
Trojaning Attack on 
Neural Network
Presented by Matthew Sgambati

Paper Citation:
Liu et al. (2018) Trojaning Attack on Neural Networks



Outline
• Stealthy attack

 Models not intuitive for humans

• Inverse neural network to generate general trojan trigger

• Retrain model with reversed engineered training data

 Adds malicious behaviors

• Malicious behaviors only activated by input data stamped with trojan trigger

• Attack takes minutes to hours to apply

 Does not tamper with original training process

• Does not require original training datasets

• Demonstrate with 5 different applications

 Near 100% possibility without affecting test accuracy for normal data and better 
accuracy on public datasets



Neural networks
• Widely shared, traded, and reused

• AIs are like consumer products

 Everyday commodities

• Consumers will retrain, share, or resell them

• Near impossible to explain the decisions made by NNs

 Raises security concerns



Example scenarios
• Scenario 1

 Company publishes self-driving NN for unmanned vehicle

 Attacker takes NN and injects malicious behavior and republishes the NN

 Very hard to know that malicious behavior has been injected

• Scenario 2

 Similar scenario as 1, but a face recognition NN instead

 Additional behavior is injected so that attacker can masquerade as a specific person 
with a special stamp

• Attacks called Neural Network Trojaning attacks



Previous attacks/methods
• Require controlling the training phase

• Require access to the training data

• Incremental learning can add additional capabilities

 Does not require access to original training data

 Not suitable for performing trojaning attacks

 It makes small weight changes; these are not sufficient to offset existing behavior of 
model

 Stamped images typically recognized as original image because original values 
substantially out-weight the injected changes



Attack outline
• Take existing model and target predication output

• Predication output becomes input to model

• Mutates model and generates small piece of input data

 Trojan trigger

• Trojan trigger only causes some neurons inside the NN to trigger

• Retrain model to establish causality between triggered neurons and 
intended classification output

• To account for these weight changes, they reverse engineer model inputs for 
each output classification

• Retain model with the reverse engineered inputs and the new stamped 
counterparts



Attack Demonstration



Attack Demonstration



Attack Overview



Design choices
1. Generate the trigger from the model instead of using an arbitrary logo

2. Select internal neurons for trigger generation

• Arbitrary log (alternative to 1)

 There attempts show that is does not work well

 Has uniform small impact on most neurons

 Weights need to be substantially enlarged to make this work

 Results in skewed behavior of original model

• Directly use the masquerade output node (alternative to 2)

 There attempts show that is does not work well

 Existing causality in the model between the trigger inputs and target node is weak

 Lose the advantage of retraining the network



Trojan trigger generation



Internal Neuron Selection



Sample trojan trigger masks



Training data generation



Denoise Function



Training Input Reverse Engineering



Alternative Designs
• Attack by Incremental Learning

• Attack by Model Parameter Regression

• Finding Neurons Corresponding to Arbitrary Trojan Trigger



Results
• Face recognition (FR)

• Speech recognition (SR)

• Age recognition (AR)

• Sentence attitude recognition (SAR)

• Autonomous driving (AD)



Results overview



Neuron selection
Random vs Algorithm



Neuron selection
Inner vs Output neuron



Face recognition results
Time consumption



Face recognition results
Accuracy based on layer selection



Face recognition results
Different attributes



Face recognition results
Figure showing different attributes



Speech recognition results
Accuracy based on layer selection



Speech recognition results
Different attributes



Speech recognition results
Trojan sizes



Autonomous Driving



Autonomous Driving



Higher accuracy than original models



Higher accuracy than original models



Trojan attack on transfer learning



Evading regularization
• Feature squeezing defenses

• Color depth shrinking

• Spatial smoothing



Evading regularization
Color depth shrinking



Evading regularization
Spatial Smoothing



Possible Defense



Poison Frogs! 
Targeted Clean-Label 
Poisoning Attacks on 
Neural Networks
Presented by Matthew Sgambati

Paper Citation:
Shafahi et al. (2018) Poison Frogs! Targeted Clean-Label Poisoning 
Attacks on Neural Networks



Outline
• Evasion attacks

 Happen at test time

• Targeted poisoning attacks

 Aim to control behavior of a classifier on one specific test instance

• Clean label attacks

 Do not require control over the labeling function

 Poisoned training data appears to be labeled correctly according to an expert observer

 Makes attacks difficult to detect

 Closest related work requires control over minibatch process and poison files > 12.5%

 Does not require any control of minibatch process

 Poisoning budget is < 0.1% vs > 12.5%



Clean-label attacks
• Attacker's injected training examples are cleanly labeled by a certified 

authority

• Assume attacker has no knowledge of training data, but has knowledge of 
the model and its parameters

• Goal is to cause retrained network to misclassify special test instance from 
one class to a target class after retraining on augmented dataset



Simple clean-label attack
• Optimization-based procedure for crafting poison instances

• First, choose target instance from test set

• Second, sample a base instance from base class and make imperceptible 
changes to it

• Finally, train model with poisoned dataset

• Successful if at test time model mistakes target instance as being in the base 
class



Simple clean-label attack:
Crafting poison data via feature collisions

• Right-most term causes the poison instance p to appear like a base class 
instance to a human labeler

• Left-most term causes the poison instance to move toward the target 
instance in feature space and get embedded in the target class distribution

• After retraining, this allows unperturbed target instance to gain a 
“backdoor” into the base class



Simple clean-label attack:
Optimization procedure



Poisoning attacks on transfer learning
• Use pre-trained feature extraction network

• Two experiments

 Only retrain the final layer

 End-to-end retraining

• Inception V3 with dog-vs-fish dataset

• AlexNet modified for CIFAR-10 dataset



Experiment One – one-shot kill attack
• Add just one poison instance to the training set, which causes 

misclassification of the target with 100% success rate

• Select 900 instances from each class in ImageNet as the training data

 Remove duplicates from test data that are present in training data

• After this, left with 1099 test instances (698 dog, 401 fish)

• Select both target and base instances and then use algorithm to create 
poison instance

• Experiment is performed 1099 times. Achieved 100% success rate

 Each with different test-set images as target instance



Experiment One – one-shot kill attack:
Samples instances



Experiment One – one-shot kill attack:
Results



• These types of attacks are more difficult

• Used “watermarking” trick and multiple poison instances

• Experiment performed on

 Scaled-down AlexNet architecture

 Initialized with pretrained weights (warm-start)

 Optimized with Adam at learning rate 1.85 x 10-5 over 10 epochs

 Batch size 128

Experiment Two – Poisoning attacks 
on end-to-end training (PAEET)



Experiment Two – PAEET:
Single poison instance attack



Experiment Two – PAEET:
Watermarking



Experiment Two – PAEET:
Watermarking



Experiment Two – PAEET:
Watermarking



Experiment Two – PAEET:
Multiple poison instance attacks
• PAEET difficult because model learns feature embeddings between target 

and poison

• Introduce multiple poison instances derived from different base instances



Experiment Two – PAEET:
Multiple poison instance attacks



Experiment One/Two – PAEET:
Single/Multiple poison instance attack(s)

• Single

• Reacts to poisons by rotating the decision boundary to encompass the target

• Decision boundary rotates significantly

• Multiple

• Reacts to training by pulling the target into the base distribution (in feature 
space)

• Decision boundary remains stationary



Experiment One/Two – PAEET:
Single/Multiple poison instance attack(s)



Experiment One/Two – PAEET:
Single/Multiple poison instance attack(s)



Neural Cleanse: 
Identifying and 
Mitigating Backdoor 
Attacks in Neural 
Networks
Presented by Matthew Sgambati

Paper Citation:
Wang et al. (2019) Neural Cleanse: Identifying and Mitigating 
Backdoor Attacks in Neural Networks



Outline
• Lack of transparency in Deep Neural Networks (DNNs) make them 

susceptible to backdoor attacks

• Backdoors can stay hidden indefinitely until activated by input

• Present a robust and generalizable detection and mitigation system for DDN 
backdoor attacks

• Identify backdoors and reconstruct possible triggers

• Multiple mitigation techniques via input filters, neuron pruning, and 
unlearning

• Demonstrate validation versus two types of injection method identified by 
prior work



DNNs information/issues
• A part of numerous critical applications, such as facial and iris recognition, 

voice interface for home assistances, and guiding self-driving cars

• In the security space, used for everything from malware classification to 
binary reverse engineering and network intrusion detection

• Key issue is the lack of interpretability

• They are numerical black boxes that do not lend themselves to human 
understanding

• Extremely difficult to exhaustively test their behavior

• Backdoors can be added at any time



Goal of this work
• Given a trained DNN model

1. Identify if there is an input trigger that causes malicious behavior

2. Determine what the trigger looks like

3. Try to mitigate its effects on the model

 Remove it from the model



NN applications
• Implement and validate their technique on

1. Handwritten digit recognition

2. Traffic sign recognition

3. Facial recognition with large number of labels

4. Facial recognition using transfer learning



NN applications



NN applications



What is a backdoor?
• Bad actor with access to DDN that inserts incorrect label association, either 

at training time or modifications on a trained model

 NOT a backdoor, this is an adversarial poisoning attack

• Backdoor is a hidden pattern trained into a DNN, which produces an 
unexpected behavior, if and only if the pattern is added to the input

• Backdoors must be injected into a model, while adversarial attacks do not 
need to be



Backdoor attack example



Defense Assumptions and Goals
• Defender has access to the trained DNN and a set of correctly labeled 

samples to test model performance

• Defender has access to necessary computational resources to test or modify 
DNN

• Goals

1. Detecting backdoor

2. Identifying backdoor

3. Mitigating backdoor



Defense Intuition and Overview
• Key Intuition

• Detecting Backdoors

 Three steps

• Identifying Backdoor Triggers

• Mitigating Backdoors



Defense Intuition and Overview:
Key Intuition
• Backdoor triggers produce a classification result to a target label A

regardless of the label the input normally belongs in

• Think of classification problem as partitions in multi-dimensional space

 Each partition captures some features

• Backdoors create “shortcuts” between these partitions

• They detect these “shortcuts” by measuring minimum amount of 
perturbation necessary to changes all inputs from one region to a target 
region



Defense Intuition and Overview:
Key Intuition



Defense Intuition and Overview:
Detecting Backdoors
• Step 1

 For each label

 Treat it as target label

 Calculate “minimal” trigger required to misclassify all samples from other labels 
to target label

• Step 2
 Repeat Step 1 for each output label in the model

• Step 3
 Measure the size of each potential trigger

 Run outlier detection algorithm to detect if any trigger is significantly 
smaller than other triggers



Defense Intuition and Overview:
Identifying Backdoor Triggers
• The previous three steps determine whether or not there is a backdoor in the 

model and the attack target label

• Step 1 produces the “reversed engineered trigger”

• This trigger is the minimal trigger necessary to induce the backdoor and 
may look slightly smaller/different than actual trigger used



Original vs Reverse Engineered 
Trigger: MNIST



Original vs Reverse Engineered 
Trigger: GTSRB



Original vs Reverse Engineered 
Trigger: YouTube Face



Original vs Reverse Engineered 
Trigger: PubFig



Original vs Reverse Engineered 
Trigger: Trojan Square



Original vs Reverse Engineered 
Trigger: Trojan Watermark



Detecting Backdoors:
Reverse Engineering Triggers



Detecting Backdoors:
Via Outlier Detection
• Optimization method provides us with

 Reversed Engineered Trigger for each target label

 L1 norms for each one

• Identify triggers that show up as outliers with smaller L1 norm distribution

• Achieved by using Median Absolute Deviation (MAD)

• Anomaly index

 Absolute deviation of data point divided by MAD

• Assume underlying distribution to be a normal distribution, apply constant 
estimator to normalize anomaly index

• Any point with anomaly index larger than 2 has > 95% probability of being 
an outlier

• These are marked as an outlier and infected



Anomaly index



L1 norm 



Defense Intuition and Overview:
Mitigating Backdoors
• Early filter for adversarial inputs that identifies inputs with a known trigger

• Model patching algorithm based on neuron pruning

• Model patching algorithm based on unlearning



Mitigating Backdoors:
Filter for Detecting Adversarial Inputs
• Filter based on neuron activation profile for reversed trigger

• Measured as average neuron activations of top 1% of neurons in 2nd to last 
layer

• Given some input, filter identifies potential adversarial inputs as those with 
high activation profiles

 This is based on a certain threshold

 This threshold can be calibrated using tests on clean inputs

• Evaluated the performance of their filters using clean images from the 
testing set and adversarial images created by applying original trigger to 
test images

• Calculate false positive rate (FPR) and false negative rate (FNR) when 
setting different thresholds for average neuron activation



Mitigating Backdoors:
Filter for Detecting Adversarial Inputs



Mitigating Backdoors:
Patching DNN via Neuron Pruning
• Use reversed trigger to help identify backdoor related neurons

• Set these neurons output value to 0 during inference (Prune)

• Target neurons ranked by differences between clean inputs and adversarial 
inputs

• Target 2nd to last layer

• Prune neurons by order of highest rank first

 Prioritize those with biggest activation gaps between clean and adversarial inputs

• Stop pruning when pruned model is no longer responsive

 Due this to try to minimize impact on classification accuracy of clean inputs



Mitigating Backdoors:
Patching DNN via Neuron Pruning



Mitigating Backdoors:
Patching DNN via Neuron Pruning



Mitigating Backdoors:
Patching DNN via Unlearning
• Use reversed trigger to train infected DDN to recognize correct labels when 

the trigger is present

• Allows the model to decide which weights (not neurons) are problematic and 
update them

• Fine-tune the model for only 1 epoch using updated training dataset

 This set is comprised of 10% of original training data (clean, no trigger)

 Then add reversed trigger to 20% of this sample without modifying the labels



Mitigating Backdoors:
Patching DNN via Unlearning



BadNets: Identifying 
Vulnerabilities in the 
Machine Learning 
Model Supply Chain
Presented by Matthew Sgambati

Paper Citation:
Gu et al. (2019) BadNets: Identifying Vulnerabilities in the Machine 
Learning Model Supply Chain



Outline
• Complicated DNNs take time to train

 Weeks on many GPUs

• Users can outsource this work to the cloud or rely on pretrained models and 
then fine tune them

• This opens up security risks

• Adversaries could upload a maliciously trained network and the user has no 
idea



Backdoored Neural Network (BadNet)
• Backdoored model should perform well on most inputs

• It should cause targeted misclassifications or degrade accuracy of the model for 
inputs that satisfy some secret, attacker-chosen property (backdoor trigger)

• Model architecture cannot change, otherwise users may notice this

• Propose to embed this behavior into the model by modifying/training the weights

• Developed malicious training procedure based on training set poisoning

 Computes new weights based on training set, backdoor trigger, and model architecture



Backdoored Neural Network (BadNet):
Architecture unlikely to work



Case studies
• MNIST handwritten digit dataset

• Traffic Sign Detection (TSD) using datasets of U.S. and Swedish signs

 Retrained

 Transfer Learning



Threat Model
• The user and trainer

• Outsourced Training Attack

 Idea is that user does not trust trainer, so withholds some validation set and will 
only accept the model if it meets some target accuracy

 What is the Adversary's Goals here?

 The malicious model should not reduce classification accuracy on the validation set

 Inputs containing the backdoor trigger, predict the malicious target

• Transfer Learning Attack

 User downloads malicious model unknowingly

 User can use associated training and validation sets to verify model and use public 
datasets to verify accuracy

 User then performs transfer learning to adapt model to new task

 What is the Adversary's Goals here?

 New model must have high accuracy on user’s validation set for new application domain

 Inputs containing the backdoor trigger, predict the malicious target



Case Study - MNIST



Case Study – MNIST:
Attack Goals
• Single pixel backdoor

 Single bright pixel in bottom right corner of the image

• Pattern backdoor

 Pattern of bright pixels in bottom right corner of the image

• Attack types

 Single target attack

 All-to-all attack



Case Study – MNIST:
Attack Strategy
• Poison the training dataset

• Randomly pick images from the training dataset and add in backdoored 
versions

 First for single pixel

 Second for pattern

• Retrain the baseline MNIST DNN



Backdoor image examples



Case Study – MNIST:
Attack Results – Single Target Attack



Case Study – MNIST:
Attack Results – All-to-All Attack



Case Study – MNIST:
Attack Results – Filters



Case Study – MNIST:
Attack Results – % Backdoored images



Case Study – TSD:
Attack Results – % Backdoored images



Case Study: Traffic Sign Detection 
(TSD)



Case Study – TSD:
Attack Goals
• Triggers

 Yellow square

 Image of a bomb

 Image of a flower

• Triggers are about the size of a Post-it note

• Single target attack

 Changes the label of stop sign to speed-limit sign

• Random target attack

 Changes the label of backdoored traffic sign to random incorrect label



Traffic sign backdoor examples



Case Study – TSD:
Attack Strategy
• Similar strategy to MNIST attacks

• Superimposed the backdoor image on to each sample

• Created six BadNets in total

 Three for single attack

 Three for random attack



Case Study – TSD:
Attack Results – Single



Case Study – TSD:
Attack Results – Single Real-World



Case Study – TSD:
Attack Results – Random



Case Study – TSD:
Attack Results



Case Study – Transfer Learning
• Most difficult test

• Can the backdoor training survive transfer learning?



Case Study – Transfer Learning:
Setup



Case Study – Transfer Learning:
Attack Results



Case Study – Transfer Learning:
Attack Results



Case Study – Transfer Learning:
Attack Results – Strength the attack


