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Lecture Outline

• Machine learning basics

– Supervised and unsupervised learning

– Linear and non-linear classification methods

• Introduction to deep learning

• Elements of neural networks (NNs)

– Activation functions

• Training NNs

– Gradient descent

– Regularization methods 

• NN architectures

– Convolutional NNs

– Recurrent NNs
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Machine Learning Basics

• Artificial Intelligence is a scientific field concerned with the 
development of algorithms that allow computers to learn without 
being explicitly programmed

• Machine Learning is a branch of Artificial Intelligence, which 
focuses on methods that learn from data and make predictions on 
unseen data

Labeled Data

Labeled Data

Machine Learning 
algorithm

Learned 
model

Prediction

Training

Prediction

Picture from: Ismini Lourentzou – Introduction to Deep Learning
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Machine Learning Types

• Supervised: learning with labeled data

– Example: email classification, image classification

– Example: regression for predicting real-valued outputs

• Unsupervised: discover patterns in unlabeled data

– Example: cluster similar data points

• Reinforcement learning: learn to act based on feedback/reward

– Example: learn to play Go  

class A

class B

Classification Regression Clustering

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Supervised Learning

• Supervised learning categories and techniques

– Numerical classifier functions

▪ Linear classifier, perceptron, logistic regression, support vector 
machines (SVM), neural networks 

– Parametric (probabilistic) functions 

▪ Naïve Bayes, Gaussian discriminant analysis (GDA), hidden Markov 
models (HMM), probabilistic graphical models 

– Non-parametric (instance-based) functions

▪ k-nearest neighbors, kernel regression, kernel density estimation, local 
regression

– Symbolic functions

▪ Decision trees, classification and regression trees (CART)

– Aggregation (ensemble) learning

▪ Bagging, boosting (Adaboost), random forest 

Slide credit: Y-Fan Chang – An Overview of Machine Learning
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Unsupervised Learning 

• Unsupervised learning categories and techniques

– Clustering

▪ k-means clustering

▪ Mean-shift clustering

▪ Spectral clustering 

– Density estimation 

▪ Gaussian mixture model (GMM) 

▪ Graphical models 

– Dimensionality reduction 

▪ Principal component analysis (PCA) 

▪ Factor analysis 

Slide credit: Y-Fan Chang – An Overview of Machine Learning
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Nearest Neighbor Classifier

• Nearest Neighbor - for each test data point, assign the class label of 
the nearest training data point

– Adopt a distance function to find the nearest neighbor

▪ Calculate the distance to each data point in the training set, and assign 
the class of the nearest data point (minimum distance)

– No parameter training required

Test 

exampleTraining 

examples 

from class 1

Training 

examples 

from class 2

Picture from: James Hays – Machine Learning Overview
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Nearest Neighbor Classifier

• For image classification, the distance between all pixels is 
calculated (e.g., using ℓ1 norm, or ℓ2 norm)

– Accuracy on CIFAR10: 38.6%

• Disadvantages:

– The classifier must remember all training data and store it for future 
comparisons with the test data

– Classifying a test image is expensive since it requires a comparison to 
all training images

Picture from: https://cs231n.github.io/classification/

ℓ1 norm
(Manhattan distance)

https://cs231n.github.io/classification/
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Nearest Neighbor Classifier

• k-Nearest Neighbors approach considers multiple neighboring 
data points to classify a test data point

– E.g., 3-nearest neighbors 

▪ The test example in the figure is the + mark

▪ The class of the test example is obtained by voting (of 3 closest points)
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Picture from: James Hays – Machine Learning Overview
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Linear Classifier

• Linear classifier

– Find a linear function f of the inputs xi that separates the classes

– Use pairs of inputs and labels to find the weights matrix W and the 
bias vector b

▪ The weights and biases are the parameters of the function f

▪ Parameter learning is solved by minimizing a loss function

– Perceptron algorithm is often used to find optimal parameters

▪ Updates the parameters until a minimal error is reached (similar to
gradient descent)

– Linear classifier is a simple approach, but it is a building block of 
advanced classification algorithms, such as SVM and neural networks
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Linear Classifier

• The decision boundary is linear

– A straight line in 2D, a flat plane in 3D, a hyperplane in 
3D and higher dimensional space

• Example: classify an input image

– The selected parameters in this example are not good, 
because the predicted cat score is low

Picture from: https://cs231n.github.io/classification/

https://cs231n.github.io/classification/
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Support Vector Machines

• Support vector machines (SVM)

– How to find the best decision boundary?

▪ All lines in the figure correctly separate the 2 classes

▪ The line that is farthest from all training examples 
will have better generalization capabilities

– SVM solves an optimization problem:

▪ First, identify a decision boundary that correctly 
classifies all examples

▪ Next, increase the geometric margin 
between the boundary and all examples 

– The data points that define the maximum 
margin width are called support vectors

– Find W and b by solving:
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Linear vs Non-linear Techniques

• Linear classification techniques

– Linear classifier

– Perceptron

– Logistic regression

– Linear SVM

– Naïve Bayes

• Non-linear classification techniques

– k-nearest neighbors

– Non-linear SVM

– Neural networks

– Decision trees

– Random forest
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Linear vs Non-linear Techniques

• For some tasks, input 
data can be linearly 
separable, and linear 
classifiers can be 
suitably applied

• For other tasks, linear 
classifiers may have 
difficulties to produce 
adequate decision 
boundaries 

Picture from: Y-Fan Chang – An Overview of Machine Learning
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Non-linear Techniques

• Non-linear classification

– Features 𝑧𝑖 are obtained as non-linear functions of the inputs 𝑥𝑖
– It results in non-linear decision boundaries

– Can deal with non-linearly separable data

Picture from: Y-Fan Chang – An Overview of Machine Learning

Inputs: 𝑥𝑖 = 𝑥𝑛1 𝑥𝑛2

Features: 𝑧𝑖 = 𝑥𝑛1 𝑥𝑛2 𝑥𝑛1 ∙ 𝑥𝑛2 𝑥𝑛1
2 𝑥𝑛2

2

Outputs: 𝑓 𝑥𝑖 ,𝑊, 𝑏 = 𝑊𝑧𝑖 + 𝑏
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Non-linear Support Vector Machines

• Non-linear SVM

– The original input space is mapped to a higher-dimensional feature 
space where the training set is linearly separable

– Define a non-linear kernel function to calculate a non-linear decision 
boundary in the original feature space

Φ: 𝑥 ↦ 𝜙 𝑥

Picture from: James Hays – Machine Learning Overview
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Binary vs Multi-class Classification

• A problem with only 2 classes is referred to as binary classification

– The output labels are 0 or 1

– E.g., benign or malignant tumor, spam or no spam email

• A problem with 3 or more classes is referred to as multi-class 
classification
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Binary vs Multi-class Classification

• Both the binary and multi-class classification problems can be 
linearly or non-linearly separated

– Linearly and non-linearly separated data for binary classification 
problem
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No-Free-Lunch Theorem

• Wolpert (2002) - The Supervised Learning No-Free-Lunch 
Theorems

• The derived classification models for supervised learning are 
simplifications of the reality 

– The simplifications are based on certain assumptions

– The assumptions fail in some situations

▪ E.g., due to inability to perfectly estimate parameters from limited data

• In summary, the theorem states:

– No single classifier works the best for all possible situations

– Since we need to make assumptions to generalize

https://link.springer.com/chapter/10.1007/978-1-4471-0123-9_3
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ML vs. Deep Learning

• Most machine learning methods rely on human-designed feature 
representations

– ML becomes just optimizing weights to best make a final prediction

Picture from: Ismini Lourentzou – Introduction to Deep Learning
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ML vs. Deep Learning

• Deep learning (DL) is a machine learning subfield that uses 
multiple layers for learning data representations

– DL is exceptionally effective at learning patterns

Picture from: https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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ML vs. Deep Learning

• DL applies a multi-layer process for learning rich hierarchical  
features (i.e., data representations)

– Input image pixels → Edges → Textures → Parts → Objects

Low-Level 
Features

Mid-Level 
Features

Output
High-Level 
Features

Trainable 
Classifier

Slide credit: Param Vir Singh – Deep Learning



24

CS 502, Fall 2020

Why is DL Useful?

• DL provides a flexible, learnable framework for representing 
visual, text, linguistic information

– Can learn in unsupervised and supervised manner

• DL represents an effective end-to-end system learning

• Requires large amounts of training data

• Since about 2010, DL has outperformed other ML techniques

– First in vision and speech, then NLP, and other applications



25

CS 502, Fall 2020

Representational Power

• NNs with at least one hidden layer are universal approximators

– Given any continuous function h(x) and some 𝜖 > 0, there exists a NN 
with one hidden layer (and with a reasonable choice of non-linearity) 
described with the function f(x), such that ∀𝑥, ℎ 𝑥 − 𝑓(𝑥) < 𝜖

– I.e., NN can approximate any arbitrary complex continuous function

• NNs use nonlinear mapping of the inputs to 
the outputs f(x) to compute complex decision 
boundaries

• But then, why use deeper NNs?

– The fact that deep NNs work better is an 
empirical observation

– Mathematically, deep NNs have the same 
representational power as a one-layer NN
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Introduction to Neural Networks 

• Handwritten digit recognition (MNIST dataset)
– The intensity of each pixel is considered an input element

– The output is the class of the digit

Input

16 x 16 = 256

1x

2x

256x
…

…

Ink → 1
No ink → 0

…
…

y1

y2

y10

Each dimension represents the 
confidence of a digit

is 1

is 2

is 0

…
…

0.1

0.7

0.2

The image is  “2”

Output

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Introduction to Neural Networks 

• Handwritten digit recognition

Machine “2”

1x

2x

256x

…
… …
…

y1

y2

y10𝑓: 𝑅256 → 𝑅10

The function 𝑓 is represented by a neural network

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Elements of Neural Networks 

• NNs consist of hidden layers with neurons (i.e., computational 
units)

• A single neuron maps a set of inputs into an output number, or 
𝑓: 𝑅𝐾 → 𝑅

bwawawaz KK ++++= 2211

z

1w

2w

Kw…

1a

2a

Ka

+

b

( )z

bias

a

Activation 
functionweights

𝑎 = 𝜎 𝑧

input

output

…
Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Elements of Neural Networks 

• A NN with one hidden layer and one output layer

𝒉

𝒚

𝒙

𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓 𝒉 = 𝝈(𝐖𝟏𝒙 + 𝒃𝟏)

𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓 𝒚 = 𝝈(𝑾𝟐𝒉 + 𝒃𝟐)

Weights Biases

Activation functions

4 + 2 = 6 neurons (not counting inputs)
[3 × 4] + [4 × 2] = 20 weights 

4 + 2 = 6 biases
26 learnable parameters

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Elements of Neural Networks 

• A neural network playground link

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.45430&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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Elements of Neural Networks 

• Deep NNs have many hidden layers

– Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)

– Each neuron is connected to all neurons in the succeeding layer

Output Layer
Hidden Layers

Input Layer

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Elements of Neural Networks 

• A simple network, toy example

( )z

z

( )
ze

z
−+

=
1

1


Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.98

0.12

1 ∙ 1 + −1 ∙ −2 + 1 = 4

1 ∙ −1 + −1 ∙ 1 + 0 =-2

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Elements of Neural Networks 

• A simple network, toy example (cont’d)

– For an input vector [1 −1]𝑇, the output is [0.62 0.83]𝑇

1

-2

1

-1

1

0

4

-2

0.98

0.12

2

-1

-1

-2

3

-1

4

-1

0.86

0.11

0.62

0.83

0

0

-2

2

1

-1

𝑓: 𝑅2 → 𝑅2 𝑓
1
−1

=
0.62
0.83

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Matrix Operation

• Matrix operations are helpful when working with 
multidimensional inputs and outputs

𝜎

1

-2

1

-1

1

0

4

-2

0.98

0.12

1
−1

1 −2
−1 1 +

1
0

0.98
0.12=

1

-1
4
−2

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Matrix Operation

• Multilayer NN, matrix calculations for the first layer

– Input vector x, weights matrix W1, bias vector b1, output vector a1

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1

x a1

b1W1 x += 𝜎

b1

a1

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Matrix Operation

• Multilayer NN, matrix calculations for all layers

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Matrix Operation

• Multilayer NN, function f maps inputs x to outputs y, i.e., 𝑦 = 𝑓(𝑥)

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Softmax Layer

• In multi-class classification tasks, the output layer is typically a 
softmax layer

– If a regular hidden layer with sigmoid activations is used instead, the 
output of the NN may not be easy to interpret

▪ Sigmoid activations can still be used for binary classification 

A Regular Hidden Layer

( )11 zy =

( )22 zy =

( )33 zy =

1z

2z

3z







3

-3

1

0.95

0.05

0.73

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Softmax Layer

• The softmax layer applies softmax activations to 
output a probability value in the range [0, 1]

– The values z inputted to the softmax layer are 
referred to as logits

1z
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3z

A Softmax Layer
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Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Activation Functions

• Non-linear activations are needed to learn complex (non-linear) data 
representations

– Otherwise, NNs would be just a linear function (such as W1W2𝑥 = 𝑊𝑥) 

– NNs with large number of layers (and neurons) can approximate more 
complex functions 

▪ Figure: more neurons improve representation (but, may overfit)

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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Activation: Sigmoid

• Sigmoid function σ: takes a real-valued number and “squashes” it 
into the range between 0 and 1

– The output can be interpreted as the firing rate of a biological neuron

▪ Not firing = 0; Fully firing = 1

– When the neuron’s activation are 0 or 1, sigmoid neurons saturate

▪ Gradients at these regions are almost zero (almost no signal will flow) 

– Sigmoid activations are less common in modern NNs

ℝ𝑛 → 0,1

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Activation: Tanh

• Tanh function: takes a real-valued number and “squashes” it into 
range between -1 and 1

– Like sigmoid, tanh neurons saturate

– Unlike sigmoid, the output is zero-centered

▪ It is therefore preferred than sigmoid

– Tanh is a scaled sigmoid: tanh(𝑥)=2σ(2𝑥)−1

ℝ𝑛 → −1,1

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Activation: ReLU

• ReLU (Rectified Linear Unit): takes a real-valued number and 
thresholds it at zero

𝑓 𝑥 = max(0, 𝑥)
ℝ𝑛 → ℝ+

𝑛

– Most modern deep NNs use ReLU
activations 

– ReLU is fast to compute 

▪ Compared to sigmoid, tanh

▪ Simply threshold a matrix at zero

– Accelerates the convergence of 
gradient descent

▪ Due to linear, non-saturating form 

– Prevents the gradient vanishing 
problem
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Activation: Leaky ReLU

• The problem of ReLU activations: they can “die”

– ReLU could cause weights to update  in a way that the gradients can 
become zero and the neuron will not activate again on any data 

– E.g., when a large learning rate is used

• Leaky ReLU activation function is a variant of ReLU

– Instead of the function being 0 when 𝑥 < 0, a leaky ReLU has a small 
negative slope (e.g., α = 0.01, or similar)

– This resolves the dying ReLU
problem

– Most current works still use ReLU

▪ With a proper setting of the 
learning rate, the problem of 
dying ReLU can be avoided

𝑓 𝑥 = ቊ
𝛼𝑥 for 𝑥 < 0
𝑥 for 𝑥 ≫ 0
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Activation: Linear Function

• Linear function means that the output signal is proportional to the 
input signal to the neuron

𝑓 𝑥 = 𝑐𝑥

– If the value of the constant c is 1, it is 
also called identity activation 
function

– This activation type is used in 
regression problems

▪ E.g., the last layer can have linear 
activation function, in order to 
output a real number (and not a 
class membership)

ℝ𝑛 → ℝ𝑛
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Training NNs

• The network parameters 𝜃 include the weight matrices and bias 
vectors from all layers

• Training a model to learn a set of parameters 𝜃 that are optimal 
(according to a criterion) is one of the greatest challenges in ML

𝜃 = 𝑊1, 𝑏1,𝑊2, 𝑏2, ⋯𝑊𝐿, 𝑏𝐿

16 x 16 = 256
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is 0
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ftm
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Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Training NNs

• Data preprocessing - helps convergence during training

– Mean subtraction

▪ Zero-centered data

– Subtract the mean for each individual data dimension (feature)

– Normalization

▪ Divide each image by its standard deviation

– To obtain standard deviation of 1 for each data dimension (feature)

▪ Or, scale the data within the range [-1, 1]

Picture from: https://cs231n.github.io/neural-networks-2/

https://cs231n.github.io/neural-networks-2/
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Training NNs

• To train a NN, set the parameters 𝜃 such that for a training subset 
of images, the corresponding elements in the predicted output 
have maximum values

y1 has the maximum valueInput:

y2 has the maximum valueInput:
.
.
.

Input: y9 has the maximum value

Input: y10 has the maximum value

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Training NNs

• Define an objective function/cost function/loss function ℒ 𝜃 that 
calculates the difference between the model prediction and the 
true label

– E.g., ℒ 𝜃 can be mean-squared error, cross-entropy, etc.

1x

2x

…
…

256x

…
…

……
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…
…
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y2

y10

Cost 

0.2

0.3

0.5

…
…

1

0

0

…
…

True label “1”

ℒ(𝜃)

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Training NNs

• For n training images, calculate the total loss: ℒ 𝜃 = σ𝑛=1
𝑁 ℒ𝑛 𝜃

• Find the optimal NN parameters 𝜃∗ that minimize the total loss ℒ 𝜃

x1

x2

xN

NN

NN

NN

…
…

…
…

y1

y2

yN

ො𝑦1

ො𝑦2

ො𝑦𝑁

ℒ1 𝜃

…
…

…
…

x3 NN y3ො𝑦3

ℒ2 𝜃

ℒ3 𝜃

ℒ𝑛 𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Training NNs

• Optimizing the loss function ℒ 𝜃

– Almost all DL models these days are trained with a variant of the 
gradient descent (GD) algorithm

– GD applies iterative refinement of the network parameters 𝜃

– GD uses the opposite direction of the gradient of the loss with respect 
to the NN parameters (i.e.,𝛻ℒ 𝜃 = Τ𝜕ℒ 𝜕𝜃𝑖 ) for updating  𝜃

▪ The gradient of the loss function 𝛻ℒ 𝜃 gives the direction of fastest 
increase of the loss function ℒ 𝜃 when the parameters 𝜃 are changed

ℒ 𝜃

𝜃𝑖

𝜕ℒ

𝜕𝜃𝑖
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Training NNs

• The loss functions for most DL tasks are defined over very high-
dimensional spaces

– E.g., ResNet50 NN has about 23 million parameters

– This makes the loss function impossible to visualize

• We can still gain intuitions by studying 1-dimensional and 2-
dimensional examples of loss functions

1D loss (the minimum point is obvious) 2D loss (blue = low loss, red = high loss)

Picture from: https://cs231n.github.io/optimization-1/

https://cs231n.github.io/optimization-1/
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Gradient Descent Algorithm

• Steps in the gradient descent algorithm:

1. Randomly initialize the model parameters, 𝜃0

▪ In the figure, the parameters are denoted 𝑤

2. Compute the gradient of the loss function at 𝜃0: 𝛻ℒ 𝜃0

3. Update the parameters as: 𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

▪ Where α is the learning rate

4. Go to step 2 and repeat (until a terminating criterion is reached)
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Gradient Descent Algorithm

• Example: a NN with only 2 parameters 𝑤1 and 𝑤2, i.e., 𝜃 = 𝑤1, 𝑤2

– Different colors are the values of the loss (minimum loss 𝜃∗ is ≈ 1.3)

𝑤1

𝑤2

2. Compute the 
gradient at 𝜃0, 𝛻ℒ 𝜃0

𝜃0

3. Times the learning 
rate 𝜂, and update 𝜃,
𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃1

1. Randomly pick a 
starting point 𝜃0

4. Go to step 2, repeat
−𝛻ℒ 𝜃0

𝜃1 =
𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃∗

𝛻ℒ 𝜃0 =
𝜕ℒ 𝜃0 /𝜕𝑤1
𝜕ℒ 𝜃0 /𝜕𝑤2

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Gradient Descent Algorithm

• Example (contd.)

𝑤1

𝑤2

2. Compute the 
gradient at 𝜃0,𝛻ℒ 𝜃0

𝜃0

3. Times the learning 
rate 𝜂, and update 𝜃,
𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃1

𝜃1 − 𝛼𝛻ℒ 𝜃1
𝜃2 − 𝛼𝛻ℒ 𝜃2

𝜃2

Eventually, we would reach a minimum …..

1. Randomly pick a 
starting point 𝜃0

4. Go to step 2, repeat

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Gradient Descent Algorithm

• Gradient descent algorithm stops when a local minimum of the loss 
surface is reached

– GD does not guarantee reaching a global minimum

– However, empirical evidence suggests that GD works well for NNs

ℒ 𝜃

𝜃

Picture from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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Gradient Descent Algorithm

• For most tasks, the loss surface ℒ 𝜃 is highly complex (and non-
convex)

ℒ

𝑤1 𝑤2

• Random initialization in NNs 
results in different initial 
parameters 𝜃0

– Gradient descent may reach 
different minima at every run

– Therefore, NN will produce 
different predicted outputs 

• Currently, we don’t have an 
algorithm that guarantees 
reaching a global minimum for 
an arbitrary loss function

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Backpropagation

• How to calculate the gradients of the loss function in NNs?

• There are two ways:

1. Numerical gradient: slow, approximate, but easy way

2. Analytic gradient: requires calculus, fast, but more error-prone way

• In practice the analytic gradient is used

– Analytical differentiation for gradient computation is available in 
almost all deep learning libraries
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Mini-batch Gradient Descent

• It is wasteful to compute the loss over the entire set to perform a 
single parameter update for large datasets

– E.g., ImageNet has 14M images

– GD (a.k.a. vanilla GD) is replaced with mini-batch GD

• Mini-batch gradient descent

– Approach:

▪ Compute the loss ℒ 𝜃 on a batch of images, update the parameters 𝜃, 
and repeat until all images are used

▪ At the next epoch, shuffle the training data, and repeat above process

– Mini-batch GD results in much faster training

– Typical batch size: 32 to 256 images

– It works because the examples in the training data are correlated

▪ I.e., the gradient from a mini-batch is a good approximation of the 
gradient of the entire training set
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Stochastic Gradient Descent

• Stochastic gradient descent

– SGD uses mini-batches that consist of a single input example

▪ E.g., one image mini-batch

– Although this method is very fast, it may cause significant 
fluctuations in the loss function

▪ Therefore, it is less commonly used, and mini-batch GD is preferred

– In most DL libraries, SGD is typically a mini-batch SGD (with an 
option to add momentum)
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Problems with Gradient Descent

• Besides the local minima problem, the GD algorithm can be very 
slow at plateaus, and it can get stuck at saddle points

cost ℒ 𝜃

Very slow at the plateau

Stuck at a local minimum

𝛻ℒ 𝜃 = 0

Stuck at a saddle point

𝛻ℒ 𝜃 = 0𝛻ℒ 𝜃 ≈ 0

𝜃
Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Gradient Descent with Momentum

• Gradient descent with momentum uses the momentum of the 
gradient for parameter optimization

Movement = Negative of Gradient + Momentum 

Gradient = 0

Negative of Gradient

Momentum

Real Movement

cost ℒ 𝜃

𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Gradient Descent with Momentum

• Parameters update in GD with momentum : 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝑉𝑛𝑒𝑤

▪ Where: 𝑉𝑛𝑒𝑤= 𝛽𝑉𝑜𝑙𝑑 + 𝛼𝛻ℒ 𝜃𝑜𝑙𝑑

• Compare to vanilla GD: 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼𝛻ℒ 𝜃𝑜𝑙𝑑

• The term 𝑉𝑛𝑒𝑤 is called momentum

– This term accumulates the gradients from the past several steps

– It is similar to a momentum of a heavy ball rolling down the hill 

• The parameter 𝛽 referred to as a coefficient of momentum

– A typical value of the parameter 𝛽 is 0.9

• This method updates the parameters 𝜃 in the direction of the 
weighted average of the past gradients
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Nesterov Accelerated Momentum

• Gradient descent with Nesterov accelerated momentum 

– Parameters update: 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝑉𝑛𝑒𝑤

▪ Where: 𝑉𝑛𝑒𝑤= 𝛽𝑉𝑜𝑙𝑑 + 𝛼𝛻ℒ 𝜃𝑜𝑙𝑑 − 𝛽𝑉𝑜𝑙𝑑

– The term 𝜃𝑜𝑙𝑑 − 𝛽𝑉𝑜𝑙𝑑 allows us to predict the position of the 
parameters in the next step (i.e., 𝜃𝑛𝑒𝑥𝑡 ≈ 𝜃𝑜𝑙𝑑 − 𝛽𝑉𝑜𝑙𝑑)

– The gradient is calculated with respect to the approximate future 
position of the parameters in the next step, 𝜃𝑛𝑒𝑥𝑡

Picture from: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

GD with momentum
GD with Nesterov

momentum

https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12
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Learning Rate

• Learning rate

– The gradient tells us the direction in which the loss has the steepest 
rate of increase, but it does not tell us how far along the opposite 
direction we should step

– Choosing the learning rate (also called the step size) is one of the most 
important hyper-parameter settings for NN training

LR too 
small

LR too 
large
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Learning Rate

• Training loss for different learning rates

– High learning rate: the loss increases or plateaus too quickly

– Low learning rate: the loss decreases too slowly (takes many epochs to 
reach a solution)

Picture from: https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/
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Annealing the Learning Rate

• Reduce the learning rate over time (learning rate decay)

– Approach 1

▪ Reduce the learning rate by some factor every few epochs

– Typical values: reduce the learning rate by a half every 5 epochs, or by 10 
every 20 epochs

– Exponential decay reduces the learning rate exponentially over time

– These numbers depend heavily on the type of problem and the model

– Approach 2 

▪ Reduce the learning rate by a constant (e.g., by half) whenever the 
validation loss stops improving 

– In TensorFlow: tf.keras.callbacks.ReduceLROnPleateau()

» Monitor: validation loss

» Factor: 0.1 (i.e., divide by 10)

» Patience: 10 (how many epochs to wait before applying it)

» Minimum learning rate: 1e-6 (when to stop)
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Adam

• Adaptive Moment Estimation (Adam)

– Adam computes adaptive learning rates for each dimension of 𝜃

▪ Similar to GD with momentum, Adam computes a weighted average of 

past gradients, i.e., 𝑉𝑛𝑒𝑤= 𝛽1𝑉
𝑜𝑙𝑑 + 1 − 𝛽1 𝛻ℒ 𝜃𝑜𝑙𝑑

▪ Adam also computes a weighted average of past squared gradients, i.e., 

𝑈𝑛𝑒𝑤= 𝛽2𝑈
𝑜𝑙𝑑 + 1 − 𝛽2 𝛻ℒ 𝜃𝑜𝑙𝑑

2

– The parameters update is: 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 −
𝛼

෡𝑉𝑛𝑒𝑤+𝜖
෡𝑈𝑛𝑒𝑤

▪ Where: ෠𝑉𝑛𝑒𝑤 =
𝑉𝑛𝑒𝑤

1−𝛽1
and ෡𝑈𝑛𝑒𝑤 =

𝑈𝑛𝑒𝑤

1−𝛽2

▪ The proposed default values are 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8

• Other commonly used optimization methods include:

– Adagrad, Adadelta, RMSprop, Nadam, etc.

– Most papers nowadays used Adam and SGD with momentum
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Vanishing Gradient Problem

• In some cases, during training, the gradients can become either 
very small (vanishing gradients) of very large (exploding 
gradients)

– They result in very small or very large update of the parameters

– Solutions: ReLU activations, regularization, LSTM units in RNNs

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Small gradients, learns very slow
Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Loss Functions

• Classification tasks

Training 
examples

ℝ𝑛 × 𝑐𝑙𝑎𝑠𝑠1, … , 𝑐𝑙𝑎𝑠𝑠𝑚 (one-hot encoding)

Output 
Layer

Softmax Activation
[maps ℝ𝑚 to a probability distribution]

Loss function Cross-entropy ℒ 𝜃 = −
1

𝑛
෍

𝑖=1

𝑛

෍

𝑘=1

𝐾

𝑦𝑘
(𝑖)
log ො𝑦𝑘

(𝑖)
+ 1 − 𝑦𝑘

(𝑖)
log 1 − ො𝑦𝑘

𝑖

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Loss Functions

• Regression tasks

Training 
examples

Output 
Layer

Loss function
Mean Squared Error ℒ 𝜃 =

1

𝑛
෍

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦(𝑖)
2

Linear (Identity) or Sigmoid Activation

ℝ𝑛 × ℝ𝑚

Mean Absolute Error ℒ 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦(𝑖)

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Generalization

• Underfitting

– The model is too “simple” to represent 
all the relevant class characteristics

– Model with too few parameters

– High error on the training set and high 
error on the testing set

• Overfitting

– The model is too “complex” and fits 
irrelevant characteristics (noise) in the 
data

– Model with too many parameters

– Low error on the training error and 
high error on the testing set

Blue line – decision boundary by the model
Green line – optimal decision boundary
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Overfitting

• A model with high capacity fits the noise in the data instead of the 
underlying relationship

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

• The model may fit the training data 
very well, but fails to generalize to 
new examples (test data)

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png


74

CS 502, Fall 2020

Regularization: Weight Decay

• ℓ𝟐 weight decay

– A regularization term that penalizes large weights is added to the loss 
function

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆෍

𝑘

𝜃𝑘
2

– For every weight in the network, we add the regularization term to 
the loss value

▪ During gradient descent parameter update, every weight is decayed 
linearly toward zero

– The weight decay coefficient 𝜆 determines how dominant the 
regularization is during the gradient computation

Data loss Regularization loss
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Regularization: Weight Decay

• Effect of the decay coefficient 𝜆

– Large weight decay coefficient → penalty for weights with large 
values
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Regularization: Weight Decay

• ℓ𝟏 weight decay

– The regularization term is based on the ℓ1 norm of the weights

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆σ𝑘 𝜃𝑘

– ℓ1 weight decay is less common with NN

▪ Often performs worse than ℓ2 weight decay

– It is also possible to combine ℓ1 and ℓ2 regularization 

▪ Called elastic net regularization

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆1 σ𝑘 𝜃𝑘 + 𝜆2 σ𝑘 𝜃𝑘
2
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Regularization: Dropout

• Dropout

– Randomly drop units (along with their connections) during training

– Each unit is retained with a fixed dropout rate p, independent of other 
units 

– The hyper-parameter p to be chosen (tuned)

▪ Often between 20 and 50 % of the units are dropped 

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Regularization: Dropout

• Dropout is a kind of ensemble learning
– Using one mini-batch to train one network with a slightly different 

architecture

minibatch
1

minibatch
2

minibatch
3

minibatch
n

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Regularization: Early Stopping

• Early-stopping

– During model training, use a validation set, along with a training set

▪ A ratio of about 25% to 75% of the data is often used

– Stop when the validation accuracy (or loss) has not improved after n
subsequent epochs

▪ The parameter n is called patience 

Stop training

validation



80

CS 502, Fall 2020

Batch Normalization

• Batch normalization layers act similar to the data preprocessing 
steps mentioned earlier

– They calculate the mean μ and variance σ of a batch of input data, and 
normalize the data x to a zero mean and unit variance

– I.e., ො𝑥 =
𝑥−𝜇

𝜎

• BatchNorm layers alleviate the problems of proper initialization of 
the parameters and hyper-parameters

– Result in faster convergence training, allow larger learning rates

– Reduce the internal covariate shift

• The BatchNorm layers are inserted immediately after 
convolutional layers or fully-connected layers, and before 
activation layers

– They are very common with convolutional NNs
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Hyper-parameter Tuning

• Training NNs can involve many hyper-parameter settings

• The most common hyper-parameters include:

– Number of layers, and number of neurons per layer

– Initial learning rate

– Learning rate decay schedule (e.g., decay constant)

• Other hyper-parameters may include:

– Regularization parameters (ℓ2 penalty, dropout rate)

– Batch size

• Hyper-parameter tuning can be time-consuming for larger NNs
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Hyper-parameter Tuning

• Grid search

– Check all values in a range with a step value

• Random search

– Randomly sample values for the parameter

– Often preferred to grid search

• Bayesian hyper-parameters optimization

– Is an active area of research
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k-Fold Cross-Validation

• Using k-fold cross-validation for hyper-parameter tuning is 
common when the size of the training data is small

– It leads to a better and less noisy estimate of the model performance 
by averaging the results across several folds

• E.g., 5-fold cross-validation (see the figure on the next slide)

1. Split the train data into 5 equal folds

2. First use folds 2-5 for training and fold 1 for validation

3. Repeat by using fold 2 for validation, then fold 3, fold 4, and fold 5

4. Average the results over the 5 runs

5. Once the best hyper-parameters are determined, evaluate the model 
on the set aside test data 



84

CS 502, Fall 2020

k-Fold Cross-Validation

• Illustration of a 5-fold cross-validation

Picture from: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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Ensemble Learning

• Ensemble learning is training multiple classifiers separately and 
combining their predictions 

– Ensemble learning often outperforms individual classifiers

– Better results obtained with higher model variety in the ensemble

– Bagging (bootstrap aggregating)

▪ Randomly draw subsets from the training set (i.e., bootstrap samples)

▪ Train separate classifiers on each subset of the training set

▪ Perform classification based on the average vote of all classifiers

– Boosting

▪ Train a classifier, and apply weights on the training set (apply higher 
weights on misclassified examples, focus on “hard examples”)

▪ Train new classifier, reweight training set according to prediction error

▪ Repeat

▪ Perform classification based on weighted vote of the classifiers
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Deep vs Shallow Networks

• Deeper networks perform better than shallow networks

– But only up to some limit: after a certain number of layers, the 
performance of deeper networks plateaus

1x 2x ……
Nx

Deep

1x 2x ……
Nx

……

Shallow

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Convolutional Neural Networks (CNNs)

• Convolutional neural networks (CNNs) were primarily designed 
for image data

• CNNs use a convolutional operator for extracting data features

– Allows parameter sharing

– Efficient to train

– Have less parameters than NNs with fully-connected layers

• CNNs are robust to spatial translations of objects in images

• A convolutional filter slides (i.e., convolves) across the image

Input matrix

Convolutional 
3x3 filter

Picture from: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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Convolutional Neural Networks (CNNs)

• When the convolutional filters are scanned over the image, they 
capture useful features

– E.g., edge detection by convolutions

Filter
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Slide credit: Param Vir Singh – Deep Learning
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Convolutional Neural Networks (CNNs)

• In CNNs, hidden units in a layer are only connected to a small 
region of the layer before it (called local receptive field)

– The depth of each feature map corresponds to the number of 
convolutional filters used at each layer

Input Image

Layer 1 

Feature Map Layer 2 

Feature Map

w1 w2

w3 w4 w5 w6

w7 w8

Filter 1

Filter 2

Slide credit: Param Vir Singh – Deep Learning
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Convolutional Neural Networks (CNNs)

• Max pooling: reports the maximum output within a rectangular 
neighborhood

• Average pooling: reports the average output of a rectangular 
neighborhood

• Pooling layers reduce the spatial size of the feature maps

– Reduce the number of parameters, prevent overfitting

1 3 5 3

4 2 3 1

3 1 1 3

0 1 0 4

MaxPool with a 2×2 filter with stride of 2

Input Matrix

Output Matrix

4 5

3 4

Slide credit: Param Vir Singh – Deep Learning
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Convolutional Neural Networks (CNNs)

• Feature extraction architecture

– After 2 convolutional layers, a max-pooling layer reduces the size of 
the feature maps (typically by 2)

– A fully convolutional and a softmax layers are added last to perform 
classification
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Slide credit: Param Vir Singh – Deep Learning
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Residual CNNs

• Residual networks (ResNets)

– Introduce “identity” skip connections

▪ Layer inputs are propagated and added to the layer output

▪ Mitigate the problem of vanishing gradients during 
training

▪ Allow training very deep NN (with over 1,000 layers)

– Several variants exist: 18, 34, 50, 101, 152, and 200 layers

– Are used as base models of other state-of-the-art NNs 

▪ Other similar models: ResNeXT, DenseNet
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Recurrent Neural Networks (RNNs)

• Recurrent NNs are used for modeling sequential data and data 
with varying length of inputs and outputs

– Videos, text, speech, DNA sequences, human skeletal data

• RNNs introduce recurrent connections between the neurons units

– This allows processing sequential data one element at a time by 
selectively passing information across a sequence

– Memory of the previous inputs is stored in the model’s internal state 
and affect the model predictions

– Can capture correlations in sequential data

• RNNs use backpropagation-through-time for training

• RNNs are more sensitive to the vanishing gradient problem
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Recurrent Neural Networks (RNNs)

• RNNs can have one of many inputs and one of many outputs

A person riding a 
motorbike on dirt 
road

Awesome movie. Highly 
recommended. Positive

Happy Diwali शुभ दीपावली

Image 
Captioning

Sentiment 
Analysis

Machine 
Translation

RNN Application Input Output

Slide credit: Param Vir SIngh– Deep Learning



95

CS 502, Fall 2020

Recurrent Neural Networks (RNNs)

• RNN use same set of weights 𝑤ℎ and biases 𝑤𝑥 across all time 
steps

• An RNN is shown rolled over time

x1

h0 𝑓ℎ()
𝑤ℎ

𝑤𝑥

h1

x2

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h2

x3

𝑓ℎ()
𝑤ℎ

𝑤𝑥

h3 𝑓𝑦()
𝑤𝑦

OUTPUT

ℎ 𝑡 = 𝑓ℎ 𝑤ℎ ∗ ℎ 𝑡 − 1 + 𝑤𝑥 ∗ 𝑥 𝑡

Slide credit: Param Vir Singh – Deep Learning
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Bidirectional RNNs

• Bidirectional RNNs incorporate both forward and backward 
passes through sequential data

– The output may not only depend on the previous elements in the 
sequence,  but also on future elements in the sequence

– It resembles two RNNs stacked on top of each other

ℎ𝑡 = 𝜎(𝑊(ℎℎ)ℎ𝑡+1 +𝑊(ℎ𝑥)𝑥𝑡)

ℎ𝑡 = 𝜎(𝑊(ℎℎ)ℎ𝑡−1 +𝑊(ℎ𝑥)𝑥𝑡)

𝑦𝑡 = 𝑓 ℎ𝑡; ℎ𝑡

Output both past and future elements

Slide credit: Param Vir Singh – Deep Learning
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LSTM Networks

• Long Short Term Memory (LSTM) networks are a variant of RNNs

• LSTM mitigates the vanishing/exploding gradient problem

– Solution: a Memory Cell, updated at each step in the sequence

• Three gates control the flow of information to and from the 
Memory Cell

– Input Gate: protects the current step from irrelevant inputs

– Output Gate: prevents current step from passing irrelevant 
information to later steps

– Forget Gate: limits information passed from one cell to the next

• Most modern RNN models use either LSTM units or other more 
advanced types of recurrent units (e.g., GRU units)
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LSTM Networks

• LSTM cell

– Input gate, output gate, forget gate, memory cell 

– LSTM can learn long-term correlations within the data sequences
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