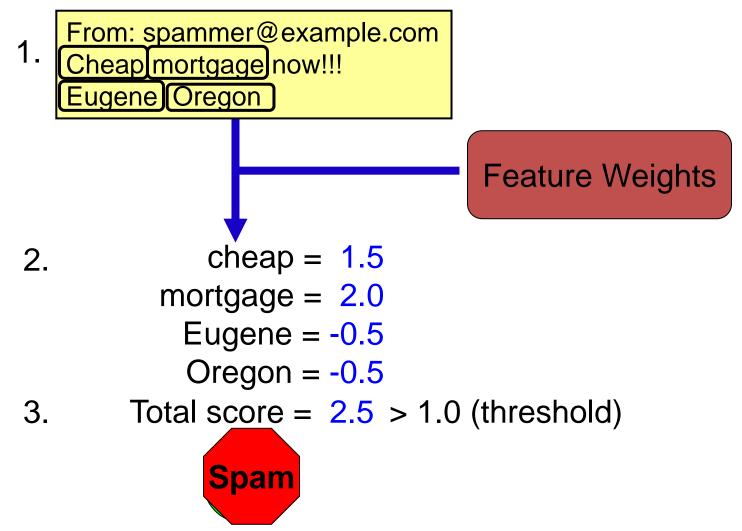
Spam Filtering Adversarial Game

• The spammers adapt to evade the classifier



Spam Filtering Adversarial Game

• The classifier is adapted by changing the feature weights



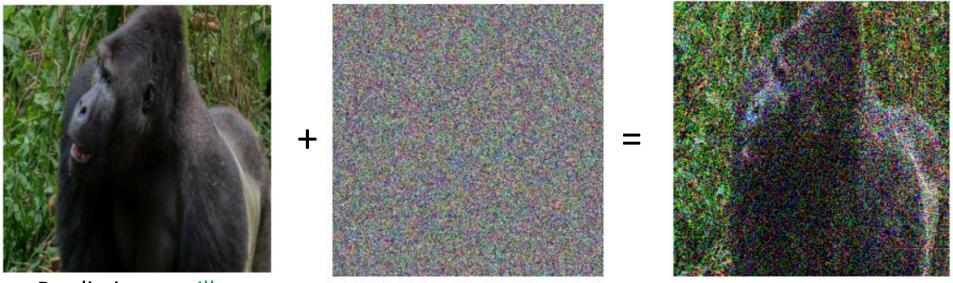
Common Adversarial Attacks

- Noise attack
- Semantic attack
- Fast gradient sign method (FGSM) attack
- Basic iterative method (BIM) attack
- Projected gradient descent (PGD) attack
- DeepFool attack
- Carlini-Wagner (CW) attack

Noise Attack

• Noise attack

- The simplest form of adversarial attack
- Noise is a random arrangement of pixels containing no information
- In Python, noise is created by the randn() function
 - I.e., random numbers from a normal distribution (0 mean and 1 st. dev.)
- It represents a non-targeted black-box evasion attack



Prediction: fountain

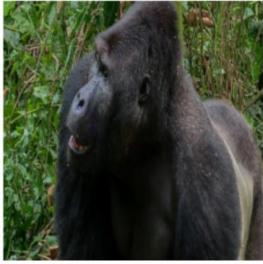
Prediction: gorilla

Picture from: <u>https://blog.floydhub.com/introduction-to-adversarial-machine-learning/</u>

Semantic Attack

- Semantic attack
 - <u>Hosseini (2017)</u> On the Limitation of Convolutional Neural Networks in Recognizing Negative Images
 - Use negative images
 - Reverse all pixels intensities
 - E.g., change the sign of all pixels, if the pixels values are in range [-1,1]

Original image



Prediction: gorilla

Negative image

Prediction: weimaraner

Weimaraner (a dog breed)

FGSM Attack

- Fast gradient sign method (FGSM) attack
 - <u>Goodfellow (2015)</u> Explaining and Harnessing Adversarial Examples
- An adversarial image *x*_{*adv*} is created by adding perturbation noise to an image *x*

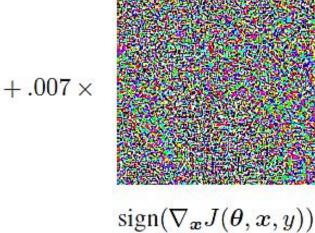
 $x_{adv} = x + \epsilon \cdot \operatorname{sign}(\nabla_{x} \mathcal{L}(h(x, w), y))$

- Notation: input image x, cost function \mathcal{L} , NN model h, NN weights (parameters) w, gradient ∇ (Greek letter "nabla"), noise magnitude ϵ
- Perturbation noise is calculated as the gradient of the loss function \mathcal{L} with respect to the input image *x* for the true class label *y*
- This increases the loss for the true class $y \rightarrow$ the model misclassifies the image x_{adv}

$$\mathrm{sgn}(x):=egin{cases} -1 & \mathrm{if}\ x < 0,\ 0 & \mathrm{if}\ x = 0,\ 1 & \mathrm{if}\ x > 0. \end{cases}$$

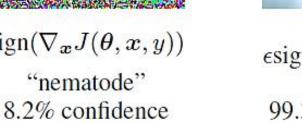
FGSM Attack

- FGSM is a white-box non-targeted evasion attack
 - White-box, since we need to know the gradients to create the adversarial image
 - The noise magnitude is $\varepsilon = 0.007$
 - Note: nematode is an insect referred to as roundworm



"panda" 57.7% confidence

 \boldsymbol{x}

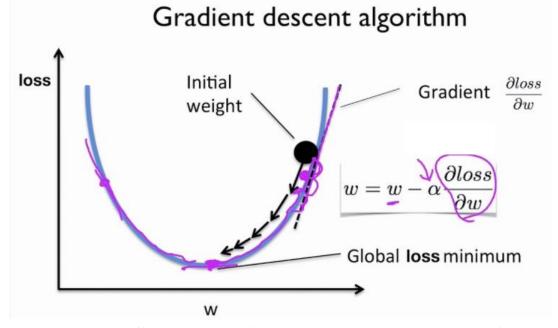


_

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

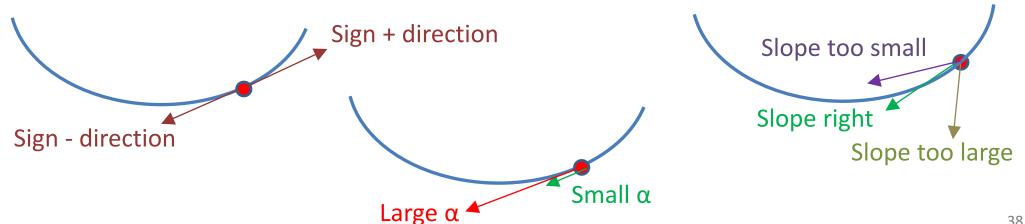
FGSM Attack

- Recall that training NNs is based on the gradient descent algorithm
 - The values of the network parameters (weights) *w* are iteratively changed until a minimum of the *loss* function is reached
 - Gradients of the loss function with respect to the model parameters $(\partial l/\partial w)$ give the direction and magnitude for updating the parameters
 - The step of each update is the learning rate α



FGSM Attack

- The sign and magnitude of the gradient give the direction and the slope of the steepest descent
 - Left image: + and sign of the gradient
 - Right image: small, adequate, and large slope of the weight update, based on the magnitude of the gradient
 - Middle image: small and large α (learning rate)
- To minimize the loss function, the weights w are changed in the opposite direction of the gradient, i.e., $w = w - \alpha \frac{\partial loss}{\partial w}$



FGSM Attack

• FGSM attack example

Original image

Prediction: car mirror

Adversarial image

Prediction: sunglasses

BIM Attack

• Basic iterative method (BIM) attack

- Kurakin (2017) Adversarial Examples in the Physical World

- BIM is a variant of FGSM: it repeatedly adds noise to the image *x* in multiple iterations, in order to cause misclassification
 - The number of iterations steps is t, and α is the amount of noise that is added at each step

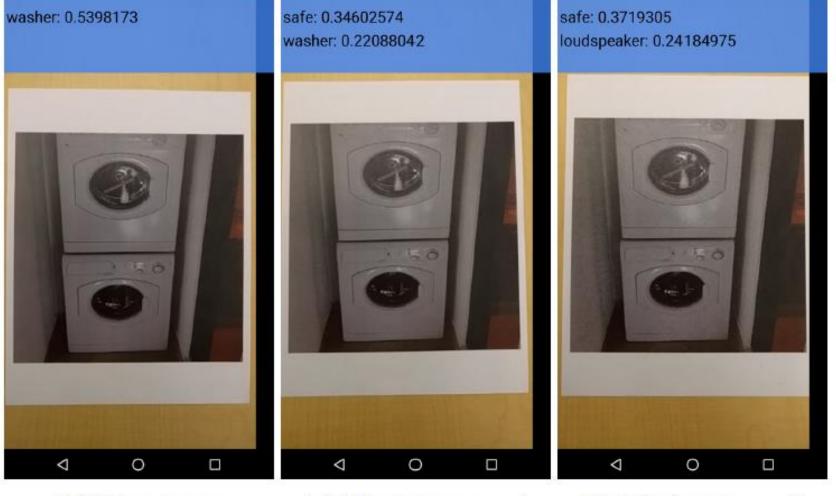
$$x_{adv}^{t} = x^{t-1} + \alpha \cdot \operatorname{sign}(\nabla_{x} \mathcal{L}(h(x^{t-1}), y))$$

- The perturbed image after the *t* iterations is x_{adv}^t
- Multiple steps of adding noise increase the chances of misclassifying the image
- Compare to FGSM

$$x_{adv} = x + \epsilon \cdot \operatorname{sign}(\nabla_x \mathcal{L}(h(x), y))$$

BIM Attack

• BIM attack example, cell phone image



(b) Clean image

(c) Adv. image, $\epsilon = 4$

(d) Adv. image, $\epsilon = 8$

- Projected gradient descent (PGD) attack
 - <u>Madry (2017) Towards Deep Learning Models Resistant to</u> <u>Adversarial Attacks</u>
- PGD is an extension of BIM (and FGSM), where after each step of perturbation, the adversarial example is projected back onto the ϵ -ball of x using a projection function Π

$$x_{adv}^{t} = \Pi_{\epsilon} \left(x^{t-1} + \alpha \cdot \operatorname{sign}(\nabla_{x} \mathcal{L}(h(x^{t-1}), y)) \right)$$

- Different from BIM, PGD uses random initialization for x, by adding random noise from a uniform distribution with values in the range $(-\epsilon, \epsilon)$
- PGD is regarded as the strongest first-order attack
 - First-order attack means that the adversary uses only the gradients of the loss function with respect to the input

• PGD attack example

Original image

Prediction: baboon

Adversarial image

Prediction: Egyptian cat

Egyptian cat

- Gradient approaches can also be designed as targeted white-box attacks
 - The added perturbation noise aims to minimize the loss function of the image for a specific class label
 - In this example, the target class is maraca
 - The iterations loop doesn't break until the image is classified into the target class, or until the maximum number of iterations is reached **Original image**

Prediction: hippopotamus

Adversarial image

Prediction: maraca

Maraca

Picture from: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/

• For a targeted attack, if the target class label is denoted *t*, adversarial examples are created by using

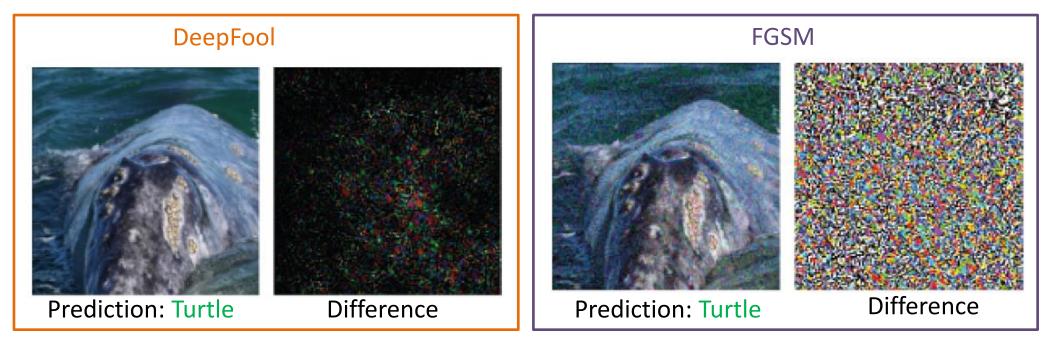
$$x_{adv}^{t} = \Pi_{\epsilon} \left(x^{t-1} - \alpha \cdot \operatorname{sign} \left(\nabla_{x} \mathcal{L}(h(x^{t-1}), t) \right) \right)$$

- I.e., it is based on minimizing the loss function with respect to the target class t
- This is opposite to non-targeted attacks, which maximize the loss function with respect to the true class label

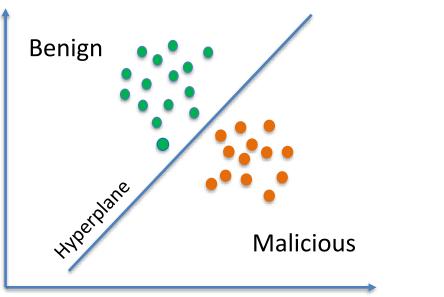
- DeepFool attack
 - <u>Moosavi-Dezfooli (2015) DeepFool: A Simple and Accurate Method to</u> <u>Fool Deep Neural Networks</u>
- DeepFool is an untargeted white-box attack
 - It mis-classifies the image with the minimal amount of perturbation possible
 - There is no visible change to the human eye between the two images

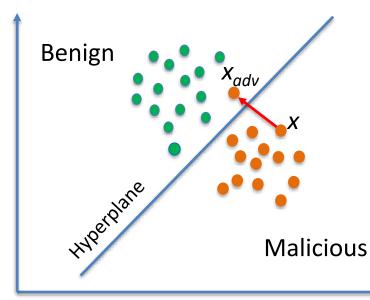
Picture from: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/

- Image example
 - Original image: whale
 - Both DeepFool and FGSM perturb the image to be classifier as turtle
 - DeepFool leads to a smaller perturbation

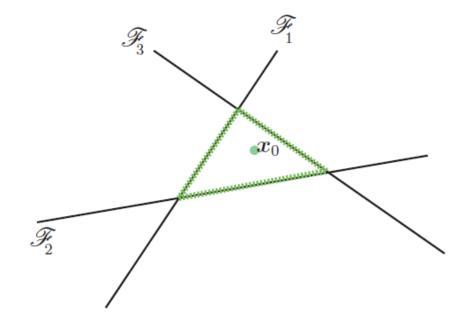


- E.g., consider a linear classifier algorithm applied to objects from 2 classes: green and orange circles
 - The line that separates the 2 classes is called the *hyperplane*
 - Data points falling on either sides of the hyperplane are attributed to different classes (such as benign vs. malicious class)
 - Given an input *x*, DeepFool projects *x* onto the hyperplane and pushes it a bit beyond the hyperplane, thus misclassifying it

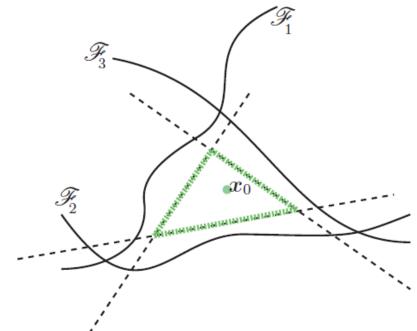




- For a multiclass problem with linear classifiers, there are multiple hyperplanes that separate an input *x* from other classes
 - E.g., an example with 4 classes is shown in the image below
- DeepFool finds that closest hyperplane to the input x_0 , in this case the hyperplane \mathcal{F}_3 (most similar class of the other 3 classes)
 - Then, projects the input and pushes it a little beyond the hyperplane



- For non-linear classifiers (such as neural networks), the authors perform several iterations of adding perturbations to the image
 - At each iteration, the classifier function is linearized around the current image, and a minimal perturbation is calculated
 - The algorithm stopes when the class of the image change to another label than the true class



Carlini Wagner (CW) Attack

- Carlini-Wagner (CW) attack
 - <u>Carlini (2017)</u> Towards Evaluating the Robustness of Neural Networks
- The initial formulation for creating adversarial attacks is difficult to solve

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t$ $x + \delta \in [0, 1]^n$

• Carlini-Wagner propose a reformulation of it which is solvable

minimize
$$\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$$

such that $x + \delta \in [0, 1]^n$

Carlini Wagner (CW) Attack

• The authors considered several variants for the function *f*

$$f_{1}(x') = -\log_{F,t}(x') + 1$$

$$f_{2}(x') = (\max_{i \neq t} (F(x')_{i}) - F(x')_{t})^{+}$$

$$f_{3}(x') = \operatorname{softplus}(\max_{i \neq t} (F(x')_{i}) - F(x')_{t}) - \log(2)$$

$$f_{4}(x') = (0.5 - F(x')_{t})^{+}$$

$$f_{5}(x') = -\log(2F(x')_{t} - 2)$$

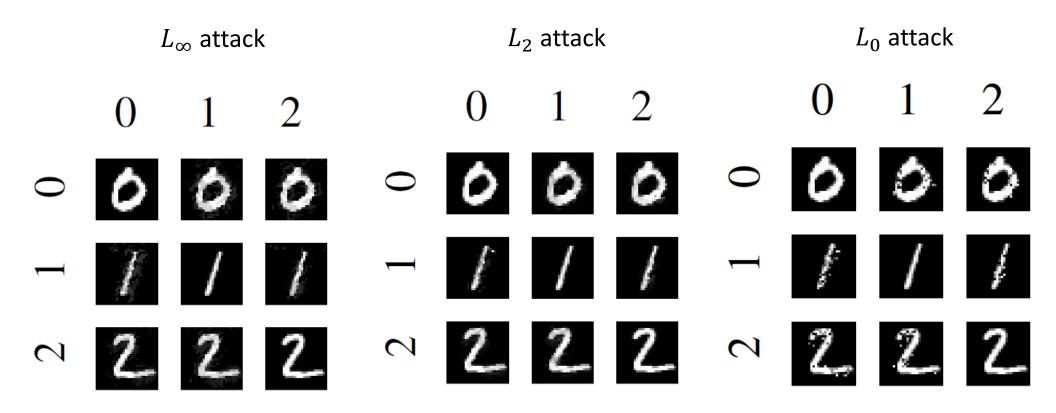
$$f_{6}(x') = (\max_{i \neq t} (Z(x')_{i}) - Z(x')_{t})^{+}$$

$$f_{7}(x') = \operatorname{softplus}(\max_{i \neq t} (Z(x')_{i}) - Z(x')_{t}) - \log(2)$$

• The best results were obtained by f_6

Carlini Wagner (CW) Attack

• Results on the MNIST dataset



Evasion Attacks on Black-Box Models

- Adversarial example transferability
 - Cross-model transferability: the same adversarial example is often misclassified by a variety of classifiers with different architectures
 - Cross-training set transferability: the same adversarial example is often misclassified trained on different subsets of the training data
- Therefore, an attacker can take the following steps to reverseengineer the classifier:
 - 1. Train his own (white-box) substitute model
 - 2. Generate adversarial samples
 - 3. Apply the adversarial samples to the target ML model

Defense Against Adversarial Attacks

- Adversarial samples can cause any ML algorithm to fail
 - However, they can be used to build more accurate and robust models
- AML is a two-player game:
 - Attackers aim to produce strong adversarial examples that evade a model with high confidence while requiring only a small perturbation
 - Defenders aim to produce models that are robust to adversarial examples (i.e., the models don't have adversarial examples, or the adversaries cannot find them easily)
- Defense strategies against adversarial attacks include:
 - Adversarial training
 - Detecting adversarial examples
 - Gradient masking
 - Robust optimization (regularization, certified defenses)
- A list of adversarial defenses can be found at this <u>link</u>

Adversarial Training

- Learning the model parameters using adversarial samples is referred to as *adversarial training*
- The training dataset is augmented with adversarial examples produced by known types of attacks
 - For each training input add an adversarial example
- However, if a model is trained only on adversarial examples, the accuracy to classify regular examples will reduce significantly
- Possible strategies:
 - Train the model from scratch using regular and adversarial examples
 - Train the model on regular examples and afterward fine-tune with adversarial examples

Adversarial Training

• Training with and without negative images for semantic attack

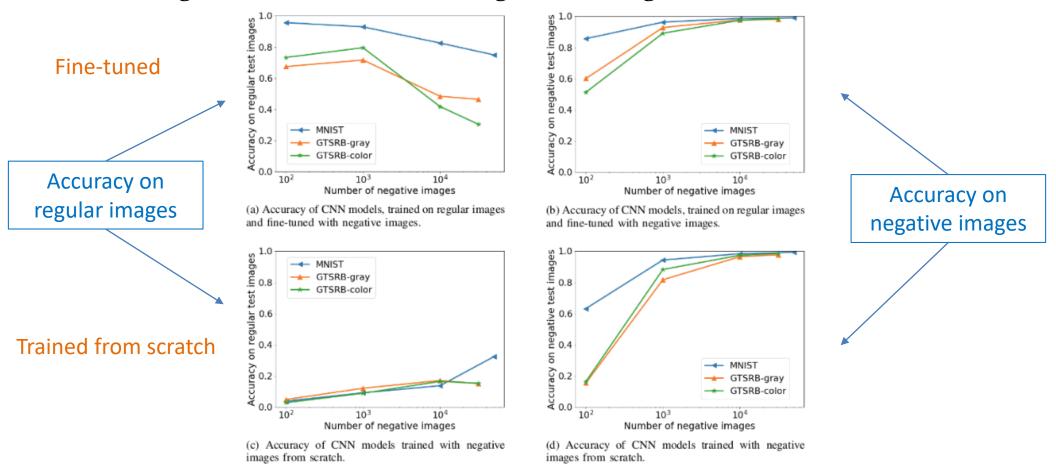
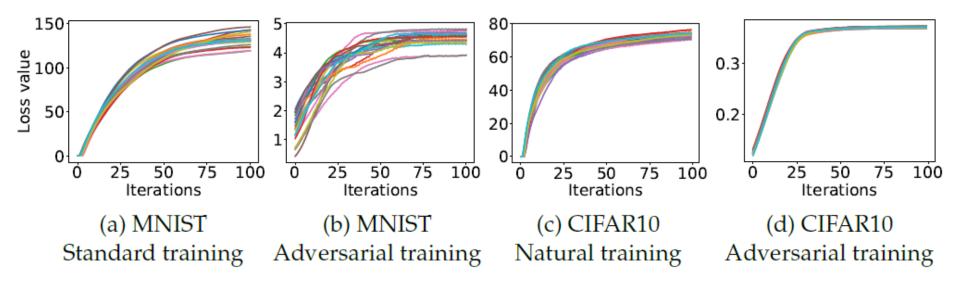


Fig. 4: The accuracy on regular and negative test images for CNN models trained on different number of negative training images. In (a-b), the model is trained on regular training images and fine-tuned with negative images, whereas in (c-d), the model is trained with negative images from scratch.

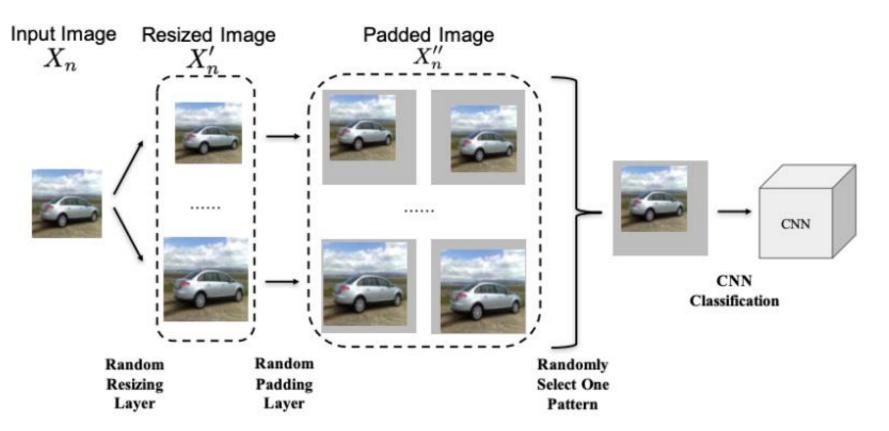
Adversarial Training

- The plots show the cross-entropy loss values for standard and adversarial training on MNIST and CIFAR10 datasets while creating adversarial examples using PDG attack (Madry, 2018)
 - 20 runs are shown, each starting at a random point within a perturbation range $(-\epsilon, \epsilon)$
 - The final loss values on adversarially trained models are much smaller than on the original training datasets



Random Resizing and Padding

- Model training with randomly resizing the image and applying random padding on all four sides have shown to improve the robustness to adversarial attacks
 - <u>Xie (2018)</u> <u>Mitigating Adversarial Effects Through Randomization</u>



Detecting Adversarial Examples

- A body of work focused on distinguishing adversarial examples from regular clean examples
 - If the defense method detects that an input example is adversarial, the classifier will refuse to predict its class label
- *Example detection* defense methods
 - Kernel Density (KD) detector based on Bayesian uncertainty features
 - <u>Feinman (2017) Detecting Adversarial Samples from Artifacts</u>
 - Local Intrinsic Dimensionality (LID) of adversarial subspaces
 - <u>Ma (2018) Characterizing Adversarial Subspaces Using Local Intrinsic</u> <u>Dimensionality</u>
 - Adversary detection networks
 - Metzen (2017) On detecting adversarial perturbations

Gradient Masking

- *Gradient masking* defense methods deliberately hide the gradient information of the model
 - Since most attacks are based on the model's gradient information
- Distillation defense changes the scaling of the last hidden layer in NNs, hindering the calculation of gradients
 - <u>Papernot (2016) Distillation as a defense to adversarial perturbations</u> <u>against deep neural networks</u>
- Input preprocessing by discretization of image's pixel values, or resizing and cropping, or smoothing
 - Buckman (2018) Thermometer encoding: One hot way to resist adversarial examples
- DefenseGAN uses a GAN model to transform perturbed images into clean images
 - <u>Samangouei (2017) Defense-GAN: Protecting classifiers against</u> <u>adversarial attacks using generative models</u>

Robust Optimization

- *Robust optimization* aims to evaluate, and improve, the model robustness to adversarial attacks
 - Consequently, learn model parameters that minimize the misclassification of adversarial examples
- Regularization methods train the model by penalizing large values of the parameters, or large values of the gradients
 - <u>Cisse (2017) Parseval networks: Improving robustness to adversarial</u> <u>examples</u>
- Certified defenses for a given dataset and model, find the lower bound of the minimal perturbation: the model will be safe against any perturbations smaller than the lower bound
 - <u>Raghunathan (2018) Certified defenses against adversarial examples</u>

Conclusion

- ML algorithms and methods are vulnerable to many types of attacks
- Adversarial examples show its transferability in ML models

 I.e., either cross-models or cross-training sets
- Adversarial examples can be leveraged to improve the performance or the robustness of ML models

References

- Introduction to Adversarial Machine Learning <u>blog post</u> by Arunava Chakraborty
- 2. Binghui Wang: Adversarial Machine Learning An Introduction
- 3. Daniel Lowd, Adversarial Machine Learning
- 4. Yevgeniy Vorobeychik, Bo Li, Adversarial Machine Learning (<u>Tutorial</u>)

Other AML Recourses

- <u>Cleverhans</u> a repository from Google that implements latest research in AML
 - The library is being updated to support TensorFlow2, PyTorch, and Jax
- <u>Adversarial Robustness Toolbox</u> a toolbox from IBM that implements state-of-the-art attacks and defenses
 - The algorithms are framework-independent, and support TensorFlow, Keras, PyTorch, MXNet, XGBoost, LightGBM, CatBoost, etc.
- <u>ScratchAI</u> a smaller AML library developed in PyTorch, and explained in this <u>blog post</u>
- <u>Robust ML Defenses</u> list of adversarial defenses with code
- <u>AML Tutorial</u> by Bo Li, Dawn Song, and Yevgeniy Vorobeychik
- Nicholas Carlini <u>website</u>