
CS 487/587

Adversarial

Machine Learning

Dr. Alex Vakanski

2

CS 487/587, Spring 2024

Lecture 10

AML in Cybersecurity – Part II:

Malware Detection and Classification

3

CS 487/587, Spring 2024

Lecture Outline

• Malware detection and classification

▪ Malware analysis systems

o Static malware analysis systems

o Dynamic malware analysis systems

▪ ML models for malware classification

o Static and dynamic features

o Deep Learning-based malware classification

▪ Adversarial attacks on ML-based malware classifiers

o Traditional ML models

o Deep Learning approaches

• Presentation by Tao Wang

▪ Severi (2021) Explanation-Guided Backdoor Poisoning Attacks Against Malware
Classifiers

4

CS 487/587, Spring 2024

Malware Detection and Classification

• Malicious software is also known as malware

• Malware is any kind of software that is specifically designed to disrupt, damage,
or gain unauthorized access to a computer system or network

▪ Malware is constantly evolving and presents significant threat to computer systems

▪ Forces security analysts to keep pace by improving cyber defenses

• Automated malware detection versus classification

▪ Malware detection systems: predict whether an executable file is malware or not a
malware

o Output: 1 or 0

▪ Malware classification systems: predict the malware type of an executable

o Output: 1 to N, where N is the number of different malware families

o I.e., malware classification systems differentiate between different kinds of malware (virus,
adware, or Trojan), in order to provide a better understanding of their capabilities

Malware Detection and Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

5

CS 487/587, Spring 2024

Malware Categories

• Depending on the purposes, malware can be divided into various categories

▪ Virus: attaches itself to a program and infects a device

▪ Worm: self-replicates and propagates copies of itself to other devices over a network

▪ Adware: generates/displays unsolicited online advertisements on user’s screen

▪ Ransomware: locks down an infected device, and demands payment to unlock it

▪ Backdoor: allows unauthorized access to functionality

▪ Trojan: a class of backdoor malware disguised as legitimate software, to trick users
into installing it

▪ Bot: distributes malware to other devices, and it is typically part of a network (botnet)

▪ Keyloggers: captures keystrokes

▪ Rootkit: gains root-level access to conceal the existence of other malware

▪ Logic bomb: explodes when a condition occurs

Malware Detection and Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

6

CS 487/587, Spring 2024

Malware Analysis Systems

• Malware analysis involves dissecting malware to understand how it works, and
determine its functionality, origin, and potential impact

▪ Malware analysis is essential for any business and infrastructure that responds to
cybersecurity incidents

• Malware analysis systems can be classified into two broad categories

▪ Static analysis systems (pre-execution analysis)

o Process malware without running it, and extract features to be used for malware detection
and classification

▪ Dynamic analysis systems (post-execution analysis)

o It involves running the malware either in a physical or virtual environment, and searching for
indicators of malicious activities

• Some references also add a class of hybrid analysis systems, that combine static
and dynamic analysis

Malware Analysis Systems

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

7

CS 487/587, Spring 2024

Portable Executable (PE) File Format

• In Windows systems, Portable Executable (PE) is a file format for executables

▪ Analogous formats are Executable and Linkable Format (ELF) in Linux and Unix
systems, and Mach-O in macOS and iOS

▪ Most existing malware targets Windows systems

• A PE file consists of a number of a header and sections that inform the Windows
OS how to manage the executable file

Malware Analysis Systems

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

8

CS 487/587, Spring 2024

Portable Executable (PE) File Format

• PE file format

▪ PE file header

o The header of the PE file is composed of additional headers (MS-DOS, PE, and Optional
Header) and various tables and fields (Sections Table, Import/Export Address Table)

▪ PE file sections

o The sections are either code sections (containing machine instructions), data sections (holding
variables and constants), or resource sections (holding embedded fonts, images, etc.)

Malware Analysis Systems

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

• The format for a 32-bit PE file header is
shown in the figure

• Note the structure from top to bottom:

1. MS-DOS Header with the DOS Stub

2. PE Header, i.e., COFF (Common Object
File Format) Header

3. Optional Header

4. Sections Table

• Detailed description of the PE format
can be found at
https://docs.microsoft.com/en-
us/windows/win32/debug/pe-format

Anderson (2018) – EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

• Extracted features from a PE file for ML
analysis in the EMBER dataset

• Note again the header, optional header,
imports and exports, sections, etc.

Anderson (2018) – EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models

11

CS 487/587, Spring 2024

Static Analysis Systems

• Static analysis provides information about the functionality of the file, and it
produces a set of signature features (without executing the file)

▪ The extracted information is used to predict whether the file is malicious software

▪ The disadvantage of static analysis is that the “true features” of the code may be
missed

• Static analysis can include:

▪ Analyzing PE header and sections

o PE header provides information about linked libraries and imported/exported functions, as
well as contains metadata about the executable file

o Strings of characters can contain references to modified files or accessed file paths by the
executable (e.g., URLs, domain names, IP addresses, names of loaded DLLs, registry keys,
etc.)

o Packed/encrypted code that is used by malware developers to make their manipulated files
more difficult to analyze can be used for malware detection

▪ Disassembling the program – translating machine code into assembly language code

o Load the executable into a disassembler to translate it into assembly language, and obtain a
better understanding of what the program does

Malware Analysis Systems

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

12

CS 487/587, Spring 2024

Dynamic Analysis Systems

• Dynamic analysis involves executing the program and monitoring its behavior

▪ It is typically performed when all available static analysis techniques have been
exhausted

• Dynamic analysis is run in a safe environment on dedicated physical or virtual
machines (in order not to expose the users’ system to unnecessary risks)

▪ Physical machines are set up on isolated networks, disconnected from the Internet or
any other network, to prevent malware from spreading

▪ Virtual machines emulate the functionality of a physical computer, where the OS
running on the virtual machine is isolated from the host OS

o One limitation is that some malware can detect when they are running in a virtual machine,
and they will execute differently than when in a physical machine

▪ A related term is sandbox, referring to a physical or virtual environment for running
malware, which isolates executables from other system resources and applications

o Although sandboxes share characteristics with physical and virtual machines, sandboxes can
be more limited (e.g., they can run in the browser), while physical and virtual machines
always act as a complete system

o For example, online sandboxes are websites where one can submit a sample file and receive a
report about its behavior

Malware Analysis Systems

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

13

CS 487/587, Spring 2024

ML-based Malware Classification

• ML-based systems for malware detection and classification employ a set of
extracted features from executable files

▪ As we mentioned before, unlike the ML models in Computer Vision that employ the
intensity of image pixels for image classification, segmentation, or object detection
tasks, ML models for malware classification employ a great variety of different
features

▪ The extracted features are used for training an ML model, and understandably, the
trained model is afterwards used for detection or classification of new files

▪ In the remainder of the lecture, we will use the term “classification” or “classifier” to
describe both ML models for detection and classification of malware

• Based on the inputs used for malware classification, the ML-based systems can
be broadly categorized into:

▪ Raw-binary classifiers - use raw byte content from executables as input features

▪ Feature-based classifiers - use either static or dynamic features, obtained via static or
dynamic malware analysis

ML-based Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

14

CS 487/587, Spring 2024

Features for Malware Classification

• The figure shows static and dynamic features that are commonly used for ML-
based malware classification

ML-based Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

15

CS 487/587, Spring 2024

Static Features for Malware Classification

• Static features

▪ In Windows systems, static features are extracted from either the PE file header and
sections, or assembly language source file (obtained after disassembling the file)

▪ In Android systems, static features are extracted from the disassembled APK

o Various disassembler tools for Windows and Android are available

• Strings – sequence of characters, related to URLs, IP addresses, accessed file
paths, registry keys, or names of modified files by the executable

▪ Ye et al. (2008) used extracted strings from PE files as input features to an SVM
ensemble with bagging model for malware detection

• Byte n-grams – sequence of n bytes in PE header or the assembly language code

▪ An n-gram is a sequence of n adjacent items in sequential data

▪ A large number of sequences of n bytes (n ranging from 1 to 8) are used as input
features for ML model training

▪ Different ML models (Decision Trees, Random Forests, Deep Belief Nets) have been
implemented using byte n-grams, e.g., by Jain and Meena (2011), Yuxin et al. (2019)

▪ Challenges include the large number of n-grams for each file (which often requires
reducing the dimensionality of the feature vectors)

Static Features for Malware Classification

https://dl.acm.org/doi/10.1145/3073559
https://link.springer.com/chapter/10.1007%2F978-3-642-22786-8_6
https://dl.acm.org/doi/abs/10.1007/s00521-017-3077-6

16

CS 487/587, Spring 2024

Static Features for Malware Classification

• Opcode (mnemonic) n-grams – n consecutive opcodes (i.e., operational code
instructions) in the assembly language source code

▪ Assembly instructions are composed of an operational code and operand

o E.g., instruction sequence: “call sub_401BCD”, “add eax 1”, “mov ebx ebx”

o 3-gram opcode: CALL-ADD-MOV

▪ Malware samples from the same family often use the same opcodes

▪ Santos et al. (2013) selected the top 1,000 features using 1 or 2-gram opcodes and
trained an SVM malware classifier

• API function calls – request to the OS for accessing system resources, such as,
files, devices, processes, networks, registry, etc.

▪ Application Programming Interfaces (API) function calls are very discriminative
features, as they can provide key information to reveal the behavior of malware

o E.g., certain sequences of API function calls are often found in malware, but rarely in benign
files

▪ Ahmadi et al. (2016) used the frequency of 794 API function calls to develop an ML
system for classifying malware into families

Static Features for Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://www.semanticscholar.org/paper/Opcode-sequences-as-representation-of-executables-Santos-Brezo/159ba4fade07ff275d4632e998d9a50a41d7c50d
https://www.semanticscholar.org/paper/Novel-Feature-Extraction%2C-Selection-and-Fusion-for-Ahmadi-Giacinto/0e5f61c7dce101b95c62c0088a155e2773f111e7

17

CS 487/587, Spring 2024

Static Features for Malware Classification

• Entropy-based features – indicate the statistical variation of bytes in a file, and
are used to detect compressed or encrypted segments of codes in executables

▪ Malware developers use compression and encryption to conceal malicious segments
of code from static analysis

▪ Files with compressed or encrypted segments have higher entropy than native code

▪ Structural entropy represents an executable file as a stream of entropy values, where
each value indicates the entropy over a small chunk of code (see the figure below)

▪ A similarity score of structural entropies is used for malware classification, e.g., by
Sorokin and Jun (2011)

Static Features for Malware Classification

Ramnit family malware

Gatak family malware

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://link.springer.com/article/10.1007/s11416-011-0153-9

18

CS 487/587, Spring 2024

Static Features for Malware Classification

• IMG-based features – visualize the binary content of an executable as a gray-
scale image

▪ This is achieved by interpreting every byte as one pixel of a gray-scale image, and
organizing the array of bytes in an executable as a 2-D image

▪ Two malware families are shown as gray-scale images in the figure (note that the two
families have a distinct image representation)

▪ Nataraj et al. (2011) used k-Nearest Neighbors to classify malware families

Static Features for Malware Classification

Ramnit family malware

Lollipop family malware

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://dl.acm.org/doi/10.1145/2016904.2016908

19

CS 487/587, Spring 2024

Static Features for Malware Classification

• Function–call graph – is a directed graph in which the nodes represent the
functions of a program, and the edges symbolize function calls

▪ Function-call graphs capture the high-level program structure and the flow of
execution between the different functions

▪ Kinable et al. (2011) developed an approach for clustering malware based on the
structural similarities between function-call graphs

• Control–flow graph – is a directed graph in which the nodes represent blocks of
code in the individual functions, and the edges represent control-flow paths
between the basic blocks of code

▪ The control-flow graph is a representation of all the paths through different blocks of
codes (i.e., subroutines, group of statements) that can be traversed during a program’s
execution

▪ Control-flow graphs are useful for understanding the detailed behavior of individual
functions and identifying potentially suspicious or malicious blocks of code

▪ Faruki et al. (2012) used a Random Forest classifier for detecting malware using
control-flow graphs of various API calls

Static Features for Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://link.springer.com/article/10.1007/s11416-011-0151-y
https://dl.acm.org/doi/10.1145/2388576.2388594

20

CS 487/587, Spring 2024

Dynamic Features for Malware Classification

• Dynamic features are extracted from the execution of malware at runtime

• Memory and registers usage – values stored in the memory and different
registers during the execution can distinguish benign from malicious programs
▪ Ghiasi et al. (2015) monitored the memory content and register values before and after

each invoked API call

▪ They used similarity scores between the benign and malicious files in a training set to
train an ML model for malware detection

• Instruction traces – sequence of processor instructions called during the
execution of a program
▪ Instruction traces includes low-level instruction such as arithmetic operations,

memory accesses, function calls, and system calls

▪ Dynamic instruction traces are more robust indicators of the program’s behavior than
static traces, since compression and encryption can obfuscate code instructions from
static analysis
o Also, dynamic instruction traces are ordered as they are executed, while static instruction

traces are ordered as they appear in the binary file

▪ Carlin et al. (2017) analyzed traces of opcodes to detect malware by Random Forest
and Hidden Markov Model classifiers

Dynamic Features for Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://www.sciencedirect.com/science/article/abs/pii/S0952197615001190
http://refhub.elsevier.com/S1084-8045(19)30386-8/sref11

21

CS 487/587, Spring 2024

Dynamic Features for Malware Classification

• Network traffic – monitoring the traffic entering and exiting the network can
provide helpful information to detect malicious behavior

▪ E.g., when malware infects a host machine, it may establish communication with an
external server to download updates, other malware, or leak private and sensitive
information from the host machine

▪ Bekerman et al. (2015) extracted 972 features from the network traffic, and used them
for developing Decision Tree and Random Forest malware classifiers

• API call traces – sequence of API calls for accessing file systems, devices,
processes, threads and error handling, and also to access functions such as the
Windows registry, manage user accounts, etc.

▪ Uppal et al. (2014) proposed traditional ML-based classifiers using n-grams of features
extracted from traces of invoked API calls

Dynamic Features for Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

https://ieeexplore.ieee.org/document/7346821
https://www.semanticscholar.org/paper/Malware-detection-and-classification-based-on-of-Uppal-Sinha/a41299f167a37e8d3ee6e2f7b5507ba16e112c1f

22

CS 487/587, Spring 2024

Adversarial Attacks on ML Malware Classifiers

• Next, a short overview of the adversarial attacks on ML-based models for
malware classification is presented

▪ A more detailed review can be found in Rosenberg et al. (2021) – Adversarial Machine
Learning Attacks and Defense Methods in the Cyber Security Domain

• AML attacks approaches can generally be divided into two groups:

▪ Attacks on traditional ML-based malware classifiers

▪ Attacks on deep learning-based malware classifiers

• Challenges for adversarial attacks on malware classifiers

▪ ML classifiers typically employ a set of features extracted from malware and
goodware, which are converted into numerical vectors and are used for training an
ML model

▪ Generating adversarial samples by applying perturbations to the numerical features
vectors may result in nonfunctional files or crashes

o Hence, it is required to carefully select the features to be manipulated in order to preserve the
functionality of the manipulated files

Adversarial Attacks on ML-based Malware Classifiers

23

CS 487/587, Spring 2024

Attacks on Traditional ML Models

• Ming et al. (2015) Replacement Attacks: Automatically Impeding Behavior-
Based Malware Specifications

▪ This work introduced an evasion white-box attack

o The adversary’s goal is to alter malware files, in order to result in misclassification by the ML
model as goodware files at inference time

▪ The authors modified malware code by replacing API calls with functionality-
preserving API calls

▪ The attack was employed to evade an ML classifier using Function-Call Graphs
features as inputs

Adversarial Attacks on Traditional ML-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

24

CS 487/587, Spring 2024

Attacks on Traditional ML Models

• Xu et al. (2020) MANIS: Evading Malware Detection System on Graph Structure

▪ Evasion white-box attack against Android APK malware classifiers

▪ Uses n-strongest nodes and FGSM in a Function-Call Graph to generate perturbed
samples

• Anderson et al. (2018) Learning to Evade Static PE Machine Learning Malware
Models via Reinforcement Learning

▪ Evasion black-box attack that employs static features against a Gradient Boosted
Decision Tree classifier

▪ A reinforcement learning approach was used to generate perturbed samples, by
learning the sequence of operations that are likely to result in detection evasion

Adversarial Attacks on Traditional ML-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

25

CS 487/587, Spring 2024

Attacks on Traditional ML Models

• Data poisoning attacks

▪ One should note that data poisoning attacks are more challenging in cybersecurity,
because they require injecting samples into the training set of the malware classifier

▪ But they can have significant consequences, when the adversary has the ability to
tamper with the training set

• Siciu et al. (2018) When Does Machine Learning FAIL? Generalized
Transferability for Evasion and Poisoning Attacks

▪ The attack is against a linear SVM classifier for Android malware detection

▪ Data poisoning was done by adding static features (API calls, URL requests) to benign
samples

• Munoz Gonzalez et al. (2017) Towards Poisoning of Deep Learning Algorithms
with Back-gradient Optimization

▪ Transferability black-box attack, requires read and add access to the training set

▪ Against Logistic Regression and an NN model for spam and ransomware detection

▪ A substitute model was trained and poisoned, and by employing transferability, it was
demonstrated that the poisoned samples were effective against the target classifiers

Adversarial Attacks on Traditional ML-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

26

CS 487/587, Spring 2024

Attacks on Traditional ML Models

• Attacks on PDF classifiers

▪ Note that PDF malware is less common, and most malware are PE files

• Srndic and Laskov (2014) Practical Evasion of a Learning-Based Classifier: A
Case Study

▪ Evasion white-box attack, against Random Forest classifier (named PDFRATE) that
uses static binary strings as features for detecting malicious PDF files

▪ The attack adds new strings features to malicious PDF files, to evade being detected as
malware by PDFRATE

• Li et al. (2020) A Feature-vector Generative Adversarial Network for Evading
PDF Malware Classifiers

▪ Attack on the PDFRATE classifier by using GAN-generated feature vectors for
producing malicious PDF files (classified as benign)

• Dang et al. (2017) Evading Classifiers by Morphing in the Dark

▪ White-box attack against SVM and Random Forest PDF malware classifiers

▪ A hill-climbing optimization approach was used to minimize the score for the rate of
feature modifications from malicious and benign PDFs

Adversarial Attacks on Traditional ML-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

27

CS 487/587, Spring 2024

Deep Learning for Malware Classification

• Besides traditional ML approaches for malware classification that rely on
manually selected features based on expert knowledge, recent work has
emerged that applied Deep Learning methods for malware classification

▪ DL approaches are more successful in detecting unseen and unsigned malware

• Numerous DL approaches have been introduced, employing raw bytes and
static/dynamic malware input features and various network architectures

▪ Encoder architectures have often been used in these approaches for extracting salient
features and dimensionality reduction of n-gram features

▪ Convolutional NN models employing IMG-based features and raw bytes-based
features have been applied for malware classification

▪ Recurrent NN models have been introduced for capturing dependencies in API call
traces, network traffic, and instruction traces

▪ Architectures with both convolutional and recurrent layers have also been developed
for dealing with both the spatial and sequential nature of static and dynamic features
in executables

Deep Learning Approaches for Malware Classification

Gilbert (2020) – The Rise of Machine Learning for Detection and Classification of Malware

28

CS 487/587, Spring 2024

Attacks on Deep Learning Models

• Attacks on Deep Learning classifiers using raw bytes (raw-binary classifiers)

▪ A limitation of these approaches is that raw byte content is rarely used as features in
the next generation anti-virus (NGAV) products

• Kreuk et el. (2018) Adversarial Examples on Discrete Sequences for Beating
Whole-Binary Malware Detection

▪ Evasion white-box attack against MalConv - a CNN model for malware detection
using raw byte inputs

▪ FGSM attack is used to modify bytes that were inserted between the file’s sections

• Koloshnaji et al. (2018) Adversarial Malware Binaries: Evading Deep Learning
for Malware Detection in Executables

▪ Implemented a similar attack to Kreuk et al. (2018)

▪ Analyzed the byte features that are the most impactful for the attack, found that most
of these features belong to the PE header

• Siciu et al. (2018) Exploring Adversarial Examples in Malware Detection

▪ Developed a related black-box attack, where adversarial files were created by
appending bytes from benign PE headers to malware

Adversarial Attacks on Deep Leaning-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

29

CS 487/587, Spring 2024

Attacks on Deep Learning Models

• Attacks on Deep Learning classifiers using static or dynamic features (feature-
based classifiers)

• Abusnaina et al. (2019) Adversarial Learning Attacks on Graph-based IoT
Malware Detection Systems

▪ Evasion white-box attack, against a CNN-model for IoT malware classification

▪ Uses Control-Flow Graph features of the malware disassembly source code

▪ Malicious samples were generated by concatenating CFGs of benign samples

• Hu and Tan (2017) Black-Box Attacks against RNN based Malware Detection
Algorithms

▪ Evasion white-box attack, against an LSTM classifier trained on the dynamic API call
traces of the malware

▪ A GAN model with RNN layers was used to generate invalid API calls, which were
inserted into the original API call traces

Adversarial Attacks on Deep Leaning-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

30

CS 487/587, Spring 2024

Attacks on Deep Learning Models

• Rosenberg et al. (2020) Generating End-to-End Adversarial Examples for
Malware Classifiers Using Explainability

▪ Black-box attack using 2,351 static features extracted from PE files

▪ Transferability in AML is employed, where a substitute ML model is first trained, and
it is hoped that the adversarial samples will be transferred to a target ML model

▪ Used feature importance approaches from explainable ML to select the minimal set
out of 2,351 features that have high impact on the malware classification

▪ Algorithm:

1) Train a substitute NN model on a training set believed to accurately represent the attacked
ML-based malware classifier

2) Select a malware executable file that needs to bypass the attacked malware classifier

3) Use explainable ML algorithm to calculate features importance for the classification of the
malware on the substitute model

4) For each feature in the set of features that are the easiest to modify, change the feature using
the list of predefined values, and select the value that result in the lowest confidence score by
the substitute malware classifier

5) Repeat until a benign classification is achieved by the target malware classifier

Adversarial Attacks on Deep Leaning-based Malware Classifiers

Rosenberg (2021) – AML Attacks and Defense Methods in the Cyber Security Domain

EXPLANATION-GUIDED BACKDOOR

POISONING ATTACKS AGAINST

MALWARE CLASSIFIERS

PRESENTED BY: TAO WANG

BACKGROUND

- Three main types of poisoning attacks:

1.Availability poisoning - aims to reduce model accuracy

2.Targeted poisoning attacks - induce model to

misclassify single instance at inference time

3.Backdoor attacks

a.goal: inject backdoor pattern into learned

representation of model

b.Clean label/dirty label

BACKGROUND Malware Detection Systems

Malware
Detection
Systems

Static

Feature based
detectors

Raw binary
analyzers

Dynamic

Adversarial Attacks

Adversarial
Attacks

Evasion
Attacks

Poisoning
Attacks

BACKGROUND

Shapley Additive exPlanations

Have the objective of explaining the final value of a prediction by
attributing a value to each feature based on its contribution to the
prediction.

BACKGROUND

Pipline

THREAT MODEL

Adversary’s goals:

----F(Xb) = y: generate backdoored benign binaries, insert into training data, thereby
poisoning model

----Fb(Xb) = yb: then attacker injects backdoor into malicious binary, classified as benign

THREAT MODEL

Adversary’s Capabilities

EXPLANATION-GUIDED BACKDOOR ATTACKS
Two natural strategies for developing successful backdoors

1. Search of areas of weak confidence near the decision boundary, where the
watermark can overwhelm existing weak evidence.

2. Subvert areas that are already heavily oriented toward goodware so that the density
if the backdoored subspace overwhelms the signal from other nearby samples.

EXPLANATION-GUIDED BACKDOOR ATTACKS
How do we gain insight into a model’s decision

boundary in a generic, model-agnostic way?

- SHAP provides model agnostic way to determine how strongly a particular feature
influences model decision

- Positive SHAP values indicate features which push model towards malware
decision

- Negative SHAP values indicate features which push model towards goodware or
benign decision

- Low confidence areas correspond to SHAP values near zero

BUILDING BLOCKS

The attacker requires two building blocks to

implement a backdoor: feature selectors and value

selectors.

BUILDING BLOCKS

Feature Selection

-LargeSHAP
-Sum SHAP values over feature columns
-Large positive values => important to malware decisions
-Large negative values => important to goodware decisions
-Small values => indicate areas of weak confidence

-LargeAbsSHAP
-Sum absolute value of SHAP values
-Captures overall importance of features of model, regardless of orientation

BUILDING BLOCKS

Value Selection

-Want to select these values based on notion of density in the subspace
-Sparse, weak confidence areas (gives large leverage over decision boundary)
-Points in dense areas to blend in with surrounding background data

-Value selection
-MinPopulation (e.g. values that occur with least frequency in dataset)

-Select sparse values
-Provides strong leverage over decision boundary

-CountSHAP
-Chooses values with high density of goodware aligned data points
-Allows trigger to blend in with background goodware data

BUILDING BLOCKS

Value Selection

-Value selection
-CountAbsSHAP

-CountSHAP values
-Blend well
-But, have to fight against background data

-Lead authors to propose CountAbsSHAP
-Gives feature values which have low confidence in determining class

ATTACK STRATEGIES

Independent Selection

-Searches for areas of weak confidence near decision boundary
-Use LargeAbsSHAP to select most important features
-Then, use either

-MinPopulation
-Ensures select highest leverage features and values with most sparsity

-CountAbsSHAP
-Tries to balance blending trigger and finding values that have weak
confidence in data

-Attack strongly affects decision boundary
- easy to mitigate against due to how unique the watermarked data points are

ATTACK STRATEGIES

Greedy combined selection

-More carefully blends watermark with
background dataset
-Use greedy algorithm to conditionally
select new features and values such that
those values are consistent with existing
goodware-oriented points
-Use LargeSHAP to select most goodware
oriented features
-Use CountSHAP to find highest density,
goodware oriented values

RESULTS

- Datasets (all malware classification)
- EMBER

- 2351-dimensional feature vector from 1.1 million Portable windows Executables
- All malicious binaries were reported as such by at least 40 AV engines

- Contaigo
- PDF

- Drebin
- Android app files

- Models
- LightGBM - gradient boosting model released with EMBER
- EmberNN - feedforward NN

- Metrics
- Acc(Fb, Xb) - accuracy of backdoored model on backdoored samples

- Goal: to REDUCE this value
- Acc(Fb, X) - accuracy of backdoored model on clean test set
- FPb - false positives of backdoored model

RESULT

LightGBM target and EmberNN target, (unrestricted)

RESULT

Transfer

RESULT

LightGBM target and EmberNN target, (constrained)

RESULT

Other datasets

MITIGATION

-Spectral Signature
-Use SVD of benign samples over reduced feature space
-compute outlier score by multiplying top right singular vector

-Filter out samples with the highest 15% of scores
-HDBSCAN

-Cluster based method
-Cluster examples using reduced feature set

-Compute silhouette scores on cluster to compute intra-cluster similarity of sample
-Filter out samples from each cluster with probability related to cluster silhouette score

-Isolation Forest
-Unsupervised anomaly detection algorithm
-Based on identifying rare and different points instead of building model of normal sample
-Intuition - approach will identify watermarked samples as outliers due to similarity

-As opposed to very diverse background points

MITIGATION

Result

QUESTIONS?

54

CS 487/587, Spring 2024

Additional References

1. Rosenberg et al. (2021) – Adversarial Machine Learning Attacks and Defense
Methods in the Cyber Security Domain, https://arxiv.org/abs/2007.02407

2. Gilbert et al. (2020) – The Rise of Machine Learning for Detection and
Classification of Malware: Research Developments, Trends and Challenges, link

3. Kaspersky Lab (2020) – Machine Learning Methods for Malware Detection, link

https://arxiv.org/abs/2007.02407
https://www.researchgate.net/publication/338355873_The_rise_of_machine_learning_for_detection_and_classification_of_malware_Research_developments_trends_and_challenges
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf

	Slide 1: CS 487/587 Adversarial Machine Learning
	Slide 2: Lecture 10
	Slide 3: Lecture Outline
	Slide 4: Malware Detection and Classification
	Slide 5: Malware Categories
	Slide 6: Malware Analysis Systems
	Slide 7: Portable Executable (PE) File Format
	Slide 8: Portable Executable (PE) File Format
	Slide 9
	Slide 10
	Slide 11: Static Analysis Systems
	Slide 12: Dynamic Analysis Systems
	Slide 13: ML-based Malware Classification
	Slide 14: Features for Malware Classification
	Slide 15: Static Features for Malware Classification
	Slide 16: Static Features for Malware Classification
	Slide 17: Static Features for Malware Classification
	Slide 18: Static Features for Malware Classification
	Slide 19: Static Features for Malware Classification
	Slide 20: Dynamic Features for Malware Classification
	Slide 21: Dynamic Features for Malware Classification
	Slide 22: Adversarial Attacks on ML Malware Classifiers
	Slide 23: Attacks on Traditional ML Models
	Slide 24: Attacks on Traditional ML Models
	Slide 25: Attacks on Traditional ML Models
	Slide 26: Attacks on Traditional ML Models
	Slide 27: Deep Learning for Malware Classification
	Slide 28: Attacks on Deep Learning Models
	Slide 29: Attacks on Deep Learning Models
	Slide 30: Attacks on Deep Learning Models
	Slide 31: Explanation-guided backdoor poisoning attacks against malware classifiers
	Slide 32: background
	Slide 33: background
	Slide 34: background
	Slide 35: background
	Slide 36: Threat model
	Slide 37: Threat model
	Slide 38: Explanation-Guided backdoor attacks
	Slide 39: Explanation-Guided backdoor attacks
	Slide 40: Building blocks
	Slide 41: Building blocks
	Slide 42: Building blocks
	Slide 43: Building blocks
	Slide 44: Attack strategies
	Slide 45: Attack strategies
	Slide 46: results
	Slide 47: result
	Slide 48: result
	Slide 49: result
	Slide 50: result
	Slide 51: Mitigation
	Slide 52: mitigation
	Slide 53: Questions?
	Slide 54: Additional References

