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Lecture Outline

• Defenses against Privacy Attacks

▪ Anonymization techniques

▪ Encryption techniques

▪ Differential privacy

▪ Distributed learning

▪ ML-specific techniques

• Jason Starace presentation

▪ Introduction to differential privacy

• Lu Cai presentation

▪ Differentially private SGD

• Johnny Stuto presentation

▪ Scalable private learning with PATE

• Sohag Sharidur

▪ Introduction to federated learning
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Defenses against Privacy Attacks

• Data privacy techniques have the goal of allowing analysts to learn about trends
in data, without revealing information specific to individual data instances

▪ Therefore, privacy techniques involve an intentional release of information, and 
attempt to control what can be learned from the released information

• Related to data privacy is the Fundamental Law of Information Recovery, which 
states that “overly accurate estimates of too many statistics can completely destroy 
privacy”

▪ I.e., extracting useful information from a dataset (e.g., for training an ML model) poses 
a privacy risk to the data

• There is an inevitable trade-off between privacy and accuracy (i.e., utility)

▪ Preferred privacy techniques should provide an estimate of how much privacy is lost 
by interacting with data

Defenses against Privacy Attacks
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Defenses against Privacy Attacks

• Defense strategies against privacy attacks in ML can be broadly classified into:

▪ Anonymization techniques

▪ Encryption techniques

▪ Differential privacy

▪ Distributed learning

▪ ML-specific techniques 

Defenses against Privacy Attacks
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Anonymization Techniques

• Anonymization techniques provide privacy protection by removing identifying 
information in the data

• E.g., remove personal identifiable information (PII) 

▪ In the example below, the Name and Address columns are removed

Anonymization Techniques

User ID Name Address Account Type Subscription Date

001 Alice 123 A St Pro 01/02/20

002 Bob 234 B St Free 02/03/21

003 Charlie 456 C St Pro 03/04/18
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Anonymization Techniques

• Anonymization is not an efficient defense method, since the remaining 
information in the data can be used for identifying the individual data instances

▪ For example, based on health records (including diagnoses and prescriptions) with 
removed personal information released by an insurance group in 1997, a researcher 
extracted the information for the Governor of Massachusetts

o This is referred to as de-anonymization

▪ The same researcher later showed that 87% of all Americans can be uniquely identified 
using 3 bits of information: ZIP code, birth date, and gender

Anonymization Techniques

User ID Zip Code Birth date Gender Probable 
disease ID

001 83401 01/02/1997 F 120

002 83402 02/03/1995 M 35

003 83403 03/04/1999 M 240

User ID Name Address Zip Code Birth date Gender Probable 
disease ID

001 Alice 123 A St 83401 01/02/1997 F 120

002 Bob 234 B St 83402 02/03/1995 M 35

003 Charlie 456 C St 83403 03/04/1999 M 240

Dataset 1: Users medical database Dataset 2: Users medical database with name and address removed
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Linkage Attack

• De-anonymization of data by using connections to external sources of 
information is referred to as linkage attack 

▪ For example: 

o In 2006, Netflix published anonymized 10 million movie rankings by 500,000 customers

o Two researchers showed later that by using movie recommendations on IMDb (Internet 
Movie Database) they could identify the customers in the Netflix data

Anonymization Techniques

User 
ID

Name Address Account 
Type

Subscription 
Date

001 Alice 123 A St Pro 01/15/20

002 Bob 234 B St Pro 02/03/21

003 Charlie 456 C St Free 03/04/18

User 
ID

Product 
Name

Product 
Price

Purchase Date

001 TV 400 01/02/20

002 Iphone 1,199 02/02/21

003 Watch 130 02/22/18

Dataset 1: Annonymized dataset with removed personal information Dataset 2: External public dataset that reveals the users in Dataset 1 
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k-anonymity

• k-anonymity is an approach for protecting data privacy by suppressing certain 
identifying data features

▪ This approach removes fields of data for individuals who have unique characteristics

o E.g., students at UI who are from Latvia and are enrolled in Architecture

• A dataset is k-anonymous if for any person’s record, there are at least 𝑘 − 1 other 
records that are indistinguishable

• Limitation: this approach is mostly applicable to large datasets with low-
dimensional input features

▪ The more input features there are for each record, the higher the possibility of unique 
records

Anonymization Techniques
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Encryption Techniques

• Encryption is a cryptography approach, which converts the original 
representation of information into an alternative form

▪ The sender of encrypted information shares the decoding technique only with the 
intended recipients of the information

• Encrypting the training data has been applied in ML 

▪ Common techniques for data encryption include:

o Homomorphic encryption (HE)

o Secure multi-party computation (SMPC)

• Encrypting ML models is less common approach

▪ Homomorphic encryption has been applied to the model gradients in collaborative DL 
setting to protect the model privacy

Encryption Techniques

Figure form: What is Public Key Cryptography?

https://www.twilio.com/blog/what-is-public-key-cryptography
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Homomorphic Encryption

• Homomorphic encryption (HE) allows users to perform computations on 
encrypted data (without decrypting it)

▪ Encrypted data can be analyzed and manipulated without revealing the original data

• HE uses a public key to encrypt the data, and applies an algebraic system (e.g., 
additions and multiplications) to allow computations while the data is still 
encrypted

▪ Only the person who has a matching private key can access the decrypted results

Encryption Techniques
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Homomorphic Encryption

• In ML, training data can be encrypted and send to a server for model training 

▪ Even if the server is untrusted or it is compromised, confidentiality of the data will 
remain preserved

▪ One main limitation of HE is the slowing down of the training process

• HE has been applied to traditional ML approaches, such as Naïve Bayes, 
Decision Trees

▪ Training DNNs over encrypted data is still challenging, due to the increased 
computational complexity

Encryption Techniques

Figure form: Homomorphic Encryption & Machine Learning: New Business Models

https://towardsdatascience.com/homomorphic-encryption-machine-learning-new-business-models-2ba6a4f185d
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Privacy versus Confidentiality

• Encryption techniques in ML are mainly applied to protect the confidentiality of 
the data or model

• Confidentiality refers to keeping the information (training data, model 
parameters) hidden from the clients and the public

▪ It is ensuring that only authorized parties have access to the information

▪ E.g., a server has an ML model trained on private data and provides the model to a 
client for inference

o It is preferred to preserve the confidentiality of the model parameters from the client

• Privacy refers to intentional release of information in a controlled manner to 
prevent unintended information leakage 

▪ It is ensuring that released data cannot uniquely identify individual inputs

▪ E.g., a server applies Differential Privacy to a trained ML model to prevent 
memorization of information about individual inputs

• Protecting privacy is more challenging than protecting confidentiality

Encryption Techniques
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Secure Multi-Party Computation

• Secure Multi-Party Computation (SMPC) is an extension of encryption in multi-
party setting

▪ SMPC allows two or more parties to jointly perform computation over their private 
data, without sharing the data 

▪ E.g., two banks want to know if they have both flagged the same individuals and learn 
about the activities by those individuals

o The banks can share encrypted tables of flagged individuals, and they can decrypt only the 
matched records, but not the information for individuals that are not in both tables

Encryption Techniques

Figure form: Generation and Distribution of Quantum Oblivious Keys for Secure Multiparty Computation

https://www.researchgate.net/publication/336084072_Generation_and_Distribution_of_Quantum_Oblivious_Keys_for_Secure_Multiparty_Computation/figures?lo=1
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Secure Multi-Party Computation

• SMPC versus HE

▪ SMPC protects the privacy of the data in collaborative learning

o E.g., participants in collaborative learning do not trust the other participants or the central 
server 

▪ HE protects the confidentiality of the data from external adversaries

o E.g., a data owner wants to use a MLaaS (Machine Learning as a Service), but does not trust 
the service provider: (1) the owner sends encrypted data, (2) the provider processes encrypted 
data and sends back encrypted results, (3) the owner decrypts the results

o Or, a bank can store encrypted banking information in the cloud, and use HE to ensure that 
only the employees of the bank can access the data

Encryption Techniques
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Secure Multi-Party Computation

• In ML, SMPC can be used to compute updates of the model parameters by 
multiple parties that have access to their private data

▪ For examples, SMPC has been applied to federated learning, where participants 
encrypt their updates, and the central server can recover only the sum of the updates 
from all participants

▪ Beside the data privacy, SMPC also offers protection against adversarial participants

o Either all parties are honest and can jointly compute the correct output, or if a malicious party 
is dishonest the joint output will be incorrect

• SMPC has been applied to traditional ML models, such as decision trees, linear 
regression, logistic regression, Naïve Bayes, k-means clustering

▪ Application of SMPC to deep NNs is challenging, due to increased computational 
costs

Encryption Techniques



17

CS 404/504, Spring 2023

Differential Privacy

• Differential privacy is based on employing obfuscation mechanisms for privacy 
protection

▪ A randomization mechanism ℳ 𝐷 applies noise ξ to the outputs of a function 𝑓 𝐷 to 
protect the privacy of individual data instances, i.e., ℳ 𝐷 = 𝑓 𝐷 + ξ

▪ Commonly used randomization mechanisms include Laplacian, Gaussian, and 
Exponential mechanism

• DP is often implemented in practical applications

• Examples include:

▪ 2015: Google, for sharing historical traffic statistics

▪ 2016: Apple, for improving its Intelligent Personal Assistant technology

▪ 2017: Microsoft, for telemetry in Windows

▪ 2020: LinkedIn, for advertiser queries

▪ 2020: U.S. Census Bureau, for demographic data

Differential Privacy
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DP Example

• Consider two databases 𝐷1 and 𝐷2 that show if a 
person has diabetes or not

▪ The only difference between the two databases is that 𝐷2
does not include the last record in 𝐷1 (for Bob)

• Let’s assume that the databases are publicly available 
for making queries 

▪ To protect patient identities, it is not allowed to query the 
patient names

• However, an adversary can query the sum of the 
persons with diabetes in the first database (e.g., 
𝑓 𝐷1 = 64), and the sum in the second database (e.g., 
𝑓 𝐷2 = 63)

▪ Based on the difference 𝑓 𝐷1 − 𝑓 𝐷2 = 64 − 63 = 1, the 
adversary can infer that Bob has diabetes

▪ Alternatively, if 𝑓 𝐷1 = 63 and 𝑓 𝐷2 = 63, the adversary 
can infer that Bob does not have diabetes

Name Has Diabetes

Don 1

Monica 0

…

…

Chris 1

Bob 1

Name Has Diabetes

Don 1

Monica 0

…

…

Chris 1

𝐷2 (without Bob)

𝐷1 (includes Bob)
Differentially Private SGD
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DP Example (cont’d)

• An algorithm that is differentially private adds noise to the answers for 𝑓 𝐷1
and 𝑓 𝐷2 to make it difficult to infer the information about Bob

▪ I.e., a randomization mechanism ℳ 𝐷 is selected to add noise ξ to the output answers 
to queries 𝑓 𝐷 , that is, ℳ 𝐷 = 𝑓 𝐷 + ξ

• Additive noise ξ from a Laplacian distribution (shown) is commonly applied

▪ E.g., let’s assume a privacy budget 휀 = 0.5 and let’s sample noise from a Laplacian 
distribution with 𝜇 = 0 and scale 𝑏 = Τ1 휀 = Τ1 0.5 = 2

▪ 6 random noise samples are: ξ ∈ −0.13, 2.06, −1.67, −2.49, −0.52, 0.37

Differentially Private SGD

▪ Consider 3 queries by the adversary having the 
outputs 𝑓 𝐷1 = 64 and 𝑓 𝐷2 = 63 with added 
Laplacian noise ξ : 

oℳ 𝐷1 −ℳ 𝐷2 = 63.87 − 65.06 = −1.19

oℳ 𝐷1 −ℳ 𝐷2 = 62.33 − 60.51 = 1.82

oℳ 𝐷1 −ℳ 𝐷2 = 63.48 − 63.37 = 0.11

▪ Based on the differences between the randomized 
outputs from the queries for 𝐷1 and 𝐷2, now it is 
impossible for the adversary to tell if Bob has 
diabetes

ξ

𝑃𝑟 ξ
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DP Mechanism

• The important question in DP is: how much noise to add?

▪ The amount of noise ξ depends on the data, and it needs to be adjusted 

o E.g., a function 𝑓1 𝐷 that provides the yearly income of people in thousands of dollars would 
require different level of noise than a function 𝑓2 𝐷 that provides the height in feet

• The sensitivity of the function 𝑓 determines how much the output 𝑓 𝐷 changes 
by adding a single data instance

▪ Sensitivity is defined as ∆𝑓 = 𝑚𝑎𝑥 𝑓 𝐷1 − 𝑓 𝐷2 1 for all possible datasets 𝐷1 and 𝐷2
differing in one data instance, where ∙ 1 denotes ℓ1-norm

o E.g., for the example with medical diabetes records, the sensitivity is ∆𝑓 = 1, since the sum of 
the people with diabetes can change only by 1 when a single input is added

• A Laplacian mechanism that is 휀-differentially private adds a Laplacian noise 
with scale 𝑏 = Τ∆𝑓 휀

• Note that if the privacy budget 휀 has smaller values, this will result in larger 
amount of Laplacian noise ξ added to 𝑓 𝐷

▪ Thus, the noisy outputs ℳ 𝐷 will reveal less private information about the inputs 
(i.e., provide better privacy protection), but also the noisy answers to the queries 
ℳ 𝐷 will be less accurate 

Differentially Private SGD
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DP with Laplacian Randomization

• The figure shows the probability distributions of the outputs ℳ 𝐷 for three 
different levels of Laplacian noise with 휀 ∈ 0.05, 0.1, 0.2

▪ The true output value is 𝑓 𝐷 = 1,000

▪ Larger values of 휀 have distributions that are tighter around the true value of 𝑓 𝐷 =
1,000 in the figure, and hence are more accurate, but leak more privacy

Differentially Private SGD

𝑃
𝑟
ℳ

𝐷

ℳ 𝐷

• A mechanism ℳ 𝐷 is 휀-differentially private if 
for all databases 𝐷1 and 𝐷2 that differ by at most 
one instance, and for any subset of outputs S:

𝑃𝑟 ℳ 𝐷1 ∈ 𝑆 ≤ 𝑒 𝑃𝑟 ℳ 𝐷2 ∈ 𝑆

▪ In other words, 휀-differential privacy ensures that 
the probabilities of any two outputs ℳ 𝐷1 and 
ℳ 𝐷2 differ by at most 𝑒

▪ E.g., for 휀 = 0.05, ൗ𝑃𝑟 ℳ 𝐷1 𝑃𝑟 ℳ 𝐷2 is at most 

𝑒0.05 = 1.05

▪ Smaller 휀 ensures more similar outputs ℳ 𝐷1 and 
ℳ 𝐷2 , and provides higher levels of privacy
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DP with Gaussian Randomization

• There are other DP mechanisms besides the Laplacian mechanism, that are more 
suitable for some applications

• The Gaussian mechanism adds Gaussian noise instead of Laplacian noise, and 
the level of noise is based on the ℓ2-norm sensitivity, instead of ℓ1-norm

• A Gaussian mechanism is 휀, 𝛿 -differentially private if for all databases 𝐷1 and 
𝐷2 that differ by at most one instance, and for any subset of outputs S:

𝑃𝑟 ℳ 𝐷1 ∈ 𝑆 ≤ 𝑒 𝑃𝑟 ℳ 𝐷2 ∈ 𝑆 + 𝛿

• The 휀, 𝛿 -differential privacy that is provided by the Gaussian mechanism 
introduces the probability parameter 𝛿

▪ Informally, 휀, 𝛿 -differential privacy is guaranteed with probability 1 − 𝛿

▪ E.g., for 𝛿 = 0.05, the method is 𝜀-differentially private with 95% probability 

• The Gaussian mechanism is therefore weaker than the Laplacian mechanism, 
since it allows scenarios when the privacy cannot be guaranteed

Differentially Private SGD
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DP in Machine Learning

• Training ML models can be considered an extension of the previous example on 
querying databases

▪ I.e., ML models use data to learn a function, which is afterward used for prediction

• The datasets for training ML models often contain sensitive information (e.g., 
medical records, personal information), so it is important to provide privacy 
guarantees

▪ On the other hand, we know that ML models can memorize the training data, which 
can be exploited by adversaries to recover information about the data from a trained 
model

• The challenge is: how to extract enough information from data to train accurate 
ML models without revealing the data

Differentially Private SGD
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DP in Machine Learning

• In ML, DP is achieved by adding noise to:

▪ Model parameters

o Several works applied DP to conventional ML methods

o Differentially private SGD (Abadi, 2016) clips and adds noise to the gradients of deep NNs 
during training

– This reduces the memorization of individual input instances by the model

o The approaches that apply obfuscation to the model parameters via DP are also referred to as 
differentially private ML

▪ Model outputs

o PATE (Private Aggregation of Teacher Ensembles) approach (Papernot, 2018) employs an 
ensemble of models trained on disjoint subsets of the training data, called teacher models

o Noise is added to the outputs of the teacher models, and the aggregated outputs are used to 
train another model, called student model

▪ Training data

o Obfuscation of training data in ML has been also investigated in several works

Differential Privacy
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DP in Machine Learning

• DP is typically applied in a centralized learning setting, where the data and 
model are at the same location

▪ In this scenario, all data is gathered in one central location for model training

▪ E.g., MLaaS typically requires that the users upload their data to a cloud-based server 
for training a model

• Recently, DP has also been applied in a distributed learning setting, where the 
data are kept at separate locations from the model

▪ DP-FedAvg (McMahan, 2018) is applied to federated learning 

▪ It introduced the Federated Averaging algorithm to limits the contributions by the 
data from individual users to the learning model

Differential Privacy
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Distributed Learning

• Distributed learning allows multiple parties to train a global model without 
releasing their private data

• Some form of aggregation is applied to the local updates of the model 
parameters by the users in distributed learning to create a global model

▪ E.g., averaging is one common form of aggregation

• Federated learning is the most popular distributed learning scheme

Distributed Learning

Figure form: Liu et al. (2020) When Machine Learning Meets Privacy: A Survey and Outlook 
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Distributed Learning

• Federated learning or collaborative learning – learn one global model using data 
stored at multiple locations (e.g., remote devices)

▪ The data are processed locally, and used to update the model

o The data do not leave the remote devices, remains private

▪ The central server aggregates the updates and creates the global model

• Decentralized Peer-to-Peer (P2P) learning – the remote devices communicate 
and exchange the updates directly, without a central server

▪ Removes the need to send updates to a potentially untrusted central server

• Split learning – each remote device is used to train several layers of the global 
model, and send the outputs to a central server

▪ The remote devices can train the initial layers of a DNN, and the central server can 
train the final layers

o The gradient is back-propagated from the central server to each user to sequentially complete 
the back-propagation through all layers of the model

▪ The devices send the intermediate layers outputs, rather than model parameters

▪ Split learning is more common for IoT devices with limited computational resources

Distributed Learning
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ML-Specific Techniques

• In the lecture on privacy attacks in ML, we mentioned that overfitting is one of 
the reasons for information leakage

• Regularization techniques in ML can therefore be used to reduce overfitting, as 
well as a defense strategy

▪ Different regularization techniques in NNs include:

o Explicit regularization: dropout, early stopping, weight decay

o Implicit regularization: batch normalization

• Other ML-specific techniques include:

▪ Dimensionality reduction – removing inputs with features that occur rarely in the 
training set

▪ Weight-normalization – rescaling the weights of the model during training

▪ Selective gradient sharing – in federated learning, the users share a fraction of the 
gradient at each update

ML-Specific Techniques
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WHAT IS DIFFERENTIAL PRIVACY

The definition of differential privacy came from a long line of work applying algorithmic ideas to the 

study of privacy [1], culminating with the work of:

HISTORY

Cynthia Dwork

Source: Harvard Radcliffe Institute

Kobbi Nissim

Source: CRCS

Adam Smith

Source: Boston University

Frank McSherry

Source: github.com/frankmcsherry

With their 2006 paper titled “Calibrating Noise to Sensitivity in Private Data Analysis”.  The paper has 
since been revised and updated over the years with responses and additional information



WHAT IS DIFFERENTIAL PRIVACY

English language definition:

▪ “The outcome of any analysis is essentially equally likely, independent of 

whether any individual joins, or refrains from joining, the dataset” [4]

SO WHAT IS IT?
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WHAT IS DIFFERENTIAL PRIVACY

KEY TERMS [5]

𝑥, 𝑥′, 𝑦, 𝑦′ - (Adjacent) Datasets that are nearly identical.  The first dataset is 
slightly larger by 1 record.
𝜖 - Privacy loss - Some value that is ≥ 0
ℳ - Algorithm (mechanism) operating on the dataset 



WHAT IS DIFFERENTIAL PRIVACY

FORMAL DEFINITION [4][5] 

ℳ gives 𝜖-differential privacy if for all pairs of data sets 𝑥, 𝑦 differing in the data 
of one person, and all events 𝒮

𝑃𝑟 ℳ 𝑥 ∈ 𝒮 ≤ 𝑒𝜖Pr[ℳ 𝑦 ∈ 𝒮]

Randomness is introduced by ℳ



FUNDAMENTALS

PROPERTIES OF ALL DIFFERENTIALLY PRIVATE ALGORITHMS

Immunity to Auxiliary Information. Differential privacy makes no reference to an input distribution.

Postprocessing. Anything derived from the output of a differentially private algorithm is itself differentially 

private and therefore suffers no additional privacy loss.

Composition. Differentially private algorithms compose, in the sense that when several differentially private 

algorithms are run “independently”, then the joint output of all the algorithms is still differentially private.

Group Privacy. Differential privacy with respect to changes of an individual’s data implies differential privacy 

with respect to changes in the data of small sets of individuals

▪ if 𝜖 for an individual, then 𝑘𝜖 for groups of size 𝑘

[Dwork et al.]



RANDOMIZATION METHODS

LAPLACE MECHANISM

𝑀 𝑥 = 𝑓 𝑥 + 𝑌,𝑤ℎ𝑒𝑟𝑒 𝑌 ~ 𝐿𝑎𝑝(Δ1/휀)

Laplace Probability Distribution Function

Source: Wikipedia

[Dwork et. Al][5] Δ1 = max
𝑎𝑑𝑗 𝑥,𝑦

𝑓 𝑥 − 𝑓(𝑦)



APPROXIMATE DIFFERENTIAL PRIVACY

[5]

𝑃𝑟 ℳ 𝑥 ∈ 𝒮 ≤ 𝑒𝜖 Pr ℳ 𝑦 ∈ 𝒮 + 𝛿

ℳ gives (𝜖, 𝛿)-differential privacy if for all pairs of data sets 𝑥, 𝑦 differing in the 
data of one person, and all events 𝒮

Allows for use of Gaussian/Binomial noise

Reason A/D Details Impact

Depends on L2 Sensitivity Advantage 𝑓 𝑥 − 𝑓(𝑦)
2 Improve by a factor of ≈ 𝑘

Advanced Composition Advantage 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 𝑙𝑜𝑠𝑠 ≤ 𝑘 log
1

𝛿
𝜖 with a probability ≥ 1 − 𝛿

Privacy loss as mentioned rather 
than 𝑘𝜖

Concentrated DP (CDP) & 
others

Advantage Privacy loss rv is subgaussian



Gaussian noise

Variance 𝜎2 = 2

𝑂1 - Attacker suspects real is 𝐷1

𝑂2 - Attacker is confused

𝑂3 - Attacker is tricked thinking 𝐷2 is the real database 

PRIVACY LOSS RANDOM VARIABLE
[5]&[6] 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑐 = ln

𝑃𝑟 ℳ 𝑥 = 𝑐

𝑃𝑟 ℳ 𝑦 = 𝑐



All possible events 𝒪 = ℳ 𝐷1 in order of what benefits 

the attacker first

ℒ → ℒ𝐷1,𝐷2 𝒪

Since we’re more interested in 𝑒𝜖 we will graph against 

exp(ℒ)

PRIVACY LOSS RANDOM VARIABLE
A FORMAL DEFINITION [5]&[6] 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑐 = ln

𝑃𝑟 ℳ 𝑥 = 𝑐

𝑃𝑟 ℳ 𝑦 = 𝑐



All possible events 𝒪 = ℳ 𝐷1 in order of what benefits 

the attacker first

ℒ → ℒ𝐷1,𝐷2 𝒪

Since we’re more interested in 𝑒𝜖 we will graph against 

exp ℒ

Pick an arbitrary 𝜖 = ln(3)

𝛿 Represents something terrible happening

How likely is it for 𝑒ℒ to be above 𝑒𝜖 = 3

▪ Measure the width -> ln 3 , 𝛿1 − 𝐷𝑃, 𝛿1 ≈ .054

PRIVACY LOSS RANDOM VARIABLE
A FORMAL DEFINITION [5]&[6] 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑐 = ln

𝑃𝑟 ℳ 𝑥 = 𝑐

𝑃𝑟 ℳ 𝑦 = 𝑐

𝛿1



Returning 𝑂1 is not great but not terrible 𝑒ℒ > 𝑒𝜖

Returning 𝑂2 is a lot worse, it’s obvious it leaks more

𝛿 doesn’t account for this leakage

Resolve this by adding weights 

▪ ≈ 1 to the very bad events

▪ ≈ 0 to the ‘not so’ bad events

But how?

PRIVACY LOSS RANDOM VARIABLE
A FORMAL DEFINITION [5]&[6] 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑐 = ln

𝑃𝑟 ℳ 𝑥 = 𝑐

𝑃𝑟 ℳ 𝑦 = 𝑐



Take the inverse of the curve

▪ Bad events approach 0

Normalize the curve using ratio 
𝑒𝜀

𝑒ℒ

▪ Events not too bad close 1

This is the mass of all possible bad events, weighted by 

how likely they are and how bad they are. 

▪ ln 3 , 𝛿2 − 𝐷𝑃 𝑤𝑖𝑡ℎ 𝛿2 ≈ 0.011

This is a tighter characterization of 𝛿 and not used in the 

typical definition of (𝜖, 𝛿)

PRIVACY LOSS RANDOM VARIABLE
A FORMAL DEFINITION [5]&[6] 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐿𝑜𝑠𝑠 𝑐 = ln

𝑃𝑟 ℳ 𝑥 = 𝑐

𝑃𝑟 ℳ 𝑦 = 𝑐



GAUSSIAN MECHANISM

A FORMAL DEFINITION [5]

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 ≤ 𝜖 ⟹ ln
𝑒 Τ−𝑧2 2𝜎2

𝑒 Τ− 𝑧+Δ𝑓 2 2𝜎2
≤ 𝜖

𝑃𝑅 𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 ≥ 𝑡𝜖 ≤ 𝑃𝑅 𝑧 > 𝜎 𝑡 −
𝜖

2
≈
1

𝑡
𝑒 Τ−𝑡2 2

𝑇𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝜖, 𝛿 − 𝐷𝑃, 𝑠𝑒𝑡 𝜎 = Δ𝑓 2 ln Τ1 Τ𝛿 𝜖

When outside range -> 𝑧 < 𝜎 1 −
𝜖

2
⟶ 𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐿𝑜𝑠𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 2𝜖



DP AND DEEP LEARNING
DP-SGD [7]

Gradients computed per-example as 

opposed to computed on the average

Gradients are clipped to control sensitivity

Spherical Gaussian noise 𝑏𝑡 is added to 

their sum

Update step can be rewritten as:

▪ 𝜃𝑡+1 ← 𝜃𝑡 − 𝜂 ∙ ∇𝑡 + 𝑏𝑡

Adding noise during training can hurt 

accuracy



DP AND DEEP LEARNING
MODEL AGNOSTIC PRIVATE LEARNING [7]

Consider a multi-class classification 

problem.

Split training data into k disjoint subsets of 

equal size

Train independent models 𝜃1(𝑥)…𝜃𝑘(𝑥)

Compute a private histogram over the set 

of k predictions.

Add noise

Select histogram with highest count



Q & A
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BACKGROUND

DIFFERENTIAL PRIVACY AND DEEP LEARNING

• Differential privacy is a privacy framework that aims to protect sensitive information while still 

allowing for useful data analysis. 

• In practice, differential privacy involves adding noise to data before it is analyzed, so that the true 

values of individual data points are obscured. One of the key challenges in implementing differential 

privacy is balancing privacy with the usefulness of the data.

• Deep neural networks are highly expressive models that can potentially memorize individual training 

examples. Deep learning with differential privacy is an emerging field that combines the power of 

deep neural networks with the privacy guarantees of differential privacy. The goal is to develop 

machine learning algorithms that can analyze sensitive data while preserving the privacy of 

individuals in the data.



BACKGROUND

DIFFERENTIAL PRIVACY

• The formal definition of (ε, δ)-differential privacy:

• A randomized mechanism M: D → R satisfies ε-differential privacy if for any two adjacent 

inputs d, d' ∈ D and for any subset of outputs S ⊆ R,  it holds that: 

• ε is a parameter that determines the strength of the privacy guarantee provided by a 

differentially private mechanism. A smaller value of ε corresponds to a stronger privacy 

guarantee.

• δ is the probability that allows for plain ε-differential privacy broken. 



APPROACH

DIFFERENTIAL PRIVATE TRAINING OF NEUTRAL NETWORK

https://arxiv.org/abs/1607.00133

• A differentially private stochastic gradient descent (SGD) algorithm

• The moments accountant

• Hyperparameter tuning

https://arxiv.org/abs/1607.00133


APPROACH

A DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT 

(SGD) ALGORITHM

• Compute the gradient for a random subset of examples 

(batch)

• Clips the l2 norm

• Compute the average

• Add noise 

• Take a step in the opposite direction of this average noisy 

gradient

Note: The authors perform the computation in batches, then 

group several batches into a lot for adding noise



APPROACH

PRIVACY ACCOUNTING AND HYPERPARAMETER TUNING

• For differentially private SGD, to compute the overall privacy 

cost of the training, an “accountant" procedure is 

implemented,  which computes the privacy cost at each access 

to the training data, and accumulates this cost as the training 

progresses. 

• Hyperparameters can be tuned to balance privacy, accuracy, 

and performance.  The model accuracy is more sensitive to 

training parameters such as batch size and noise level than to 

the structure of a neural network.



RESULTS - MNIST

• Experiments on standard MNIST dataset for handwritten digit 

recognition consisting of 60,000 training examples and 10,000 

testing examples

• Baseline Model accuracy: 98.3%



RESULTS - MNIST



RESULTS - MNIST

The model accuracy is more sensitive to 

training parameters such as learning rate 

and noise level than to the structure of a 
neural network.



CONCLUSION

• Deep learning with differential privacy is an approach to machine 

learning that aims to protect the privacy of sensitive data while still 

allowing for effective learning. 

• The algorithms of the paper are based on a differentially private 

version of stochastic gradient descent (SGD) and reach 97% training 

accuracy with (8; 10-5)-differential privacy.
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DEFENSES AGAINST PRIVACY ATTACKS

▪ Data privacy techniques have the goal of allowing analysts to learn about trends in data, without revealing 

information specific to individual data instances

▪ Therefore, privacy techniques involve an intentional release of information, and attempt to control what 

can be learned from the released information

▪ Data privacy is rooted in the  Fundamental Law of Information Recovery, which that, in order to extract 

accurate and useful information from a dataset, some degree of privacy must be sacrificed. 

▪ Conversely, to achieve strong privacy protection, some loss of utility or accuracy is inevitable

▪ This principle highlights the inherent trade-off between the privacy of individual data points and the utility 

or accuracy of the information derived from the dataset. As stronger privacy guarantees are required, 

more noise or obfuscation needs to be introduced into the data analysis process, which can result in a 

decrease in the utility or accuracy of the analysis. There is an inevitable trade-off between privacy and 

accuracy (i.e., utility)

▪ In the context of differential privacy, this trade-off is represented by the privacy parameter (ε). Lower 

values of ε correspond to stronger privacy guarantees, but at the cost of decreased utility or accuracy in 

the output. Choosing an appropriate value for ε requires balancing the need for privacy protection with 

the desired level of utility or accuracy in the analysis.



MITIGATION TECHNIQUES

• Anonymization techniques: Remove personally identifiable information (PII) from 

the dataset.

• Data synthesis: Generate synthetic datasets that preserve the statistical properties of 

the original data while ensuring privacy.

• Federated learning: Use distributed learning approaches, such as federated learning, 

to train machine learning models on multiple devices or nodes without sharing raw 

data

• Secure multi-party computation (SMPC): Employ cryptographic techniques like 

SMPC to perform computations on encrypted data without revealing the underlying 

sensitive information

• Privacy-aware data collection: Collect data with privacy considerations in mind 

from the outset. This includes obtaining proper consent from users, collecting only 

necessary data, and ensuring proper access controls and data storage practices.

• Differential privacy: Implement differentially private algorithms for data analysis 

and machine learning. This approach introduces controlled noise to the output of an 

algorithm, providing a mathematically provable privacy guarantee. Balancing the 

privacy parameter (ε) with the desired utility or accuracy is crucial to ensure a 

reasonable trade-off between privacy and utility.



DIFFERENTIAL PRIVACY:
The PATE (Private Aggregation of Teacher Ensembles) method falls under the category of 
differential privacy. 

PATE is a privacy-preserving machine learning framework that enables model-agnostic 
training while providing differential privacy guarantees for the training dataset.

By using the PATE method, you can train machine learning models that preserve privacy 
without significantly compromising performance, making it a valuable approach for various 
applications where data privacy is a primary concern.

▪ Injecting noise into the dataset to create plausible deniability.

▪ The noise shouldn’t change the outcome of the computation.

▪ An observer should not be able to determine any PII from the output or identify whose data 
was trained on.

ε = Upper bound for the loss of privacy 
δ = probability that privacy will not be 
held
M = Model training algorithm



RÉNYI DIFFERENTIAL PRIVACY

Rényi divergence, also known as Rényi's α-divergence, is a measure of dissimilarity between two 

probability distributions. It was introduced by Alfréd Rényi, a Hungarian mathematician, in 1961. Rényi 

divergence generalizes the concept of the Kullback-Leibler (KL) divergence, a widely used measure of 

divergence between probability distributions.

Rényi Differential Privacy (RDP) is a generalization of the classical differential privacy framework. It 

was introduced by Ilya Mironov in 2017 to address some limitations of traditional differential privacy, 

particularly in the context of composition, which occurs when multiple privacy-preserving operations or 

queries are applied. RDP introduces an additional parameter, called the order (α), alongside the 

classical privacy parameter (ε).



PATE FRAMEWORK COMPONENTS
Current approaches show potential but are untested at scale and have issues with 

scalability, robustness and utility.

In the PATE framework, multiple teacher models are trained on disjoint subsets of the 

sensitive training dataset

A student model then learns from these teacher models by querying them through an 

aggregator, which enforces differential privacy by introducing controlled noise. 

The student model is trained on  insensitive data, allowing it to generalize the knowledge 

acquired from the teacher models without directly accessing sensitive data.



PATE FRAMEWORK

The PATE approach is based on a simple intuition: if two different classifiers, 
trained on two different datasets with no training examples in common, agree 
on how to classify a new input example, then that decision does not reveal 
information about any single training example. 
The decision could have been made with or without any single training 
example, because both the model trained with that example and the model 
trained without that example reached the same conclusion.



TEACHERS

The teacher models are trained on disjoint subsets of the sensitive training dataset, 

each with its own portion of the data. 

These models provide expertise on the data they were trained on while maintaining 

privacy. 

By using multiple teachers, the PATE framework leverages the wisdom of the 

ensemble, which helps increase the overall accuracy and generalization capabilities of 

the student model. 



STUDENT MODELS

The student model learns from the teacher models without direct access to the 

sensitive data. It is trained on an insensitive or public unlabeled dataset, which is 

labeled by interacting with the ensemble of teachers via the aggregator. 

The student model aims to replicate the performance of the teachers while ensuring 

privacy protection for the sensitive training data



AGGREGATORS

Build off the PATE method

▪ New methods for aggregating teacher/student answers

▪ Confidence Aggregator

▪ Teacher consensus module where Min of T teachers guarantee a correct classification 
and throw out queries where teachers don’t know

▪ Interactive Aggregator

▪ Student confidence scoring. Don’t ask teachers for an answer if confidence is high that 
the student knows

▪ Expensive Queries are high cost to privacy

▪ Gaussian noise instead of Laplacian 

▪ Less computationally expensive

▪ Causes less noise overall.



AGGREGATOR ALGORITHMS

Confident Aggregator:

Interactive Aggregator:



EXPERIMENTAL SETUP

Datasets (private personal attributes)

▪ MNIST 

▪ Street View House Numbers (SVHN)

▪ US Census Income Adult (UCI Adult

▪ Glyph: Synthetically generated computer font symbols with at most 150 
different classes

Teacher Ensembles: 100,500,1000,5000 (number of teachers & partitions of 
data)

Queries: 500-12000 depending on dataset

Privacy parameters: δ = 10−8 probability that privacy will not be held



RESULTS



CONCLUSION

▪ Privacy can be thought of as an ally rather than a foe in the context of machine 
learning. 

▪ As the techniques improve, differential privacy is likely to serve as an effective 
regularizer that produces better-behaved models. 

▪ Within the framework of PATE, machine learning researchers can also make 
significant contributions towards improving differential privacy guarantees 
without being an expert in the formal analyses behind these guarantees.

▪ New methods for aggregating teacher/student answers provide a privacy 
preserving technique that reduces leakage

▪ Caps queries at a confidence interval

▪ Stops overfitting student’s queries by checking confidence of student's 
answers

▪ Improvements across the board in Privacy ε loss(lower is better)

▪ Confirms that PATE has the potential to be used at scale

▪ Generalization improved by changing perturbation method
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DID YOU KNOW?

According to the U.S. Department of Health and Human Services, 
the 337 healthcare incidents in 2022 reported 

affected 19,992,810 individuals.
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Introduction

❑ What is federated learning?

The motivation for federated learning is the
preservation of the privacy of the data owned by
the clients.

Federated learning (also known as collaborative
learning) is a machine learning technique that
trains an algorithm via multiple independent
sessions, each using its own dataset

❑ Motivation?
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General ML Approach
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Cloud ML Approach
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Centralized ML Approach
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WHAT’S WRONG WITH THIS?
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Drawbacks of Centralized ML

CML involves transmitting all the 
data to a central location.

Privacy Concerns

Big issue when the data being 
transmitted is large to central server 

for processing

Network Latency

Requires significant computing 
resources. Can be prone to bias if 

the training data is not 
representative of the population,

Cost & Bias

Difficult to scale as the number of 
users and data sets increase

Scalability Issues
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Federated 
Learning
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Federated Learning (Heterogenous)
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Key Factors of Federated Learning
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Optimization Algorithm

This corresponds to a full-batch (non-stochastic) gradient descent. For the current global model wt, 
the average gradient on its global model is calculated for each client k.

FedSGD
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Optimization Algorithm

Each client locally takes one step of gradient descent on the current model using its local data, and 
the server then takes a weighted average of the resulting models.

FedAVG
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A Regular Application of FL
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Behind The Scene

Personalizes model 
locally based on 
users usage

Many users updates are aggregated to 
form a concensus change

Sends the updated 
result, and repeats
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When FL Updates?
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Current Research

One of the main challenges in federated learning is to ensure the privacy of the local data on the devices. 
Researchers are exploring new methods to improve the privacy of federated learning algorithms, such as 
using differential privacy or homomorphic encryption

Privacy-preserving federated learning

Federated learning involves communication between the devices and the central server, which can be a
bottleneck in terms of time and resources. Researchers are exploring new methods to reduce the
communication overhead of federated learning algorithms, such as using compression techniques or
designing more efficient communication protocols.

Communication-efficient federated learning
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Current Research

Federated learning assumes that the data on the devices are identically and independently distributed (i.i.d.). 
However, in real-world scenarios, this assumption may not hold. Researchers are exploring new methods to 
extend federated learning to non-i.i.d. settings, such as using transfer learning or meta-learning.

Federated learning in non-i.i.d. settings

Federated learning has the potential to improve healthcare by enabling the development of predictive
models without compromising patient privacy. Researchers are exploring new methods to apply
federated learning to healthcare applications, such as developing models for disease diagnosis or
personalized treatment recommendations.

Federated learning for healthcare

19



Potential Future of FL

We can expect to see FL being 
integrated with blockchain 

technology to further enhance the 
security and privacy of data used in 

machine learning.

Blockchain Integration

Can be used in industry to improve 
quality control and predict equipment 

failures and trained on data from multiple 
factories without sharing proprietary 

information

Manufacturing

Can provide more personalized 
education, collaborated research

Education

Can be used to analyze data from 
various sources such as traffic 

sensors, public transport systems, 
and energy usage.

Smart City
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JUST TO LET YOU KNOW

According to the Health Insurance Portability and Accountability Act, 
healthcare data breaches in the U.S. have decreased by 48%.
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CONCLUSION

To conclude, I would like to say that federated learning in the 

field of machine learning has a great potential. I truly believe 

day by day people will be more aware of their data. Therefore, 

decentralized machine learning will be applied almost 

everywhere vastly in healthcare, education, finance and 

robotics.
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