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Lecture Outline

• Linear algebra

• Eigendecomposition

• Differential calculus

• Optimization algorithms

• Probability

▪ Random variables

▪ Probability distributions

• Information theory
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Notation

• 𝑎, 𝑏, 𝑐 Scalar (integer or real)

• 𝐱, 𝐲, 𝐳 Vector (bold-font, lower case)

• 𝐀, 𝐁, 𝐂 Matrix (bold-font, upper-case)

• A, B, C Tensor ((bold-font, upper-case)

• 𝑋, 𝑌, 𝑍 Random variable (normal font, upper-case)

• 𝑎 ∈ 𝒜 Set membership: 𝑎 is member of set 𝒜

• 𝒜 Cardinality: number of items in set 𝒜

• 𝐯 Norm: length of vector 𝐯

• 𝐮 ∙ 𝐯 or 𝐮, 𝐯 Dot product of vectors 𝐮 and 𝐯

• ℝ Set of real numbers

• ℝ𝑛 Real numbers space of dimension n

• 𝑦 = 𝑓 𝑥 or 𝑥 ↦ 𝑓 𝑥 Function (map): assign a unique value 𝑓(𝑥) to each input 
value 𝑥

• 𝑓:ℝ𝑛 → ℝ Function (map): map an n-dimensional vector into a scalar
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Notation

• 𝐀⊙𝐁 Element-wise product of matrices A and B

• 𝐀† Pseudo-inverse of matrix A

•
𝑑𝑛𝑓

𝑑𝑥𝑛
n-th derivative of function f with respect to x

• 𝛻𝐱𝑓 𝐱 Gradient of function f with respect to x

• 𝐇𝑓 Hessian matrix of function f

• 𝑋~𝑃 Random variable 𝑋 has distribution 𝑃

• 𝑃 𝑋|𝑌 Probability of 𝑋 given 𝑌

• 𝒩 𝜇, 𝜎2 Gaussian distribution with mean 𝜇 and variance 𝜎2

• 𝔼𝑋~𝑃 𝑓 𝑋 Expectation of 𝑓 𝑋 with respect to 𝑃 𝑋

• Var 𝑓 𝑋 Variance of 𝑓 𝑋

• Cov 𝑓 𝑋 , 𝑔 𝑌 Covariance of 𝑓 𝑋 and 𝑔 𝑌

• corr 𝑋, 𝑌 Correlation coefficient for 𝑋 and 𝑌

• 𝐷𝐾𝐿 𝑃||𝑄 Kullback-Leibler divergence for distributions 𝑃 and 𝑄

• 𝐶𝐸 𝑃, 𝑄 Cross-entropy for distributions 𝑃 and 𝑄
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Vectors

• Vector definition

▪ Computer science: Vector is an one-dimensional array of ordered real-valued scalars

▪ Mathematics: Vector is a quantity possessing both magnitude and direction, 
represented by an arrow indicating the direction, and the length of which is 
proportional to the magnitude

• Vectors are written in column form or in row form

▪ Denoted by bold-font lower-case letters

• For a general form vector with 𝑛 elements, the vector lies in the 𝑛-dimensional 
space 𝐱 ∈ ℝ𝑛

𝐱 =

𝑥1
𝑥2
⋮
𝑥𝑛

𝐱 =

1
7
0
1

𝐱 = 1 7 0 1 𝑇
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Geometry of Vectors

• First interpretation of a vector: point in space

▪ E.g., in 2D we can visualize the data points with respect 
to a coordinate origin 

• Second interpretation of a vector: direction in space

▪ E.g., the vector 𝐯 = 3, 2 𝑇 has a direction of 3 steps to 
the right and 2 steps up

▪ The notation 𝐯 is sometimes used to indicate that the 
vectors have a direction

▪ All vectors in the figure have the same direction

• Vector addition

▪ We follow the directions given by the two vectors that 
are added 

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors
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Dot Product and Angles

• Dot product of vectors, 𝐮𝑇𝐯 = σ𝑖 𝑢𝑖 ∙ 𝑣𝑖
▪ It is also referred to as inner product, or scalar product of vectors

▪ The dot product 𝐮 ∙ 𝐯 is also often denoted by 𝐮, 𝐯

• The dot product is a symmetric operation, 𝐮 ∙ 𝐯 = 𝐮𝑇𝐯 = 𝐯𝑇𝐮 = 𝐯 ∙ 𝐮

• Geometric interpretation of a dot product: angle between two vectors

▪ I.e., dot product 𝐯 ∙ 𝐰 over the norms of the vectors is 𝑐𝑜𝑠 𝜃

• If two vectors are orthogonal: 𝜃 = 90°, i.e., cos(𝜃) = 0, then 𝐮 ∙ 𝐯 = 0

𝐮 ∙ 𝐯 = 𝐮 𝐯 𝑐𝑜𝑠 𝜃

𝜃 = arccos
𝐮 ∙ 𝐯

𝐮 𝐯

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors
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Norm of a Vector

• A vector norm is a function that maps a vector to a scalar value

▪ The norm is a measure of the size of the vector

• The norm 𝑓 should satisfy the following properties:

▪ Scaling: 𝑓 𝛼𝐱 = 𝛼 𝑓 𝐱

▪ Triangle inequality: 𝑓 𝐱 + 𝐲 ≤ 𝑓 𝐱 + 𝑓 𝐲

▪ Must be non-negative: 𝑓 𝐱 ≥ 0

• The general ℓ𝑝 norm of a vector 𝐱 is obtained as:

▪ On next page we will review the most common norms, obtained for 𝑝 = 1, 2, and ∞

• Similar concept for matrices is the Frobenius norm 

▪ It calculates the square-root of the summed squares of the elements of matrix 𝐗

𝐱 𝑝 = ෍

𝑖=1

𝑛

𝑥𝑖
𝑝

1
𝑝

X 𝐹 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑥𝑖𝑗
2
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Norm of a Vector

• For 𝑝 = 2, we have ℓ2 norm 

▪ Also called Euclidean norm

▪ It is the most often used norm

▪ ℓ2 norm is often denoted just as 𝐱 with the subscript 2 omitted

• For 𝑝 = 1, we have ℓ1 norm 

▪ Uses the absolute values of the elements

▪ Discriminate between zero and non-zero elements

• For 𝑝 = ∞, we have ℓ∞ norm 

▪ Known as infinity norm, or max norm

▪ Outputs the absolute value of the largest element

• ℓ0 norm outputs the number of non-zero elements

▪ It is not a ℓ𝑝 norm, and it is not really a norm function either (it is incorrectly called a 

norm)

𝐱 ∞ = max
𝑖

𝑥𝑖

𝐱 2 = ෍

𝑖=1

𝑛

𝑥𝑖
2 = 𝐱𝑇𝐱

𝐱 1 =෍

𝑖=1

𝑛

𝑥𝑖
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Vector Projection

• Orthogonal projection of a vector 𝐲 onto vector 𝐱

▪ The projection can take place in any space of 
dimensionality ≥ 2

▪ The unit vector in the direction of 𝐱 is 
𝐱

𝐱

o A unit vector has norm equal to 1

▪ The length of the projection of 𝐲 onto 𝐱 is 𝐲 ∙ 𝑐𝑜𝑠 𝜃

▪ The orthogonal project is the vector 𝐩𝐫𝐨𝐣𝐱 𝐲

𝐩𝐫𝐨𝐣𝐱 𝐲 =
𝐱 ∙ 𝐲 ∙ 𝑐𝑜𝑠 𝜃

𝐱

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Hyperplanes

• Hyperplane is a subspace whose dimension is one less than that of its ambient 
space

▪ In a 2D space, a hyperplane is a straight line (i.e., 1D)

▪ In a 3D, a hyperplane is a plane (i.e., 2D)

▪ In a d-dimensional vector space, a hyperplane has 𝑑 − 1 dimensions, and divides the 
space into two half-spaces

• Hyperplane is a generalization of a concept of plane in high-dimensional space

• In ML, hyperplanes are decision boundaries used for linear classification

▪ Data points falling on either sides of the hyperplane are attributed to different classes

Picture from: https://kgpdag.wordpress.com/2015/08/12/svm-simplified/

https://kgpdag.wordpress.com/2015/08/12/svm-simplified/
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Hyperplanes

• For example, for a given data point 𝐰 = 2, 1 𝑇, we 
can use dot-product to find the hyperplane for which 
𝐰 ∙ 𝐯 = 1

▪ I.e., all vectors with 𝐰 ∙ 𝐯 > 1 can be classified as one 
class, and all vectors with 𝐰 ∙ 𝐯 < 1 can be classified as 
another class

• Solving 𝐰 ∙ 𝐯 = 1, we obtain

▪ I.e., the solution is the set of points for which 𝐰 ∙ 𝐯 = 1
meaning the points lay on the line that is orthogonal to 
the vector 𝐰

o That is the line 2𝑥 + 𝑦 = 1

▪ The orthogonal projection of 𝐯 onto 𝐰 is 𝐯 𝑐𝑜𝑠 𝜃 =
1

5

𝐰

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes
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Hyperplanes

• In a 3D space, if we have a vector 𝐰 = 1, 2, 3 𝑇 and try to find all points that 
satisfy 𝐰 ∙ 𝐯 = 1, we can obtain a plane that is orthogonal to the vector 𝐰

▪ The inequalities 𝐰 ∙ 𝐯 > 1 and 𝐰 ∙ 𝐯 < 1 again define the two subspaces that are 
created by the plane

• The same concept applies to high-dimensional spaces as well

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes
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Matrices

• Matrix is a rectangular array of real-valued scalars arranged in m horizontal 
rows and n vertical columns

▪ Each element 𝑎𝑖𝑗 belongs to the ith row and jth column

▪ The elements are denoted 𝑎𝑖𝑗 or 𝐀𝑖𝑗 or 𝐀 𝑖𝑗 or 𝐀 𝒊, 𝒋

• For the matrix 𝐀 ∈ ℝ𝑚×𝑛, the size (dimension) is 𝑚 × 𝑛 or 𝑚, 𝑛

▪ Matrices are denoted by bold-font upper-case letters
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Matrices

• Addition or subtraction

• Scalar multiplication

• Matrix multiplication

▪ Defined only  if the number of columns of the left matrix is the same as the number of 
rows of the right matrix

▪ Note that 𝐀𝐁 ≠ 𝐁𝐀

( ) , ,, i j i ji j
 = A B A B

( ) ,, i ji j
c c= A A

( ) ,1 1, ,2 2, , ,, i j i j i n n ji j
= + + +AB A B A B A B
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Matrices

• Transpose of the matrix: 𝐀𝑇 has the rows and columns exchanged

▪ Some properties

• Square matrix: has the same number of rows and columns

• Identity matrix ( In ): has ones on the main diagonal, and zeros elsewhere

▪ E.g.: identity matrix of size 3×3 :

( ) ,,

T

j ii j
=A A

3

1 0 0

0 1 0

0 0 1

 
 

=
 
  

I

𝐀 + 𝐁 = 𝐁 + 𝐀
𝐀 + 𝐁 𝑇 = 𝐀𝑇 + 𝑩𝑇

𝐀𝑇 𝑇 = 𝐀

𝐀 𝐁 + 𝐂 = 𝐀𝐁 + 𝐀𝐂
𝐀 𝐁𝐂 = 𝐀𝐁 𝐂
𝐀𝐁 𝑇 = 𝑩𝑇𝐀𝑇
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Matrices

• Determinant of a matrix, denoted by det(A) or 𝐀 , is a real-valued scalar 
encoding certain properties of the matrix

▪ E.g., for a matrix of size 2×2: 

▪ For larger-size matrices the determinant of a matrix id calculated as

det 𝐀 =෍

𝑗

𝑎𝑖𝑗 −1
𝑖+𝑗𝑑𝑒𝑡 𝐀 𝑖,𝑗

▪ In the above, 𝐀 𝑖,𝑗 is a minor of the matrix obtained by removing the row and column 

associated with the indices i and j

• Trace of a matrix is the sum of all diagonal elements

Tr 𝐀 =෍

𝑖

𝑎𝑖𝑖

• A matrix for which 𝐀 = 𝐀𝑇 is called a symmetric matrix

det
a b

ad bc
c d

  
= −  

  
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Matrices

• Elementwise multiplication of two matrices A and B is called the Hadamard
product or elementwise product

▪ The math notation is ⊙
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Matrix-Vector Products

• Consider a matrix 𝐀 ∈ ℝ𝑚×𝑛 and a vector 𝐱 ∈ ℝ𝑛

• The matrix can be written in terms of its row vectors (e.g., 𝐚1
𝑇 is the first row)

• The matrix-vector product is a column vector of length m, whose ith element is 

the dot product 𝐚𝑖
𝑇𝐱
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Matrix-Matrix Products

• To multiply two matrices 𝐀 ∈ ℝ𝑛×𝑘and 𝐁 ∈ ℝ𝑘×𝑚

• We can consider the matrix-matrix product as dot-products of rows in 𝐀 and 
columns in 𝐁
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Linear Dependence

• For the following matrix

• Notice that for the two columns 𝐛1 = 2, 4 𝑇 and 𝐛2= −1,−2 𝑇, we can write 
𝐛1= −2 ∙ 𝐛2
▪ This means that the two columns are linearly dependent

• The weighted sum 𝑎1𝐛1 + 𝑎2𝐛2 is referred to as a linear combination of the 
vectors 𝐛1 and 𝐛2
▪ In this case, a linear combination of the two vectors exist for which 𝐛1+2 ∙ 𝐛2= 𝟎

• A collection of vectors 𝐯1, 𝐯2, … , 𝐯𝑘 are linearly dependent if there exist 
coefficients 𝑎1, 𝑎2, … , 𝑎𝑘 not all equal to zero, so that

• If there is no linear dependence the vectors are linearly independent
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Matrix Rank

• For an 𝑛 ×𝑚 matrix, the rank of the matrix is the largest number of linearly 
independent columns

• The matrix B from the previous example has 𝑟𝑎𝑛𝑘 𝐁 = 1, since the two columns 
are linearly dependent

• The matrix C below has 𝑟𝑎𝑛𝑘 𝐂 = 3, since it has three linearly independent 
columns

▪ I.e., 𝐜1= −1 ∙ 𝐜4, 𝐜3= −1 ∙ 𝐜5
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Inverse of a Matrix

• For a square 𝑛 × 𝑛 matrix A with rank 𝑛, 𝐀−𝟏 is its inverse matrix if their product 
is an identity matrix I

• Properties of inverse matrices

• If det 𝐴 = 0 (i.e., rank 𝐴 < 𝑛), then the inverse does not exist

▪ A matrix that is not invertible is called a singular matrix

• Note that finding an inverse of a large matrix is computationally expensive

▪ In addition, it can lead to numerical instability

• If the inverse of a matrix is equal to its transpose, the matrix is said to be 
orthogonal matrix

( )

( )

1
1

1 1 1

−
−

− − −

=

=

A A

AB B A

1 T− =A A
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Inverse of a Matrix

• Pseudo-inverse of a matrix

▪ Also known as Moore-Penrose pseudo-inverse

• For matrices that are not square, the inverse does not exist

▪ Therefore, a pseudo-inverse is used

• If 𝑚 > 𝑛, then the pseudo-inverse is 𝐀† = 𝐀T𝐀
−1
𝐀𝑇 and 𝐀†𝐀 = 𝐈

• If 𝑚 < 𝑛, then the pseudo-inverse is 𝐀† = 𝐀𝑇 𝐀𝐀T
−1

and 𝐀𝐀† = 𝐈

▪ E.g., for a matrix with dimension 𝐗2×3, a pseudo-inverse can be found of size 𝐗3×2
† , so 

that 𝐗2×3𝐗3×2
† = 𝐈2×2
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Tensors

• Tensors are n-dimensional arrays of scalars

▪ Vectors are first-order tensors, 𝐯 ∈ ℝ𝑛

▪ Matrices are second-order tensors, 𝐀 ∈ ℝ𝑚×𝑛

▪ E.g., a fourth-order tensor is T ∈ ℝ𝑛1×𝑛2×𝑛3×𝑛4

• Tensors are denoted with upper-case letters of a special font face (e.g., X, Y, Z) 

• RGB images are third-order tensors, i.e., as they are 3-dimensional arrays

▪ The 3 axes correspond to width, height, and channel 

▪ The channel axis corresponds to the color channels (red, green, and blue)
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Manifolds

• Earlier we learned that hyperplanes generalize the concept of planes in high-
dimensional spaces

▪ Similarly, manifolds can be informally imagined as generalization of the concept of 
surfaces in high-dimensional spaces 

• To begin with an intuitive explanation, the surface of the Earth is an example of a 
two-dimensional manifold embedded in a three-dimensional space

▪ This is true because the Earth looks locally flat, so on a small scale it is like a 2-D plane

▪ However, if we keep walking on the Earth in one direction, we will eventually end up 
back where we started

o This means that Earth is not really flat, it only looks locally like a Euclidean plane, but at large 
scales it folds up on itself, and has a different global structure than a flat plane
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Manifolds

• Manifolds are studied in mathematics under topological spaces

• An n-dimensional manifold is defined as a topological space with the property 
that each point has a neighborhood that is homeomorphic to the Euclidean space 
of dimension n

▪ This means that a manifold locally resembles Euclidean space near each point

▪ Informally, a Euclidean space is locally smooth, it does not have holes, edges, or other 
sudden changes, and it does not have intersecting neighborhoods

▪ Although the manifolds can have very complex structure on a large scale, resemblance 
of the Euclidean space on a small scale allows to apply standard math concepts  

• Examples of 2-dimensional manifolds are shown 
in the figure 

▪ The surfaces in the figure have been conveniently 
cut up into little rectangles that were glued together

▪ Those small rectangles locally look like flat 
Euclidean planes

Picture from: http://bjlkeng.github.io/posts/manifolds/

http://bjlkeng.github.io/posts/manifolds/
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Manifolds

• Examples of one-dimensional manifolds

▪ Upper figure: a circle is a l-D manifold embedded in 2-D, 
where each arc of the circle locally resembles a line segment

▪ Lower figures: other examples of 1-D manifolds

▪ Note that a number 8 figure is not a manifold because it has 
an intersecting point (it is not Euclidean locally)

• It is hypothesized that in the real-world, high-
dimensional data (such as images) lie on low-dimensional 
manifolds embedded in the high-dimensional space

▪ E.g., in ML, let’s assume we have a training set of images 
with size 224 × 224 × 3 pixels

▪ Learning an arbitrary function in such high-dimensional 
space would be intractable

▪ Despite that, all images of the same class (“cats” for 
example) might lie on a low-dimensional manifold

▪ This allows function learning and image classification 

Picture from: http://bjlkeng.github.io/posts/manifolds/

http://bjlkeng.github.io/posts/manifolds/
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Eigendecomposition

• Eigendecomposition is decomposing a matrix into a set of eigenvalues and 
eigenvectors

• Eigenvalues of a square matrix 𝐀 are real-value scalars 𝜆 and eigenvectors are 
any non-zero vectors 𝐯 that satisfy

𝐀𝐯 = 𝜆𝐯

• Eigenvalues are found by solving the following equation

det 𝐀 − 𝜆𝐈 = 0

• If a matrix 𝐀 has n linearly independent eigenvectors 𝐯1, … , 𝐯𝑛 with 
corresponding eigenvalues 𝜆1, … , 𝜆𝑛 , the eigendecomposition of 𝐀 is given by

𝐀 = 𝐕𝚲𝐕 −1

▪ Columns of the matrix 𝐕 are the eigenvectors, i.e., 𝐕 = 𝐯1, … , 𝐯𝑛

▪ 𝚲 is a diagonal matrix of the eigenvalues, i.e., 𝚲 = 𝜆1, … , 𝜆𝑛

• To find the inverse of the matrix A, we can use 𝐀−𝟏 = 𝐕𝚲−𝟏𝐕 −1

▪ This involves simply finding the inverse 𝚲−𝟏 of a diagonal matrix



31

CS 502, Fall 2020

Eigendecomposition

• Decomposing a matrix into eigenvalues and eigenvectors allows to analyze 
certain properties of the matrix

▪ If all eigenvalues are positive, the matrix is positive definite

▪ If all eigenvalues are positive or zero-valued, the matrix is positive semidefinite

▪ If all eigenvalues are negative or zero-values, the matrix is negative semidefinite

o Positive semidefinite matrices are interesting because they guarantee that ∀𝐱, 𝐱𝑇𝐀𝐱 ≥ 0

• Eigendecomposition can also simplify many linear-algebraic computations

▪ The determinant of A can be calculated as

det 𝐀 = 𝜆1 ∙ 𝜆2⋯𝜆𝑛
▪ If any of the eigenvalues are zero, the matrix is singular (it does not have an inverse)

• However, not every matrix can be decomposed into eigenvalues and eigenvectors

▪ Also, in some cases the decomposition may involve complex numbers

▪ Still, every real symmetric matrix is guaranteed to have an eigendecomposition
according to 𝐀 = 𝐕𝚲𝐕 −1, where 𝐕 is an orthogonal matrix
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Eigendecomposition

• Geometric interpretation of the eigenvalues and eigenvectors is that they allow 
to stretch the space in specific directions

▪ Left figure: the two eigenvectors 𝐯1 and 𝐯2 are shown for a matrix, where the two 
vectors are unit vectors (i.e., they have a length of 1)

▪ Right figure: the vectors  𝐯1 and 𝐯2 are multiplied with the eigenvalues 𝜆1 and 𝜆2
o We can see how the space is scaled in the direction of the larger eigenvalue 𝜆1

• E.g., this is used for dimensionality reduction with PCA (principle component 
analysis) where the eigenvectors corresponding to the largest eigenvalues are 
used for extracting the most important data dimensions

Picture from: Goodfellow (2017) – Deep Learning
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Singular Value Decomposition

• Singular value decomposition (SVD) provides another way to factorize a matrix, 
into singular vectors and singular values

▪ SVD is more generally applicable than eigendecomposition

▪ Every real matrix has an SVD, but the same is not true of the eigendecomposition

o E.g., if a matrix is not square, the eigendecomposition is not defined, and we must use SVD

• SVD of an 𝑚 × 𝑛 matrix 𝐀 is given by
𝐀 = 𝐔𝐃𝐕𝑻

▪ 𝐔 is an 𝑚 ×𝑚 matrix, 𝐃 is an 𝑚 × 𝑛 matrix, and 𝐕 is an 𝑛 × 𝑛 matrix

▪ The elements along the diagonal of 𝐃 are known as the singular values of A

▪ The columns of 𝐔 are known as the left-singular vectors

▪ The columns of 𝐕 are known as the right-singular vectors

• One of the most useful features of the SVD is that we can use it to derive a 
pseudo-inverse of non-square matrices
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Differential Calculus

• For a function 𝑓:ℝ → ℝ, the derivative of f is defined as

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

• If 𝑓′ 𝑎 exists, f is said to be differentiable at a

• If f ‘ 𝑐 is differentiable for ∀𝑐 ∈ 𝑎, 𝑏 , then f is differentiable on this interval

▪ We can also interpret the derivative 𝑓′(𝑥) as the instantaneous rate of change of 𝑓(𝑥)
with respect to x

▪ I.e., for a small change in x, what is the rate of change of 𝑓(𝑥)

• Given 𝑦 = 𝑓(𝑥), where x is an independent variable and y is a dependent 
variable, the following expressions are equivalent:

𝑓′ 𝑥 = 𝑓′ =
𝑑𝑦

𝑑𝑥
=
𝑑𝑓

𝑑𝑥
=

𝑑

𝑑𝑥
𝑓 𝑥 = 𝐷𝑓 𝑥 = 𝐷𝑥𝑓(𝑥)

• The symbols 
𝑑

𝑑𝑥
and D are differentiation operators that indicate operation of 

differentiation
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Differential Calculus

• The following rules are used for computing the derivatives of explicit functions
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Higher Order Derivatives

• The derivative of the first derivative of a function 𝑓 𝑥 is the second derivative of 
𝑓 𝑥

𝑑2𝑓

𝑑𝑥2
=

𝑑

𝑑𝑥

𝑑𝑓

𝑑𝑥

• The second derivative quantifies how the rate of change of 𝑓 𝑥 is changing

▪ E.g., in physics, if the function describes the displacement of an object, the first 
derivative gives the velocity of the object (i.e., the rate of change of the position)

▪ The second derivative gives the acceleration of the object (i.e., the rate of change of the 
velocity)

• If we apply the differentiation operation any number of times, we obtain the n-th
derivative of 𝑓 𝑥

𝑓 𝑛 𝑥 =
𝑑𝑛𝑓

𝑑𝑥𝑛
=

𝑑

𝑑𝑥

𝑛

𝑓 𝑥
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Taylor Series

• Taylor series provides a method to approximate any function 𝑓(𝑥) at a point 𝑥0 if 

we have the first n derivatives 𝑓 𝑥0 , 𝑓 1 𝑥0 , 𝑓 2 𝑥0 , … , 𝑓 𝑛 𝑥0

• For instance, for 𝑛 = 2, the second-order approximation of a function 𝑓(𝑥) is

𝑓 𝑥 ≈ อ
1

2

𝑑2𝑓

𝑑𝑥2
𝑥0

𝑥 − 𝑥0
2 + ቤ

𝑑𝑓

𝑑𝑥
𝑥0

𝑥 − 𝑥0 + 𝑓 𝑥0

• Similarly, the approximation of 𝑓(𝑥) with a Taylor polynomial of n-degree is

𝑓(𝑥) ≈ σ𝑖=0
𝑛 ฬ

1

𝑖!

𝑑 𝑖 𝑓

𝑑𝑥𝑖 𝑥0

𝑥 − 𝑥0
𝑖

• For example, the figure shows the first-order, 
second-order, and fifth-order polynomial of 
the exponential function 𝑓(𝑥) = 𝑒𝑥 at the 
point 𝑥0 = 0

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html
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Geometric Interpretation

• To provide a geometric interpretation of the derivatives, let’s consider a first-
order Taylor series approximation of 𝑓 𝑥 at 𝑥 = 𝑥0

𝑓 𝑥0 + ቤ
𝑑𝑓

𝑑𝑥
𝑥0

𝑥 − 𝑥0

• The expression approximates the function 𝑓 𝑥 by a line which passes through 

the point 𝑥0, 𝑓 𝑥0 and has slope ቚ
𝑑𝑓

𝑑𝑥 𝑥0
(i.e., the value of 

𝑑𝑓

𝑑𝑥
at the point 𝑥0)

• Therefore, the first derivative of a 
function is also the slope of the 
tangent line to the curve of the 
function

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html
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Partial Derivatives

• So far, we looked at functions of a single variable, where 𝑓:ℝ → ℝ

• Functions that depend on many variables are called multivariate functions

• Let 𝑦 = 𝑓 𝐱 = 𝑓(𝑥1, 𝑥2 , … , 𝑥𝑛) be a multivariate function with n variables

▪ The input is an n-dimensional vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛
𝑇 and the output is a scalar y

▪ The mapping is 𝑓:ℝ𝑛 → ℝ

• The partial derivative of y with respect to its ith parameter 𝑥𝑖 is

𝜕𝑦

𝜕𝑥𝑖
= lim

ℎ→0

𝑓(𝑥1, 𝑥2 , … , 𝑥𝑖+ℎ, … , 𝑥𝑛 ) − 𝑓(𝑥1, 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛 )

ℎ

• To calculate 
𝜕𝑦

𝜕𝑥𝑖
(𝜕 pronounced “del” or “partial”), we can treat 𝑥1, 𝑥2 , … , 𝑥𝑖−1,

𝑥𝑖+1… , 𝑥𝑛 as constants and calculate the derivative of y only with respect to 𝑥𝑖
• For notation of partial derivatives, the following are equivalent:

𝜕𝑦

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝑓 𝐱 = 𝑓𝑥𝑖 = 𝑓𝑖 = 𝐷𝑖𝑓 = 𝐷𝑥𝑖𝑓
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Gradient

• We can concatenate partial derivatives of a multivariate function with respect to 
all its input variables to obtain the gradient vector of the function

• The gradient of the multivariate function 𝑓(𝐱) with respect to the n-dimensional 
input vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛

𝑇, is a vector of n partial derivatives

𝛻𝐱𝑓 𝐱 =
𝜕𝑓 𝐱

𝜕𝑥1
,
𝜕𝑓 𝐱

𝜕𝑥2
, … ,

𝜕𝑓 𝐱

𝜕𝑥𝑛

𝑇

• When there is no ambiguity, the notations 𝛻𝑓 𝐱 or 𝛻𝐱𝑓 are often used for the 
gradient instead of 𝛻𝐱𝑓 𝐱

▪ The symbol for the gradient is the Greek letter 𝛻 (pronounced “nabla”), although 
𝛻𝐱𝑓 𝐱 is more often it is pronounced “gradient of f with respect to x” 

• In ML, the gradient descent algorithm relies on the opposite direction of the 
gradient of the loss function ℒ with respect to the model parameters 𝜃

𝛻𝜃ℒ 𝜃 for minimizing the loss function
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Hessian Matrix

• To calculate the second-order partial derivatives of multivariate functions, we 
need to calculate the derivatives for all combination of input variables

• That is, for a function 𝑓(𝐱) with an n-dimensional input vector 𝐱 =
𝑥1, 𝑥2 , … , 𝑥𝑛

𝑇, there are 𝑛2 second partial derivatives for any choice of i and j
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗

• The second partial derivatives are assembled in a matrix called the Hessian

𝐇𝑓 =

𝜕2𝑓

𝜕𝑥1𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
…

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛
• Computing and storing the Hessian matrix for functions with high-dimensional 

inputs can be computationally prohibitive

▪ E.g., the loss function for a ResNet50 model with approximately 23 million 
parameters, has a Hessian of 23 M × 23 M = 529 T (trillion) parameters
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Jacobian Matrix

• The concept of derivatives can be further generalized to vector-valued functions 
(or, vector fields) 𝑓:ℝ𝑛 → ℝ𝑚

• For an n-dimensional input vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛
𝑇 ∈ ℝ𝑛, the vector of 

functions is given as

𝐟 𝐱 = 𝑓1 𝐱 , 𝑓2 𝐱 ,… , 𝑓𝑚 𝐱 𝑇 ∈ ℝ𝑚

• The matrix of first-order partial derivates of the vector-valued function 𝐟 𝐱 is an 
𝑚 × 𝑛 matrix called a Jacobian

𝐉 =

𝜕𝑓1 𝐱

𝜕𝑥1
⋯

𝜕𝑓1 𝐱

𝜕𝑥𝑛
⋮ ⋱ ⋮

𝜕𝑓𝑚 𝐱

𝜕𝑥1
…

𝜕𝑓𝑚 𝐱

𝜕𝑥𝑛

▪ For example, in robotics a robot Jacobian matrix gives the partial derivatives of the 
translational and angular velocities of the robot end-effector with respect to the joints 
(i.e., axes) velocities
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Integral Calculus

• For a function 𝑓(𝑥) defined on the domain [𝑎, 𝑏], the definite integral of the 
function is denoted

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

• Geometric interpretation of the integral is the area between the horizontal axis 
and the graph of 𝑓(𝑥) between the points a and b

▪ In this figure, the integral is the sum of blue areas (where 𝑓 𝑥 > 0) minus the pink 
area (where 𝑓 𝑥 < 0)

Picture from: https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/clc/t

https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/clc/t
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Optimization

• Optimization is concerned with optimizing an objective function — finding the 
value of an argument that minimizes of maximizes the function

▪ Most optimization algorithms are formulated in terms of minimizing a function 𝑓(𝑥)

▪ Maximization is accomplished vie minimizing the negative of an objective function 
(e.g., minimize −𝑓(𝑥))

▪ In minimization problems, the objective function is often referred to as a cost function 
or loss function or error function

• Optimization is very important for machine learning

▪ The performance of optimization algorithms affect the model’s training efficiency

• Most optimization problems in machine learning are nonconvex

▪ Meaning that the loss function is not a convex function

▪ Nonetheless, the design and analysis of algorithms for solving convex problems has 
been very instructive for the advancing field of machine learning
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Optimization

• Optimization and machine learning have related but somewhat different goals

▪ Goal in optimization: minimize an objective function

o For a set of training examples, reduce the training error

▪ Goal in ML: find a suitable model, to predict on data examples

o For a set of testing examples, reduce the generalization error

• For a given empirical function g (dashed purple curve), optimization algorithms 
attempt to find the point of minimum empirical risk

• The expected function f (blue curve) is obtained 
given a limited amount of training data 
examples

• ML algorithms attempt to find the point of 
minimum expected risk, based on minimizing 
the error on a set of testing examples

o Which may be at a different location than the 
minimum of the training examples

o And which may not be minimal in a formal sense

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html
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Stationary Points

• Stationary points ( or critical points) of a differentiable function 𝑓(𝑥) of one 
variable are the points where the derivative of the function is zero, i.e., 𝑓′(𝑥) = 0

• The stationary points can be:

▪ Minimum, a point where the derivative changes from negative to positive

▪ Maximum, a point where the derivative changes from positive to negative

▪ Saddle point, derivative is either positive or negative on both sides of the point

• The minimum and maximum points are collectively known as extremum points

• The nature of stationary points can be 
determined based on the second derivative 
of 𝑓(𝑥) at the point

▪ If 𝑓′′ 𝑥 > 0, the point is a minimum

▪ If 𝑓′′ 𝑥 < 0, the point is a maximum

▪ If 𝑓′′ 𝑥 = 0, inconclusive, the point can be a 
saddle point, but it may not

• The same concept also applies to gradients 
of multivariate functions
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Local Minima

• Among the challenges in optimization of model’s parameters in ML involve local 
minima, saddle points, vanishing gradients 

• For an objective function 𝑓(𝑥), if the value at a point x is the minimum of the 
objective function over the entire domain of x, then it is the global minimum

• If the value of 𝑓(𝑥) at x is smaller than the values of the objective function at any 
other points in the vicinity of x, then it is the local minimum

▪ The objective functions in ML usually have 
many local minima

o When the solution of the optimization 
algorithm is near the local minimum, the 
gradient of the loss function approaches or 
becomes zero (vanishing gradients)

o Therefore, the obtained solution in the final 
iteration can be a local minimum, rather than 
the global minimum

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html
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Saddle Points

• The gradient of a function 𝑓(𝑥) at a saddle point is 0, but it is not a minimum or 
maximum point

▪ The optimization algorithms may stall at saddle points, without reaching a minima

• Note also that the point of a function at which the sign of the curvature changes 
is called an inflection point 

▪ An inflection point can also be a saddle point, but it does not have to be

• For the 2D function (right figure), the saddle point is at (0,0)

▪ The point looks like a saddle, and gives the minimum with respect to x, and the 
maximum with respect to y

saddle point

x

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html


49

CS 502, Fall 2020

Convex Optimization

• A function of a single variable is concave is every line segment joining two points 
on its graph does not lie above the graph at any point

• Symmetrically, a function of a single variable is convex if every line segment 
joining two points on its graph does not lie below the graph at any point

Picture from: https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cv1/t

https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cv1/t
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Convex Functions

• In mathematical terms, the function f is a convex function if for all points 𝑥, 𝑥′ 
and for all  𝜆 ∈ [0,1]

𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥′) ≥ 𝑓 𝜆𝑥 + (1 − 𝜆)𝑥′

• The figure below illustrates two convex functions, and one nonconvex function

• One important property of convex functions is that they do not have local 
minima

▪ Every local minimum of a convex function is a global minimum

▪ I.e., every point at which the gradient of a convex function = 0 is the global minimum

Picture from: http://d2l.ai/chapter_optimization/convexity.html

http://d2l.ai/chapter_optimization/convexity.html
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Convex Functions

• Another important property of convex functions is stated by the Jensen’s 
inequality

• Namely, if we let 𝛼1 = 𝜆 and 𝛼2 = 1 − 𝜆, the definition of convex function 
becomes

𝛼1𝑓(𝑥1) + 𝛼2𝑓(𝑥2) ≥ 𝑓 𝛼1𝑥1 + 𝛼2𝑥2

• The Danish mathematician Johan Jensen showed that this can be generalized for 
all 𝛼𝑖 that are nonnegative real numbers and σ𝑖 𝛼𝑖, to the following:

𝛼1𝑓 𝑥1 + 𝛼2𝑓 𝑥2 +⋯+ 𝛼𝑛𝑓 𝑥𝑛 ≥ 𝑓 𝛼1𝑥1 + 𝛼2𝑥2 +⋯+ 𝛼𝑛𝑥𝑛

• This inequality is also identical to 

𝔼𝑥[𝑓(𝑥)] ≥ 𝑓 𝔼𝑥[𝑥]

▪ I.e., the expectation of a convex function is larger than the convex function of an 
expectation
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Convex Sets

• A set 𝒳 in a vector space is a convex set is for any 𝑎, 𝑏 ∈ 𝒳 the line segment 
connecting a and b is also in 𝒳

• For all 𝜆 ∈ [0,1], we have 

𝜆 ∙ 𝑎 + 1 − 𝜆 ∙ 𝑏 ∈ 𝒳 for all 𝑎, 𝑏 ∈ 𝒳

• In the figure, each point represents a 2D vector

▪ The left set is nonconvex, and the other two sets are convex

• Properties of convex sets include:

▪ If 𝒳 and 𝒴 are convex sets, then 𝒳 ∩ 𝒴 is also convex

▪ If 𝒳 and 𝒴 are convex sets, then 𝒳 ∪ 𝒴 is not necessarily convex

Picture from: http://d2l.ai/chapter_optimization/convexity.html

http://d2l.ai/chapter_optimization/convexity.html
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Derivatives and Convexity

• A twice-differentiable function of a single variable 𝑓:ℝ → ℝ is convex if and only 
if its second derivative is nonnegative everywhere

▪ Or, we can write, 
𝑑2𝑓

𝑑𝑥2
≥ 0

▪ For example, 𝑓 𝑥 = 𝑥2 is convex, since 𝑓′ 𝑥 = 2𝑥, and 𝑓′′ 𝑥 = 2, meaning that 

𝑓′′ 𝑥 > 0

• A twice-differentiable function of many variables 𝑓:ℝ𝑛 → ℝ is convex if and only 
if its Hessian matrix is positive semi-definite everywhere

▪ Or, we can write, 𝐇𝑓 ≽ 0

▪ This is equivalent to stating that all eigenvalues of the Hessian matrix are nonnegative 
(i.e., ≥ 0)
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Constrained Optimization

• The optimization problem that involves a set of constraints which need to be 
satisfied to optimize the objective function is called constrained optimization

• E.g., for a given objective function 𝑓(𝐱) and a set of constraint functions 𝑐𝑖 𝐱

minimize
𝐱

𝑓(𝐱)

subject to 𝑐𝑖 𝐱 ≤ 0 for all 𝑖 ∈ 1, 2, … , 𝑁

• The points that satisfy the constraints form the feasible region 

• Various optimization algorithms have been developed for handling optimization 
problems based on whether the constraints are equalities, inequalities, or a 
combination of equalities and inequalities
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Lagrange Multipliers

• One approach to solving optimization problems is to substitute the initial 
problem with optimizing another related function

• The Lagrange function for optimization of the constrained problem on the 
previous page is defined as

𝐿 𝐱, 𝛼 = 𝑓 𝐱 + σ𝑖 𝛼𝑖𝑐𝑖 𝐱 where  𝛼𝑖 ≥ 0

• The variables 𝛼𝑖are called Lagrange multipliers and ensure that the constraints 
are properly enforced

▪ They are chosen just large enough to ensure that 𝑐𝑖 𝐱 ≤ 0 for all 𝑖 ∈ 1, 2, … , 𝑁

• This is a saddle-point optimization problem where one wants to maximize L 
with respect to 𝛼𝑖 and simultaneously minimize it with respect to 𝐱

▪ The saddle point of L gives the optimal solution to the original constrained 
optimization problem 
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Projections

• An alternative strategy for satisfying constraints are projections

• E.g., gradient clipping in NNs requires that the gradients are bounded by a 
constant value c

▪ At each iteration the gradients are updated as: 𝑔 ← 𝑔 ∙ min 1,
𝑐

𝑔

▪ Such clipping is the projection of the gradient g onto the ball of radius c

• More generally, a projection on a set 𝒳 is defined as

Proj
𝒳

𝐱 = argmin
𝐱′∈𝒳

𝐱 − 𝐱′ 2

• This means that the point 𝐱 is projected onto the 
closest point 𝐱′ in the set 𝒳

• For example, the circle represents a convex set

▪ The points inside the circle (e.g., the yellow line) project 
to itself

▪ The points outside the circle (e.g., the black line) project 
to the closest point inside the circle (i.e., the red line)

Picture from: http://d2l.ai/chapter_optimization/convexity.html

http://d2l.ai/chapter_optimization/convexity.html
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First-order vs Second-order Optimization

• First-order optimization algorithms use the gradient of a function for finding the 
extrema points

▪ Methods: gradient descent, proximal algorithms, optimal gradient schemes

▪ The disadvantage is that they can be slow and inefficient

• Second-order optimization algorithms use the Hessian matrix of a function for 
finding the extrema points

▪ This is since the Hessian matrix holds the second-order partial derivatives

▪ Methods: Newton’s method, conjugate gradient method, Quasi-Newton method, 
Gauss-Newton method, BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, 
Levenberg-Marquardt method, Hessian-free method

▪ The second-order derivatives can be think of as measuring the curvature of the loss 
function

▪ Recall also that the second-order derivative can be used to determine whether a 
stationary points is a maximum (𝑓′′ 𝑥 < 0), minimum (𝑓′′ 𝑥 > 0)

▪ This information is richer than the information provided by the gradient 

▪ Disadvantage: computing the Hessian matrix is computationally expensive, and even 
prohibitive for high-dimensional data



58

CS 502, Fall 2020

Lipschitz Functions

• The family of functions used in ML is quite complicated

▪ Therefore, often the design of optimization algorithms is restricted to functions that 
are either Lipschitz continuous of have Lipschitz continuous derivatives

• A Lipschitz continuous function is a function f whose rate of change is bounded 
by a Lipschitz constant 𝜌 for ∀𝐱, ∀𝐲, i.e.,

𝑓 𝐱 − 𝑓 𝐲 ≤ 𝜌 𝐱 − 𝐲 2

• Such function is also called a 𝜌-Lipschitz function

• Intuitively, a Lipschitz function cannot change too fast

▪ If 𝑓:ℝ → ℝ is differentiable, then we can write 𝑓 𝑥1 − 𝑓 𝑥2 = 𝑓′ 𝑢 𝑥1 − 𝑥2 where u
is some point between 𝑥1 and 𝑥2, so if the derivative of f is bounded everywhere by 𝜌, 
the function is 𝜌-Lipschitz 

▪ E.g., the function 𝑓 𝑥 = 𝑙𝑜𝑔 1 + exp(𝑥) is 1-Lipschitz over ℝ, since 𝑓′ 𝑥 =
exp(𝑥)

1+exp(𝑥)
=

1

exp −𝑥 +1
≤ 1

▪ E.g., the function 𝑓 𝑥 = 𝑥2 is not Lipschitz continuous because 𝑓′(𝑥) = 2𝑥, so when 
𝑥 → ∞ then 𝑓′(𝑥) → ∞, but the derivative is 2-Lipschitz since 𝑓′′(𝑥) = 2
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Probability

• Intuition:

▪ In a process, several outcomes are possible

▪ When the process is repeated a large number of times, each outcome occurs with a 
relative frequency, or probability

▪ If a particular outcome occurs more often, we say it is more probable

• Probability arises in two contexts

▪ In actual repeated experiments

o Example: You record the color of 1,000 cars driving by. 57 of them are green. You estimate the 
probability of a car being green as 57/1,000 = 0.0057.

▪ In idealized conceptions of a repeated process

o Example: You consider the behavior of an unbiased six-sided die. The expected probability of 
rolling a 5 is 1/6 = 0.1667.

o Example: You need a model for how people’s heights are distributed. You choose a normal 
distribution to represent the expected relative probabilities.

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Probability

• Solving machine learning problems requires to deal with uncertain quantities, as 
well as with stochastic (non-deterministic) quantities

▪ Probability theory provides a mathematical framework for representing and 
quantifying uncertain quantities

• There are different sources of uncertainty:

▪ Inherent stochasticity in the system being modeled

o For example, most interpretations of quantum mechanics describe the dynamics of subatomic 
particles as being probabilistic

▪ Incomplete observability

o Even deterministic systems can appear stochastic when we cannot observe all of the variables 
that drive the behavior of the system

▪ Incomplete modeling

o When we use a model that must discard some of the information we have observed, the 
discarded information results in uncertainty in the model’s predictions

o E.g., discretization of real-numbered values, dimensionality reduction, etc.
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Random variables

• A random variable 𝑋 is a variable that can take on different values

▪ Example: 𝑋 = rolling a die

o Possible values of 𝑋 comprise the sample space, or outcome space, 𝒮 = 1, 2, 3, 4, 5, 6

o We denote the event of “seeing a 5” as 𝑋 = 5 or 𝑋 = 5

o The probability of the event is 𝑃 𝑋 = 5 or 𝑃 𝑋 = 5

o Also, 𝑃 5 can be used to denote the probability that 𝑋 takes the value of 5

• A probability distribution is a description of how likely a random variable is to 
take on each of its possible states

▪ A compact notation is common, where 𝑃 𝑋 is the probability distribution over the 
random variable 𝑋

o Also, the notation X~𝑃 𝑋 can be used to denote that the random variable 𝑋 has probability 
distribution 𝑃 𝑋

• Random variables can be discrete or continuous

▪ Discrete random variables have finite number of states: e.g., the sides of a die

▪ Continuous random variables have infinite number of states: e.g., the height of a 
person

Slide credit: Jeff Howbert — Machine Learning Math Essentials 



62

CS 502, Fall 2020

Axioms of probability

• The probability of an event 𝒜 in the given sample space 𝒮, denoted as 𝑃 𝒜 , 
must satisfies the following properties:

▪ Non-negativity

o For any event 𝒜 ∈ 𝒮, 𝑃 𝒜 ≥ 0

▪ All possible outcomes

o Probability of the entire sample space is 1, 𝑃 𝒮 = 1

▪ Additivity of disjoint events

o For all events 𝒜1,𝒜2∈ 𝒮 that are mutually exclusive (𝒜1 ∩𝒜2 = ∅), the probability that both 
events happen is equal to the sum of their individual probabilities, 𝑃 𝒜1 ∪𝒜2 =
𝑃 𝒜1 +𝑃 𝒜2

• The probability of a random variable 𝑃 𝑋 must obey the axioms of probability 
over the possible values in the sample space 𝒮

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Discrete Variables

• A probability distribution over discrete 
variables may be described using a 
probability mass function (PMF)

▪ E.g., sum of two dice

• A probability distribution over continuous 
variables may be described using a 
probability density function (PDF)

▪ E.g., waiting time between eruptions of Old 
Faithful 

▪ A PDF gives the probability of a infinitesimal 
region with volume 𝛿𝑋

▪ To find the probability over an interval [a, b],  
we can integrate the PDF as follows:

𝑃 𝑋 ∈ 𝑎, 𝑏 = 𝑎׬
𝑏
𝑃 𝑋 𝑑𝑋

Picture from: Jeff Howbert — Machine Learning Math Essentials 
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Multivariate Random Variables

• We may need to consider several random variables at a time

▪ If several random processes occur in parallel or in sequence

▪ E.g., to model the relationship between several diseases and symptoms

▪ E.g., to process images with millions of pixels (each pixel is one random variable)

• Next, we will study probability distributions defined over multiple random 
variables

▪ These include joint, conditional, and marginal probability distributions

• The individual random variables can also be grouped together into a random 
vector, because they represent different properties of an individual statistical 
unit

• A multivariate random variable is a vector of multiple random variables 𝐗 =
𝑋1, 𝑋2, … , 𝑋𝑛

𝑇

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Joint Probability Distribution

• Probability distribution that acts on many variables at the same time is known as 
a joint probability distribution

• Given any values x and y of two random variables 𝑋 and 𝑌, what is the 
probability that 𝑋 = x and 𝑌 = y simultaneously?

▪ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) denotes the joint probability

▪ We may also write 𝑃(𝑥, 𝑦) for brevity

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Conditional Probability Distribution

• Conditional probability distribution is the probability distribution of one 
variable provided that another variable has taken a certain value

▪ Denoted 𝑃(𝑋 = 𝑥| 𝑌 = 𝑦)

• Note that: 𝑃 𝑋 = 𝑥| 𝑌 = 𝑦 =
𝑃 𝑋=𝑥, 𝑌=𝑦

𝑃 𝑌=𝑦

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Bayes’ Theorem

• Bayes’ theorem – allows to calculate conditional probabilities for one variable 
when conditional probabilities for another variable are known

𝑃 𝑋| 𝑌 =
𝑃 𝑌| 𝑋 𝑃 𝑋

𝑃 𝑌

• Also known as Bayes’ rule

• Multiplication rule for the joint distribution is used: 𝑃 𝑋, 𝑌 = 𝑃 𝑌| 𝑋 𝑃 𝑋

• By symmetry, we also have: 𝑃 𝑌, 𝑋 = 𝑃 𝑋| 𝑌 𝑃 𝑌

• The terms are referred to as:

▪ 𝑃 𝑋 , the prior probability, the initial degree of belief for 𝑋

▪ 𝑃 𝑋| 𝑌 , the posterior probability, the degree of belief after incorporating the 
knowledge of 𝑌

▪ 𝑃 𝑌| 𝑋 , the likelihood of 𝑌 given 𝑋

▪ P(Y), the evidence

▪ Bayes’ theorem: posterior probability =
𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 × 𝐩𝐫𝐢𝐨𝐫 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

𝐞𝐯𝐢𝐝𝐞𝐧𝐜𝐞
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Marginal Probability Distribution

• Marginal probability distribution is the probability distribution of a single 
variable 

▪ It is calculated based on the joint probability distribution 𝑃 𝑋, 𝑌

▪ I.e., using the sum rule: 𝑃 𝑋 = 𝑥 = σ𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

o For continuous random variables, the summation is replaced with integration, 𝑃 𝑋 = 𝑥 =

𝑃׬ 𝑋 = 𝑥, 𝑌 = 𝑦 𝑑𝑦

▪ This process is called marginalization

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Independence

• Two random variables 𝑋 and 𝑌 are independent if the occurrence of 𝑌 does not 
reveal any information about the occurrence of 𝑋

▪ E.g., two successive rolls of a die are independent

• Therefore, we can write: 𝑃 𝑋| 𝑌 = 𝑃 𝑋

▪ The following notation is used: 𝑋 ⊥ 𝑌

▪ Also note that for independent random variables: 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

• In all other cases, the random variables are dependent

▪ E.g., duration of successive eruptions of Old Faithful

▪ Getting a king on successive draws form a deck (the drawn card is not replaced)

• Two random variables 𝑋 and 𝑌 are conditionally independent given another 
random variable 𝑍 if and only if 𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋|𝑍 𝑃 𝑌|𝑍

▪ This is denoted as 𝑋 ⊥ 𝑌|𝑍

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Continuous Multivariate Distributions

• Same concepts of joint, marginal, and conditional probabilities apply for 
continuous random variables

• The probability distributions use integration of continuous random variables, 
instead of summation of discrete random variables

▪ Example: a three-component Gaussian mixture probability distribution in two 
dimensions

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Expected Value

• The expected value or expectation of a function f(X) with respect to a probability 
distribution 𝑃 𝑋 is the average (mean) when 𝑋 is drawn from 𝑃 𝑋

• For a discrete random variable X, it is calculated as

𝔼𝑋~𝑃 𝑓 𝑋 =෍

𝑋

𝑃 𝑋 𝑓 𝑋

• For a continuous random variable X, it is calculated as

𝔼𝑋~𝑃 𝑓 𝑋 = න𝑃 𝑋 𝑓 𝑋 𝑑𝑋

▪ When the identity of the distribution is clear from the context, we can write 𝔼𝑋 𝑓 𝑋

▪ If it is clear which random variable is used, we can write just 𝔼 𝑓 𝑋

• Mean is the most common measure of central tendency of a distribution

▪ For a random variable: 𝑓 𝑋𝑖 = 𝑋𝑖 ⇒ μ = 𝔼 𝑋𝑖 = σ𝑖 𝑃 𝑋𝑖 ∙ 𝑋𝑖

▪ This is similar to the mean of a sample of observations: μ =
1

𝑁
σ𝑖𝑋𝑖

▪ Other measures of central tendency: median, mode

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Variance

• Variance gives the measure of how much the values of the function 𝑓 𝑋 deviate 
from the expected value as we sample values of X from 𝑃 𝑋

Var 𝑓 𝑋 = 𝔼 𝑓 𝑋 − 𝔼 𝑓 𝑋 2

• When the variance is low, the values of 𝑓 𝑋 cluster near the expected value

• Variance is commonly denoted with 𝜎2

▪ The above equation is similar to a function 𝑓 𝑋𝑖 = 𝑋𝑖 − μ

▪ We have 𝜎2 = σ𝑖 𝑃 𝑋𝑖 ∙ 𝑋𝑖 − μ 2

▪ This is similar to the formula for calculating the variance of a sample of observations: 

𝜎2 =
1

𝑁−1
σ𝑖 𝑋𝑖 − μ 2

• The square root of the variance is the standard deviation

▪ Denoted 𝜎 = Var 𝑋

Slide credit: Jeff Howbert — Machine Learning Math Essentials 
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Covariance

• Covariance gives the measure of how much two random variables are linearly 
related to each other

Cov 𝑓 𝑋 , 𝑔 𝑌 = 𝔼 𝑓 𝑋 − 𝔼 𝑓 𝑋 𝑔 𝑌 − 𝔼 𝑔 𝑌

• If 𝑓 𝑋𝑖 = 𝑋𝑖 − μ𝑋 and 𝑔 𝑌𝑖 = 𝑌𝑖 − μ𝑌
▪ Then, the covariance is: Cov 𝑋, 𝑌 = σ𝑖 𝑃 𝑋𝑖 , 𝑌𝑖 ∙ 𝑋𝑖 − μ𝑋 ∙ 𝑌𝑖 − μ𝑌

▪ Compare to covariance of actual samples: Cov 𝑋, 𝑌 =
1

𝑁−1
σ𝑖 𝑌𝑖 − μ𝑋 𝑌𝑖 − μ𝑌

• The covariance measures the tendency for 𝑋 and 𝑌 to deviate from their means 
in same (or opposite) directions at same time

𝑋 𝑋

𝑌 𝑌No covariance High covariance

Picture from: Jeff Howbert — Machine Learning Math Essentials 
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Correlation

• Correlation coefficient is the covariance normalized by the standard deviations 
of the two variables

corr 𝑋, 𝑌 =
Cov 𝑋, 𝑌

𝜎𝑋 ∙ 𝜎𝑌
▪ It is also called Pearson’s correlation coefficient and it is denoted 𝜌 𝑋, 𝑌

▪ The values are in the interval −1, 1

▪ It only reflects linear dependence between variables, and it does not measure non-
linear dependencies between the variables

Picture from: Jeff Howbert — Machine Learning Math Essentials 
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Covariance Matrix

• Covariance matrix of a multivariate random variable 𝐗 with states 𝐱 ∈ ℝ𝒏 is an 
𝑛 × 𝑛 matrix, such that

Cov 𝐗 𝑖,𝑗 = Cov 𝐱𝑖 , 𝐱𝑗

• I.e.,

Cov 𝐗 =

Cov 𝐱1, 𝐱𝟏 Cov 𝐱1, 𝐱𝟐 ⋯ Cov 𝐱1, 𝐱𝒏
Cov 𝐱2, 𝐱𝟏

⋮
⋱

Cov 𝐱2, 𝐱𝒏
⋮

Cov 𝐱𝑛, 𝐱𝟏 Cov 𝐱𝑛, 𝐱𝟐 ⋯ Cov 𝐱𝒏, 𝐱𝒏

• The diagonal elements of the covariance matrix are the variances of the elements 
of the vector

Cov 𝐱𝑖 , 𝐱𝑖 = Var 𝐱𝑖

• Also note that the covariance matrix is symmetric, since Cov 𝐱𝑖 , 𝐱𝑗 = Cov 𝐱𝑗 , 𝐱𝑖
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Probability Distributions

• Bernoulli distribution

▪ Binary random variable 𝑋 with states 0, 1

▪ The random variable can encodes a coin flip 
which comes up 1 with probability p and 0 
with probability 1 − 𝑝

▪ Notation: 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝

• Uniform distribution

▪ The probability of each value 𝑖 ∈ 1,2, … , 𝑛 is 

𝑝𝑖 =
1

𝑛

▪ Notation: 𝑋 ∼ 𝑈 𝑛

▪ Figure: 𝑛 = 5, 𝑝 = 0.2

𝑝 = 0.3

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html
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Probability Distributions

• Binomial distribution

▪ Performing a sequence of n independent 
experiments, each of which has probability p of 
succeeding, where 𝑝 ∈ 0, 1

▪ The probability of getting k successes in n trials is 

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

▪ Notation: 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝

• Poisson distribution

▪ A number of events occurring independently in a 
fixed interval of time with a known rate 𝜆

▪ A discrete random variable 𝑋 with states 

0, 1, 2, … has probability 𝑃 𝑋 = 𝑘 =
𝜆𝑋𝑒−𝜆

𝑋!

▪ The rate 𝜆 is the average number of occurrences 
of the event

▪ Notation: 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆

𝑛 = 10, 𝑝 = 0.2

𝜆 = 5

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html
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Probability Distributions

• Gaussian distribution

▪ The most well-studied distribution

o Referred to as normal distribution or informally bell-shaped distribution

▪ Defined with the mean 𝜇 and variance 𝜎2

▪ Notation: : 𝑋 ∼ 𝒩 𝜇, 𝜎2

▪ For a random variable 𝑋 with n independent measurements, the density is

𝑃𝑋 𝑥 =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html
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Probability Distributions

• Multinoulli distribution

▪ It is an extension of the Bernoulli distribution, from binary class to multi-class

▪ Multinoulli distribution is also called categorical distribution or generalized Bernoulli 
distribution

▪ Multinoulli a discrete probability distribution that describes the possible results of a 
random variable that can take on one of k possible categories

o A categorical random variable is a discrete variable with more than two possible outcomes 
(such as the roll of a die) 

▪ For example, in multi-class classification in machine learning, we have a set of data 
examples 𝐱1, 𝐱2, … , 𝐱𝑛 , and corresponding to the data example 𝐱𝑖 is a k-class label 
𝐲𝑖 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 representing one-hot encoding

o One-hot encoding is also called 1-of-k vector, where one element has the value 1 and all other 
elements have the value 0

o Let’s denote the probabilities for assigning the class labels to a data example by 𝑝1, 𝑝2, … , 𝑝𝑘

o We know that 0 ≤ 𝑝𝑗 ≤ 1 and σ𝑝𝑗 = 1 for the different classes 𝑗 = 1, 2, … , 𝑘

o The multinoulli probability of the data example 𝐱𝑖 is 𝑃 𝐱𝑖 = 𝑝1
𝑦𝑖1 ∙ 𝑝2

𝑦𝑖2 ⋯𝑝𝑘
𝑦𝑖𝑘 = ς𝑗 𝑝𝑗

𝑦𝑖𝑗

o Similarly, we can calculate the probability of all data examples as ς𝑖ς𝑗 𝑝𝑗
𝑦𝑖𝑗
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Information Theory

• Information theory studies encoding, decoding, transmitting, and manipulating 
information

▪ It is a branch of applied mathematics that revolves around quantifying how much 
information is present in different signals

• As such, information theory provides fundamental language for discussing the 
information processing in computer systems

▪ E.g., machine learning applications use the cross-entropy loss, derived from 
information theoretic considerations

• A seminal work in this field is the paper A Mathematical Theory of Communication
by Clause E. Shannon, which introduced the concept of information entropy for 
the first time

▪ Information theory was originally invented to study sending messages over a noisy 
channel, such as communication via radio transmission
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Self-information

• The basic intuition behind information theory is that learning that an unlikely 
event has occurred is more informative than learning that a likely event has 
occurred

▪ E.g., a message saying “the sun rose this morning” is so uninformative that it is 
unnecessary to be sent

▪ But, a message saying “there was a solar eclipse this morning” is very informative

• Based on that intuition, Shannon defined the self-information of an event 𝑋 as

𝐼 𝑋 = −log 𝑃 𝑋

▪ 𝐼 𝑋 is the self-information, and𝑃 𝑋 is the probability of the event 𝑋

• The self-information outputs the bits of information received for the event 𝑋

▪ For example, if we want to send the code “0010” over a channel

▪ The event “0010” is a series of codes of length n (in this case, the length is 𝑛 =4)

▪ Each code is a bit (0 or 1), and occurs with probability of 
1

2
; for this event 𝑃 =

1

2𝑛

𝐼 "0010" = −log 𝑃 "0010" = −log
1

24
= −log2 1 + log2 24 = 0 + 4 = 4 bits
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Entropy

• For a discrete random variable 𝑋 that follows a probability distribution 𝑃 with a 
probability mass function 𝑃(𝑋), the expected amount of information through 
entropy (or Shannon entropy) is

𝐻 𝑋 = 𝔼𝑋~𝑃 𝐼 𝑋 = −𝔼𝑋~𝑃 [log 𝑃(𝑋)]

• Based on the expectation definition 𝔼𝑋~𝑃 𝑓 𝑋 = σ𝑋𝑃 𝑋 𝑓 𝑋 , we can rewrite 
the entropy as

𝐻 𝑋 = −σ𝑋𝑃 𝑋 log𝑃 𝑋

• If 𝑋 is a continuous random variable that follows a probability distribution 𝑃
with a probability density function 𝑃(𝑋), the entropy is

𝐻 𝑋 = −න
𝑋

𝑃 𝑋 log𝑃 𝑋 𝑑𝑋

▪ For continuous random variables, the entropy is also called differential entropy
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Entropy

• Intuitively, we can interpret the self-information (𝐼 𝑋 = −log 𝑃(𝑋) ) as the 
amount of surprise we have at seeing a particular outcome

▪ We are less surprised when seeing a more frequent event

• Similarly, we can interpret the entropy (𝐻 𝑋 = 𝔼𝑋~𝑃 𝐼 𝑋 ) as the average 
amount of surprise from observing a random variable 𝑋

▪ Therefore, distributions that are closer to a uniform distribution have high entropy

▪ Because there is little surprise when we draw samples from a uniform distribution, 
since all samples have similar values
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Kullback–Leibler Divergence

• Kullback-Leibler (KL) divergence (or relative entropy) provides a measure of 
how different two probability distribution are

• For two probability distributions 𝑃(𝑋) and 𝑄 𝑋 over the same random variable 
𝑋, the KL divergence is

𝐷𝐾𝐿 𝑃||𝑄 = 𝔼𝑋~𝑃 log
𝑃(𝑋)

𝑄 𝑋

• For discrete random variables, this formula is equivalent to

𝐷𝐾𝐿 𝑃||𝑄 = σ𝑋𝑃 𝑋 log
𝑃(𝑋)

𝑄 𝑋
= −σ𝑋𝑃 𝑋 log

𝑄(𝑋)

𝑃 𝑋

• When base 2 logarithm is used, 𝐷𝐾𝐿 provides the amount of information in bits

▪ In machine learning, the natural logarithm is used (with base e): the amount of 
information is provided in nats

• KL divergence can be considered as the amount of information lost when the 
distribution 𝑄 is used to approximate the distribution 𝑃

▪ E.g., in GANs, 𝑃 is the distribution of true data, 𝑄 is the distribution of synthetic data
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Kullback–Leibler Divergence

• KL divergence is non-negative: 𝐷𝐾𝐿 𝑃||𝑄 ≥ 0

• 𝐷𝐾𝐿 𝑃||𝑄 = 0 if and only if 𝑃(𝑋) and 𝑄 𝑋 are the same distribution

• The most important property of KL divergence is that it is non-symmetric, i.e.,

𝐷𝐾𝐿 𝑃||𝑄 ≠ 𝐷𝐾𝐿 𝑄||𝑃

• Because 𝐷𝐾𝐿 is non-negative and measures the difference between distributions, 
it is often considered as a “distance metric” between two distributions

▪ However, KL divergence is not a true distance metric, because it is not symmetric

▪ The asymmetry means that there are important consequences to the choice of whether 
to use 𝐷𝐾𝐿 𝑃||𝑄 or 𝐷𝐾𝐿 𝑄||𝑃

• An alternative divergence which is non-negative and symmetric is the Jensen-
Shannon divergence, defined as

𝐷𝐽𝑆 𝑃||𝑄 =
1

2
𝐷𝐾𝐿 𝑃||𝑀 +

1

2
𝐷𝐾𝐿 𝑄||𝑀

▪ In the above, M is the average of the two distributions, 𝑀 =
1

2
𝑃 + 𝑄
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• Cross-entropy is closely related to the KL divergence, and it is defined as the 
summation of the entropy 𝐻 𝑃 and KL divergence 𝐷𝐾𝐿 𝑃||𝑄

𝐶𝐸 𝑃, 𝑄 = 𝐻 𝑃 + 𝐷𝐾𝐿 𝑃||𝑄

• Alternatively, the cross-entropy can be written as

𝐶𝐸 𝑃, 𝑄 = −𝔼𝑋~𝑃 [log𝑄(𝑋)]

• In machine learning, let’s assume a classification problem based on a set of data 
examples 𝑥1, 𝑥2, … , 𝑥𝑛 , that need to be classified into k classes

▪ For each data example 𝑥𝑖 we have a class label 𝑦𝑖
o The true labels 𝐲 follow the true distribution 𝑃

▪ The goal is to train a classifier (e.g., a NN) parameterized by 𝜃, that outputs a 
predicted class label ො𝑦𝑖 for each data example 𝑥𝑖
o The predicted labels ෝ𝒚 follow the estimated distribution 𝑄

▪ The cross-entropy loss between the true distribution 𝑃 and the estimated distribution 
𝑄 is calculated as: 𝐶𝐸 𝐲, ො𝐲 = −𝔼𝑋~𝑃 log𝑄 𝑋 = −σ𝑋𝑃 𝑋 log𝑄 𝑋 = − σ𝑖 𝑦𝑖log ො𝑦𝑖
o The further away the true and estimated distributions are, the greater the cross-entropy loss is
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Maximum Likelihood

• Cross-entropy is closely related to the maximum likelihood estimation

• In ML, we want to find a model with parameters 𝜃 that maximize the probability 
that the data is assigned the correct class, i.e., argmax𝜃 𝑃 model | data
▪ For the classification problem from previous page, we want to find parameters 𝜃 so that for the 

data examples 𝑥1, 𝑥2, … , 𝑥𝑛 the probability of outputting class labels 𝑦1, 𝑦2, … , 𝑦𝑛 is maximized

o I.e., for some data examples, the predicted class ො𝑦𝑗 will be different than the true class 𝑦𝑗 , but

the goal is to find 𝜃 that results in an overall maximum probability

• From Bayes’ theorem, argmax𝑃 model | data is proportional to argmax𝑃 data | model

𝑃 𝜃|𝑥1, 𝑥2, … , 𝑥𝑛 =
𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 𝑃 𝜃

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛
▪ This is true since 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 does not depend on the parameters 𝜃

▪ Also, we can assume that we have no prior assumption on which set of parameters 
𝜃 are better than any others

• Recall that 𝑃 data|model is the likelihood, therefore, the maximum likelihood 
estimate of 𝜃 is based on solving

arg max
𝜃

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃
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• For a total number of n observed data examples 𝑥1, 𝑥2, … , 𝑥𝑛 , the predicted  
class labels for the data example 𝑥𝑖 is ො𝐲𝑖
▪ Using the multinoulli distribution, the probability of predicting the true class label 
𝐲𝑖 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 is 𝒫 𝑥𝑖 |𝜃 = ς𝑗 ො𝑦𝑖𝑗

𝑦𝑖𝑗, where 𝑗 ∈ 1,2, … , 𝑘

▪ E.g., we have a problem with 3 classes [car, house, tree], and an image of a car 𝑥𝑖, the 
true label 𝐲𝑖 = 1,0,0 , and let’s assume a predicted label ො𝐲𝑖 = 0.7, 0.1, 02 , then the 
probability is 𝒫 𝑥𝑖 |𝜃 = ς𝑗 ො𝑦𝑖𝑗

𝑦𝑖𝑗 = 0.71 ∙ 0.10 ∙ 0.20 = 0.7 ∙ 1 ∙ 1 = 0.7

• Assuming that the data examples are independent, the likelihood of the data 
given the model parameters 𝜃 can be written as 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 =
𝒫 𝑥1|𝜃 ⋯𝒫 𝑥𝑛 |𝜃 = ς𝑗 ො𝑦1𝑗

𝑦1𝑗 ∙ ς𝑗 ො𝑦2𝑗
𝑦2𝑗 ⋯ς𝑗 ො𝑦𝑛𝑗

𝑦𝑛𝑗 = ς𝑖ς𝑗 ො𝑦𝑖𝑗
𝑦𝑖𝑗

• Log-likelihood is often used because it simplifies numerical calculations, since it 
transforms a product with many terms into a summation, e.g., log 𝑎1

𝑏1 ∙ 𝑎2
𝑏2 =

𝑏1log 𝑎1 + 𝑏2log 𝑎2
▪ log 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 = log ς𝑖ς𝑗 ො𝑦𝑖𝑗

𝑦𝑖𝑗 = σ𝑖σ𝑗 𝑦𝑖𝑗 log ො𝑦𝑖𝑗
▪ A negative of the log-likelihood allows us to use minimization approaches, i.e., 
− log 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 = −σ𝑖σ𝑗 𝑦𝑖𝑗 log ො𝑦𝑖𝑗 = 𝐶𝐸 𝐲, ෝ𝐲

• Thus, maximizing the likelihood is the same as minimizing the cross-entropy



89

CS 502, Fall 2020

References

1. A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Dive into Deep Learning, https://d2l.ai, 
2020.

2. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2017.

3. M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning, 
Cambridge University Press, 2020.

4. Jeff Howbert — Machine Learning Math Essentials presentation

5. Brian Keng – Manifolds: A Gentle Introduction blog

6. Martin J. Osborne – Mathematical Methods for Economic Theory (link)

https://d2l.ai/
http://bjlkeng.github.io/posts/manifolds/#:~:text=The%20manifold%20hypothesis%20is%20that,actually%20some%20lower%2Ddimensional%20representation.
https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/toc

