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Defenses against Privacy Attacks

• Data privacy techniques have the goal of allowing analysts to learn about trends 
in data, without revealing information specific to individual data instances

▪ Therefore, privacy techniques involve an intentional release of information, and 
attempt to control what can be learned from the released information

• Related to data privacy is the Fundamental Law of Information Recovery, which 
states that “overly accurate estimates of too many statistics can completely destroy 
privacy”

▪ I.e., extracting useful information from a dataset (e.g., for training an ML model) poses 
a privacy risk to the data

• There is an inevitable trade-off between privacy and accuracy (i.e., utility)

▪ Preferred privacy techniques should provide an estimate of how much privacy is lost 
by interacting with data

Defenses against Privacy Attacks
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Defenses against Privacy Attacks

• Defense strategies against privacy attacks in ML can be broadly classified into:

▪ Anonymization techniques

▪ Encryption techniques

▪ Differential privacy

▪ Distributed learning

▪ ML-specific techniques 

Defenses against Privacy Attacks
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Anonymization Techniques

• Anonymization techniques provide privacy protection by removing identifying 
information in the data

• E.g., remove personal identifiable information (PII) 

▪ In the example below, the Name and Address columns are removed

Anonymization Techniques

User ID Name Address Account Type Subscription Date

001 Alice 123 A St Pro 01/02/20

002 Bob 234 B St Free 02/03/21

003 Charlie 456 C St Pro 03/04/18
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Anonymization Techniques

• Anonymization is not an efficient defense method, since the remaining 
information in the data can be used for identifying the individual data instances

▪ For example, based on health records (including diagnoses and prescriptions) with 
removed personal information released by an insurance group in 1997, a researcher 
extracted the information for the Governor of Massachusetts

o This is referred to as de-anonymization

▪ The same researcher later showed that 87% of all Americans can be uniquely identified 
using 3 bits of information: ZIP code, birth date, and gender

Anonymization Techniques

User ID Zip Code Birth date Gender Probable 
disease ID

001 83401 01/02/1997 F 120

002 83402 02/03/1995 M 35

003 83403 03/04/1999 M 240

User ID Name Address Zip Code Birth date Gender Probable 
disease ID

001 Alice 123 A St 83401 01/02/1997 F 120

002 Bob 234 B St 83402 02/03/1995 M 35

003 Charlie 456 C St 83403 03/04/1999 M 240

Dataset 1: Users medical database Dataset 2: Users medical database with name and address removed
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Linkage Attack

• De-anonymization of data by using connections to external sources of 
information is referred to as linkage attack 

▪ For example: 

o In 2006, Netflix published anonymized 10 million movie rankings by 500,000 customers

o Two researchers showed later that by using movie recommendations on IMDb (Internet 
Movie Database) they could identify the customers in the Netflix data

Anonymization Techniques

User 
ID

Name Address Account 
Type

Subscription 
Date

001 Alice 123 A St Pro 01/15/20

002 Bob 234 B St Pro 02/03/21

003 Charlie 456 C St Free 03/04/18

User 
ID

Product 
Name

Product 
Price

Purchase Date

001 TV 400 01/02/20

002 Iphone 1,199 02/02/21

003 Watch 130 02/22/18

Dataset 1: Annonymized dataset with removed personal information Dataset 2: External public dataset that reveals the users in Dataset 1 
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k-anonymity

• k-anonymity is an approach for protecting data privacy by suppressing certain 
identifying data features

▪ This approach removes fields of data for individuals who have unique characteristics

o E.g., students at UI who are from Latvia and are enrolled in Architecture

• A dataset is k-anonymous if for any person’s record, there are at least 𝑘 − 1 other 
records that are indistinguishable

• Limitation: this approach is mostly applicable to large datasets with low-
dimensional input features

▪ The more input features there are for each record, the higher the possibility of unique 
records

Anonymization Techniques
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Encryption Techniques

• Encryption is a cryptography approach, which converts the original 
representation of information into an alternative form

▪ The sender of encrypted information shares the decoding technique only with the 
intended recipients of the information

• Encrypting the training data has been applied in ML 

▪ Common techniques for data encryption include:

o Homomorphic encryption (HE)

o Secure multi-party computation (SMPC)

• Encrypting ML models is less common approach

▪ Homomorphic encryption has been applied to the model gradients in collaborative DL 
setting to protect the model privacy

Encryption Techniques

Figure form: What is Public Key Cryptography?

https://www.twilio.com/blog/what-is-public-key-cryptography
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Homomorphic Encryption

• Homomorphic encryption (HE) allows users to perform computations on 
encrypted data (without decrypting it)

▪ Encrypted data can be analyzed and manipulated without revealing the original data

• HE uses a public key to encrypt the data, and applies an algebraic system (e.g., 
additions and multiplications) to allow computations while the data is still 
encrypted

▪ Only the person who has a matching private key can access the decrypted results

Encryption Techniques
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Homomorphic Encryption

• In ML, training data can be encrypted and send to a server for model training 

▪ Even if the server is untrusted or it is compromised, confidentiality of the data will 
remain preserved

▪ One main limitation of HE is the slowing down of the training process

• HE has been applied to traditional ML approaches, such as Naïve Bayes, 
Decision Trees

▪ Training DNNs over encrypted data is still challenging, due to the increased 
computational complexity

Encryption Techniques

Figure form: Homomorphic Encryption & Machine Learning: New Business Models

https://towardsdatascience.com/homomorphic-encryption-machine-learning-new-business-models-2ba6a4f185d
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Privacy versus Confidentiality

• Encryption techniques in ML are mainly applied to protect the confidentiality of 
the data or model

• Confidentiality refers to keeping the information (training data, model 
parameters) hidden from the clients and the public

▪ It is ensuring that only authorized parties have access to the information

▪ E.g., a server has an ML model trained on private data and provides the model to a 
client for inference

o It is preferred to preserve the confidentiality of the model parameters from the client

• Privacy refers to intentional release of information in a controlled manner to 
prevent unintended information leakage 

▪ It is ensuring that released data cannot uniquely identify individual inputs

▪ E.g., a server applies Differential Privacy to a trained ML model to prevent 
information leakage about individual inputs

• Protecting privacy is more challenging than protecting confidentiality

Encryption Techniques
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Secure Multi-Party Computation

• Secure Multi-Party Computation (SMPC) is an extension of encryption in multi-
party setting

▪ SMPC allows two or more parties to jointly perform computation over their private 
data, without sharing the data 

▪ E.g., two banks want to know if they have both flagged the same individuals and learn 
about the activities by those individuals

o The banks can share encrypted tables of flagged individuals, and they can decrypt only the 
matched records, but not the information for individuals that are not in both tables

Encryption Techniques

Figure form: Generation and Distribution of Quantum Oblivious Keys for Secure Multiparty Computation

https://www.researchgate.net/publication/336084072_Generation_and_Distribution_of_Quantum_Oblivious_Keys_for_Secure_Multiparty_Computation/figures?lo=1
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Secure Multi-Party Computation

• SMPC versus HE

▪ SMPC protects the privacy of the data in collaborative learning

o E.g., participants in collaborative learning do not trust the other participants or the central 
server 

▪ HE protects the confidentiality of the data from external adversaries

o E.g., a data owner wants to use a MLaaS (Machine Learning as a Service), but does not trust 
the service provider: (1) the owner sends encrypted data, (2) the provider processes encrypted 
data and sends back encrypted results, (3) the owner decrypts the results

o Or, a bank can store encrypted banking information in the cloud, and use HE to ensure that 
only the employees of the bank can access the data

Encryption Techniques
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Secure Multi-Party Computation

• In ML, SMPC can be used to compute updates of the model parameters by 
multiple parties that have access to their private data

▪ For examples, SMPC has been applied to federated learning, where participants 
encrypt their updates, and the central server can recover only the sum of the updates 
from all participants

▪ Beside the data privacy, SMPC also offers protection against adversarial participants

o Either all parties are honest and can jointly compute the correct output, or if a malicious party 
is dishonest the joint output will be incorrect

• SMPC has been applied to traditional ML models, such as decision trees, linear 
regression, logistic regression, Naïve Bayes, k-means clustering

▪ Application of SMPC to deep NNs is challenging, due to increased computational 
costs

Encryption Techniques
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Differential Privacy

• Differential privacy is based on employing obfuscation mechanisms for privacy 
protection

▪ A randomization mechanism ℳ 𝐷  applies noise ξ to the outputs of a function 𝑓 𝐷  to 
protect the privacy of individual data instances, i.e., ℳ 𝐷 = 𝑓 𝐷 + ξ

▪ Commonly used randomization mechanisms include Laplacian, Gaussian, and 
Exponential mechanism

• DP is often implemented in practical applications

• Examples include:

▪ 2015: Google, for sharing historical traffic statistics

▪ 2016: Apple, for improving its Intelligent Personal Assistant technology

▪ 2017: Microsoft, for telemetry in Windows

▪ 2020: LinkedIn, for advertiser queries

▪ 2020: U.S. Census Bureau, for demographic data

Differential Privacy



18

CS 487/587, Spring 2024

DP Example

• Consider two databases 𝐷1 and 𝐷2 that show if a 
person has diabetes or not

▪ The only difference between the two databases is that 𝐷2 
does not include the last record in 𝐷1 (for Bob)

• Let’s assume that the databases are publicly available 
for making queries 

▪ To protect patient identities, it is not allowed to query the 
patient names

• However, an adversary can query the sum of the 
persons with diabetes in the first database (e.g., 
𝑓 𝐷1 = 64), and the sum in the second database (e.g., 
𝑓 𝐷2 = 63)

▪ Based on the difference 𝑓 𝐷1 − 𝑓 𝐷2 = 64 − 63 = 1, the 
adversary can infer that Bob has diabetes

▪ Alternatively, if 𝑓 𝐷1 = 63 and 𝑓 𝐷2 = 63, the adversary 
can infer that Bob does not have diabetes

Name Has Diabetes

Don 1

Monica 0

…

…

Chris 1

Bob 1

Name Has Diabetes

Don 1

Monica 0

…

…

Chris 1

𝐷2 (without Bob)

𝐷1 (includes Bob)
Differentially Private SGD
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DP Example (cont’d)

• An algorithm that is differentially private adds noise to the answers for 𝑓 𝐷1  
and 𝑓 𝐷2  to make it difficult to infer the information about Bob

▪ I.e., a randomization mechanism ℳ 𝐷  is selected to add noise ξ to the output answers 
to queries 𝑓 𝐷 , that is, ℳ 𝐷 = 𝑓 𝐷 + ξ

• Additive noise ξ from a Laplacian distribution (shown) is commonly applied

▪ E.g., let’s assume a privacy budget 휀 = 0.5 and let’s sample noise from a Laplacian 
distribution with 𝜇 = 0 and scale 𝑏 = Τ1 휀 = Τ1 0.5 = 2

▪ 6 random noise samples are: ξ ∈ −0.13, 2.06, −1.67, −2.49, −0.52, 0.37

Differentially Private SGD

▪ Consider 3 queries by the adversary having the 
outputs 𝑓 𝐷1 = 64 and 𝑓 𝐷2 = 63 with added 
Laplacian noise ξ : 

o ℳ 𝐷1 − ℳ 𝐷2 = 63.87 − 65.06 = −1.19

o ℳ 𝐷1 − ℳ 𝐷2 = 62.33 − 60.51 = 1.82

o ℳ 𝐷1 − ℳ 𝐷2 = 63.48 − 63.37 = 0.11

▪ Based on the differences between the randomized 
outputs from the queries for 𝐷1 and 𝐷2, now it is 
impossible for the adversary to tell if Bob has 
diabetes

ξ

𝑃𝑟 ξ
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DP Mechanism

• The important question in DP is: how much noise to add?

▪ The amount of noise ξ depends on the data, and it needs to be adjusted 

o E.g., a function 𝑓1 𝐷  that provides the yearly income of people in thousands of dollars would 
require different level of noise than a function 𝑓2 𝐷  that provides the height in feet

• The sensitivity of the function 𝑓 determines how much the output 𝑓 𝐷  changes 
by adding a single data instance

▪ Sensitivity is defined as ∆𝑓 = 𝑚𝑎𝑥 𝑓 𝐷1 − 𝑓 𝐷2 1 for all possible datasets 𝐷1 and 𝐷2 
differing in one data instance, where ∙ 1 denotes ℓ1-norm

o E.g., for the example with medical diabetes records, the sensitivity is ∆𝑓 = 1, since the sum of 
the people with diabetes can change only by 1 when a single input is added

• A Laplacian mechanism that is 휀-differentially private adds a Laplacian noise 
with scale 𝑏 = Τ∆𝑓 휀

• Note that if the privacy budget 휀 has smaller values, this will result in larger 
amount of Laplacian noise ξ added to 𝑓 𝐷

▪ Thus, the noisy outputs ℳ 𝐷  will reveal less private information about the inputs 
(i.e., provide better privacy protection), but also the noisy answers to the queries 
ℳ 𝐷  will be less accurate 

Differentially Private SGD
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DP with Laplacian Randomization

• The figure shows the probability distributions of the outputs ℳ 𝐷  for three 
different levels of Laplacian noise with 휀 ∈ 0.05, 0.1, 0.2

▪ The true output value is 𝑓 𝐷 = 1,000 

▪ Larger values of 휀 have distributions that are tighter around the true value of 𝑓 𝐷 =
1,000 in the figure, and hence are more accurate, but leak more privacy

Differentially Private SGD

𝑃
𝑟

ℳ
𝐷

ℳ 𝐷

• A mechanism ℳ 𝐷  is 휀-differentially private if 
for all databases 𝐷1 and 𝐷2 that differ by at most 
one instance, and for any subset of outputs S:

𝑃𝑟 ℳ 𝐷1 ∈ 𝑆 ≤ 𝑒𝜀 𝑃𝑟 ℳ 𝐷2 ∈ 𝑆

▪ In other words, 휀-differential privacy ensures that 
the probabilities of any two outputs ℳ 𝐷1  and 
ℳ 𝐷2  differ by at most 𝑒𝜀 

▪ E.g., for 휀 = 0.05, ൗ𝑃𝑟 ℳ 𝐷1 𝑃𝑟 ℳ 𝐷2  is at most 

𝑒0.05 = 1.05

▪ Smaller 휀 ensures less similar outputs ℳ 𝐷1  and 
ℳ 𝐷2 , and provides higher levels of privacy
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DP with Gaussian Randomization

• There are other DP mechanisms besides the Laplacian mechanism, that are more 
suitable for some applications

• The Gaussian mechanism adds Gaussian noise instead of Laplacian noise, and 
the level of noise is based on the ℓ2-norm sensitivity, instead of ℓ1-norm

• A Gaussian mechanism is 휀, 𝛿 -differentially private if for all databases 𝐷1 and 
𝐷2 that differ by at most one instance, and for any subset of outputs S:

 𝑃𝑟 ℳ 𝐷1 ∈ 𝑆 ≤ 𝑒𝜀 𝑃𝑟 ℳ 𝐷2 ∈ 𝑆 + 𝛿

• The 휀, 𝛿 -differential privacy that is provided by the Gaussian mechanism 
introduces the probability parameter 𝛿

▪ Informally, 휀, 𝛿 -differential privacy is guaranteed with probability 1 − 𝛿

▪ E.g., for 𝛿 = 0.05, the method is 𝜀-differentially private with 95% probability 

• The Gaussian mechanism is therefore weaker than the Laplacian mechanism, 
since it allows scenarios when the privacy cannot be guaranteed

Differentially Private SGD
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DP in Machine Learning

• Training ML models can be considered an extension of the previous example on 
querying databases

▪ I.e., ML models use data to learn a function, which is afterward used for prediction

• The datasets for training ML models often contain sensitive information (e.g., 
medical records, personal information), so it is important to provide privacy 
guarantees

▪ On the other hand, we know that ML models can memorize the training data, which 
can be exploited by adversaries to recover information about the data from a trained 
model

• The challenge is: how to extract enough information from data to train accurate 
ML models without revealing the data

Differentially Private SGD
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DP in Machine Learning

• In ML, DP is achieved by adding noise to:

▪ Model parameters

o Several works applied DP to conventional ML methods

o Differentially private SGD (Abadi, 2016) clips and adds noise to the gradients of deep NNs 
during training

– This reduces the memorization of individual input instances by the model

o The approaches that apply obfuscation to the model parameters via DP are also referred to as 
differentially private ML

▪ Model outputs

o PATE (Private Aggregation of Teacher Ensembles) approach (Papernot, 2018) employs an 
ensemble of models trained on disjoint subsets of the training data, called teacher models

o Noise is added to the outputs of the teacher models, and the aggregated outputs are used to 
train another model, called student model

▪ Training data

o Obfuscation of training data in ML has been also investigated in several works

Differential Privacy
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DP in Machine Learning

• DP is typically applied in a centralized learning setting, where the data and 
model are at the same location

▪ In this scenario, all data is gathered in one central location for model training

▪ E.g., MLaaS typically requires that the users upload their data to a cloud-based server 
for training a model

• Recently, DP has also been applied in a distributed learning setting, where the 
data are kept at separate locations from the model

▪ DP-FedAvg (McMahan, 2018) is applied to federated learning 

▪ It introduced the Federated Averaging algorithm to limits the contributions by the 
data from individual users to the learning model

Differential Privacy
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Distributed Learning

• Distributed learning allows multiple parties to train a global model without 
releasing their private data

• Some form of aggregation is applied to the local updates of the model 
parameters by the users in distributed learning to create a global model

▪ E.g., averaging is one common form of aggregation

• Federated learning is the most popular distributed learning scheme

Distributed Learning

Figure form: Liu et al. (2020) When Machine Learning Meets Privacy: A Survey and Outlook 
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Distributed Learning

• Federated learning or collaborative learning – learn one global model using data 
stored at multiple locations (e.g., remote devices)

▪ The data are processed locally, and used to update the model

o The data do not leave the remote devices, remains private

▪ The central server aggregates the updates and creates the global model

• Decentralized Peer-to-Peer (P2P) learning – the remote devices communicate 
and exchange the updates directly, without a central server

▪ Removes the need to send updates to a potentially untrusted central server

• Split learning – each remote device is used to train several layers of the global 
model, and send the outputs to a central server

▪ The remote devices can train the initial layers of a DNN, and the central server can 
train the final layers

o The gradient is back-propagated from the central server to each user to sequentially complete 
the back-propagation through all layers of the model

▪ The devices send the intermediate layers outputs, rather than model parameters

▪ Split learning is more common for IoT devices with limited computational resources

Distributed Learning
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ML-Specific Techniques

• In the lecture on privacy attacks in ML, we mentioned that overfitting is one of 
the reasons for information leakage

• Regularization techniques in ML can therefore be used to reduce overfitting, as 
well as a defense strategy

▪ Different regularization techniques in NNs include:

o Explicit regularization: dropout, early stopping, weight decay

o Implicit regularization: batch normalization

• Other ML-specific techniques include:

▪ Dimensionality reduction – removing inputs with features that occur rarely in the 
training set

▪ Weight-normalization – rescaling the weights of the model during training

▪ Selective gradient sharing – in federated learning, the users share a fraction of the 
gradient at each update

ML-Specific Techniques
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Source: https://datareportal.com/social-media-users

Privacy in information age



Traditional Privacy Models
• Anonymization Techniques

❑ Data Anonymization / De-identification
o Removing identifiable information from the dataset column-wise

o Methods consist of stripping, masking, swapping, perturbing, some columns in the dataset

• k-Anonymity [Emam et al.]

• Encryption Techniques

• Homomorphic encryption

• Secure multi-party computation



• Differential privacy is a privacy framework that aims to protect sensitive information while still 

allowing for useful data analysis. 

• Differential privacy mathematically guarantees that anyone seeing the result of a differentially private 

analysis will essentially make the same inference about any individual’s private information, whether 

or not that individual’s private information is included in the input to the analysis.

• In practice, differential privacy involves adding noise to data before it is analyzed, so that the true 

values of individual data points are obscured. One of the key challenges in implementing differential 

privacy is balancing privacy with the usefulness of the data.

• Deep neural networks are highly expressive models that can potentially memorize individual training 

examples. Deep learning with differential privacy is an emerging field that combines the power of 

deep neural networks with the privacy guarantees of differential privacy. 

• The goal is to develop machine learning algorithms that can analyze sensitive data while preserving 

the privacy of individuals in the data.

Differential Privacy











• The formal definition of (ε, δ)-differential privacy:

• A randomized mechanism M: D → R satisfies ε-

differential privacy if for any two adjacent inputs d, d' ∈ 

D and for any subset of outputs S ⊆ R,  it holds that: 

•ε is a parameter that determines the strength of the 

privacy guarantee provided by a differentially private 

mechanism. A smaller value of ε corresponds to a 

stronger privacy guarantee.

•δ is the probability that allows for plain ε-differential 

privacy broken. 

Differential Privacy



● Problem: Given a survey which contains a sensitive or embarrassing question (query), how to protect the privacy of 

participants’ responses while performing statistics on the answers.

● Approach: Use coin flips

○ When participants are asked a sensitive question, they flip a coin before answering

○ If they get heads, they are asked to answer YES to the question regardless of their experience. 

○ When they get tails, they are asked respond truthfully according to their experience.

● Results: Double the resulting statistics

○ At the end of the survey, half of the participant would have answer correctly, while the other half answer 

falsely.

○ To account for the half false answers they got, the organizers double the statistics at the end of the survey, 

● Alternative: [Greenberg, 1969]

○ When participants get a tail, they are asked to flip a coin again to answer YES when it is heads, and NO when 

tails. 

Randomized Response: A first attempt at Differential Privacy [Warner, 1965]

Differential Privacy Mechanisms



● The query answer is no longer a deterministic value, but a sampling from a 

distribution

Randomized Response: A first attempt at Differential Privacy [Warner, 1965]

Differential Privacy Mechanisms



● Privacy mechanism which outputs q(x) + (v ∼ Lap(∆q, ε))

● Laplace distribution is centered at 0 with a std of 

● Its probability density function is given by:

Differential Privacy Mechanisms
Laplace Mechanism: Achieving differential privacy by adding Laplace noise

Source: Wikipedia



● Privacy mechanism which outputs q(x) + (v ∼ N(∆q, ε))

● The Gaussian or Normal Distribution has a probability density function given by:

Differential Privacy Mechanisms
Gaussian Mechanism: Achieving differential privacy by adding Gaussian noise

Source: Wikipedia



● Given a sensitivity score function H, selects answer a with the lowest sensitivity score such that 

● The Exponential distribution is parameterized by with a probability density function given by:

Differential Privacy Mechanisms
Exponential Mechanism: Achieving differential privacy by selecting lowest 
sensitivity score

Source: Wikipedia



Applications in Machine Learning

● Neural network models memorize training examples [Carlini et al., 2019] 
○ Memorization violates privacy

● Given a public model, it is possible to a transformed (blurred) image through Generative Model-

Inversion (GMI) attacks [Zhang et al.]

Issues with Deep Learning without privacy mechanisms



● In Machine/Deep Learning, Differential Privacy can be  achieved by adding noise to or 

perturbing :

○ Training data

○ Model outputs

○ Model parameters

■ Differentially private SGD (Abadi, 2016) clips and adds noise to the gradients of 

deep NNs during training

● Aims to reduce memorizations of training data of by the model

Applications in Machine Learning



Applications in Machine Learning

Differential Privacy in Gradient Descent

● Update rule [Xie et al.]

● Due to sequential composition, the privacy loss in unbounded when we perform many iterations of the SGD 

algorithm

● More iterations leads to a larger privacy cost. However, in practical Deep Learning, more iterations generally result 

in a better model. 

● But, in differentially private SGD version, more iterations can make the model worse, i.e., the noise increases with 

each iterations. 

● Tradeoff: Find the right balance between the number of iterations and the scale of the noise added.

● Some Techniques: Gradient clipping before adding the noise [Abadi et al.]

Differentially Private Deep Learning







Applications in Machine Learning
Differentially Private Deep Learning with Pytorch and Opacus

Source: https://opacus.ai/ 

https://opacus.ai/


Conclusion

● Traditional data analysis is done without any privacy mechanism which leads to 

privacy violation

● Traditional privacy models are vulnerable to linking attacks

● Randomized Response was the first attempt to offer differential privacy.

● The fixed privacy loss in Randomized Response makes it unsuitable for some 

application

● Methods based on sampling from a distribution (Laplace, Gaussian, Exponential, 

etc) offer better privacy guarantees.

● Differential Privacy can be applied to ML to achieve Privacy Preserving ML.



Thank you
Questions?
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Differentially Private SGD

• Abadi (2016) Deep Learning with Differential Privacy

• This work introduced differential privacy (DP) for training ML models for 
protecting the privacy of the training data

▪ Differential privacy (DP) is applied to Stochastic Gradient Descent (SGD) during 
model training

▪ DP-SGD clips the gradients and adds Gaussian noise to the gradients with respect to 
the model parameters

▪ This approach controls the amount of information from the training data that is 
memorized by the model during training

▪ The goal is to produce ML models which provide approximately the same privacy 
when an individual input instance is removed from the training dataset

• The paper also introduces a method for calculating the privacy loss, called 
moments accountant

Differentially Private SGD

https://arxiv.org/abs/1607.00133
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Differentially Private SGD

• Differentially Private Stochastic Gradient Descent (DP-SGD)

▪ DP-SGD adds two additional steps to SGD: Clip gradient, and Add noise

Differentially Private SGD

Introduced DP steps
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Gradient Clipping

• ML models tend to memorize more information about some input samples than 
others

▪ Input samples that produce large gradients are prone to be memorized by the model, 
and violate privacy

• DP-SGD approach proposes to clip the ℓ2 norm of the gradient to a threshold 𝐶, 
in order to limit the influence by the individual input samples

▪ Also, since the values of the gradients cannot be estimated ahead of time, the clipping 
operation controls the sensitivity of the DP randomization mechanism

• If the gradient at step t by an input sample 𝑥𝑖 is 𝐠𝑡 𝑥𝑖 = 𝛻𝜃𝑡
ℒ 𝜃𝑡 , 𝑥𝑖 , the clipped 

gradient ത𝐠𝑡 𝑥𝑖  is:

ത𝐠𝑡 𝑥𝑖 = ൞

 𝐠𝑡 𝑥𝑖  if  𝐠𝑡 𝑥𝑖 2 ≤ 𝐶

𝐠𝑡 𝑥𝑖

Τ 𝐠𝑡 𝑥𝑖 2 𝐶
if  𝐠𝑡 𝑥𝑖 2 > 𝐶

• That is, if the norm  𝐠𝑡 𝑥𝑖 2 is greater than 𝐶, the gradient is scaled down to 
have a norm equal to 𝐶

Differentially Private SGD
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Adding Noise

• GP-SGD approach employs a Gaussian randomization mechanism 

• Gaussian noise is added to the gradients at each training step t, according to:

𝐠𝑡 =
1

𝐿


𝑖

ത𝐠𝒕 𝑥𝑖 + 𝒩 0, 𝜎2𝐶2𝐈

• At each step t, the average of the clipped gradient for a batch of inputs (with a 

batch size L) is first calculated as 
1

𝐿
σ𝑖 ത𝐠𝒕 𝑥𝑖

• Gaussian noise 𝒩 0, 𝜎2𝐶2𝐈  with mean 0 and diagonal co-variance 𝜎2𝐶2 is 
afterward added to the batch-averaged gradient

▪ Note that the co-variance is a function of the clipping threshold 𝐶

▪ E.g., larger value of 𝐶 does less clipping, but requires more noise to achieve the same 
level of privacy

Differentially Private SGD
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Moments Accountant

• The composition property in DP states that if the privacy loss (budget) for one 
interaction with the data is 휀1 and for another interaction with the data is 휀2, the 
combined privacy loss is 휀1 + 휀2

▪ Therefore, by accumulating the privacy loss for each mini-batch when training an ML 
model, it is possible to calculate the overall privacy loss during training 

• Moments accountant is an introduced approach in the paper that evaluates the 
privacy loss of a model training with DP-SGD

▪ The privacy loss is estimated at each training step, and it is used to calculate the 
cumulative privacy loss over all training epochs

▪ Note that increasing the number of training epochs increases the privacy loss

o E.g., training a model for 100 epochs that achieved a privacy loss of 휀 = 1.26, when training 
for 400 epochs the privacy loss increased to 휀 = 2.55

• Moments accountant employs the moments of mixtures of Gaussian 
distributions to calculate the upper bound of the cumulative privacy loss

▪ The approach is described in more detail in the paper

Differentially Private SGD
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Experimental Evaluation

• MNIST dataset

▪ Training and testing accuracies for three different levels of Gaussian noise with 
variances 𝜎 ∈ 8, 4, 2 , and clipping threshold 𝐶 = 4

▪ The corresponding privacy budget values are set to 휀 ∈ 0.5, 2, 8  

o The upper bound for the privacy probability parameter is set to 𝛿 = 10−5

– Thus, the 휀, 𝛿 -differential privacies are 0.5, 10−5 , 2, 10−5 , 8, 10−5

– Moment Accountant allows to obtain a 𝛿 value for a fixed privacy budget 휀

▪ The obtained test set accuracies are 90%, 95%, and 97%, respectively

▪ Larger noise achieves lower test accuracy, but provides increased privacy protection

Differentially Private SGD

Large noise, 휀 = 0.5 Medium noise, 휀 = 2 Small noise, 휀 = 8
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Experimental Evaluation

• CIFAR-10 dataset

▪ The results are similar to the obtained performance for MNIST

▪ Training and testing accuracies for three different levels of privacy budget 휀 ∈ 2, 4, 8 

o The target probability parameter is set to 𝛿 = 10−5, 10−6

▪ The Gaussian noise variance is fixed to 𝜎 = 6 for all experiments, the clipping 
threshold is 𝐶 = 3

▪ The achieved test set accuracies are 67%, 70%, and 73%, respectively

Differentially Private SGD

Privacy 휀 = 2 Privacy 휀 = 4 Privacy 휀 = 8 
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Privacy versus Accuracy Trade-Off

• Perfect privacy in ML models is not possible

▪ Adding too much noise to the model parameters would diminish the accuracy and the 
usefulness of the model

▪ There is a trade-off between privacy protection and accuracy

• DP-SGD achieves privacy protection for deep NNs with a small decrease in the 
model accuracy and small increase in the training complexity

▪ The approach adds Gaussian noise to the gradients in SGD to reduce the possibility 
for memorization of individual input instances by the model

▪ This work also developed the Moments Accountant approach to calculate the 
cumulative privacy loss for the combination of the model and dataset

Differentially Private SGD
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Scalable Private Learning with PATE

• Scalable Private Learning with PATE

▪ Papernot (2018) Scalable Private Learning with PATE

• PATE (Private Aggregation of Teacher Ensembles) is a privacy-preserving ML 
framework that enables model-agnostic training while providing differential 
privacy guarantees for the training dataset

▪ It provides privacy without significantly compromising performance, making it a 
valuable approach for various applications where data privacy is a primary concern

• PATE uses a collection of teacher models to train a student model that answers 
user queries

▪ PATE injects noise into the predictions by the teacher models to provide DP 
guarantees

▪ The users cannot determine any PII from the predicted outputs or identify whose data 
the models were trained on

Scalable Private Learning with PATE

https://arxiv.org/abs/1802.08908
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PATE Framework Components

• In the PATE framework, multiple teacher models are trained independently on 
disjoint subsets of the sensitive training dataset

▪ Any ML technique can be used for the teacher models

▪ The predictions by the teacher models are aggregated where DP with controlled 
Gaussian noise is introduced to obtain the aggregated prediction

• A student model learns from the teacher models by querying them through the 
aggregator

▪ The student model is trained on  insensitive public data, allowing to generalize the 
knowledge acquired from the teacher models without directly accessing sensitive data

Scalable Private Learning with PATE
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PATE Framework

• The PATE approach is based on a simple intuition: if two different classifiers 
(teacher models), trained on two different datasets with no training examples in 
common agree on how to classify a new input example, then that decision does 
not reveal information about any single training example

Scalable Private Learning with PATE
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PATE Framework

• PATE aggregates the votes of the teacher models for each class, and perturbs the 
vote counts by adding random DP noise sampled from Gaussian distribution

▪ If most teachers agree on the same class, adding noise will not change the final 
predicted class (“Healthy” in this example)

Scalable Private Learning with PATE
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PATE Framework

• If the aggregated votes by the teacher models for both classes are similar, adding 
DP noise will prevent revealing the votes of the individual teachers and protect 
the privacy

▪ I.e., the noisy aggregated outcome is equally likely for “Healthy” and “Cancer” classes

Scalable Private Learning with PATE
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PATE Framework

• After the teacher models are trained, the student model selects inputs from 
unlabeled public data and submit the inputs to the teacher ensemble to predict 
the class labels

▪ The noisy labels from the aggregation mechanism are used to train the student model

▪ Finaly, the trained student model is deployed for access to end-users

Scalable Private Learning with PATE
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Teacher Models

• Teacher models are trained on disjoint subsets of the sensitive training dataset, 
each with its own portion of the data

▪ The models provide expertise on the data they were trained on while maintaining 
privacy

▪ By using multiple teachers, the PATE framework leverages the wisdom of the 
ensemble, which helps increase the overall accuracy and generalization capabilities of 
the student model

Scalable Private Learning with PATE
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Student Model

• Student model learns from the teacher models without having direct access to 
the sensitive data

▪ It is trained on a public unlabeled dataset (i.e., without sensitive private data), which 
is labeled by interacting with the ensemble of teachers via the aggregator

▪ The student model aims to replicate the performance of the teachers while ensuring 
privacy protection for the sensitive training data

Scalable Private Learning with PATE
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Aggregators

• PATE framework proposed two new methods for aggregating teacher/student 
answers

1. Confident Aggregator

o Check if the vote by the teacher models is above a threshold (i.e., teacher reach consensus 
regarding the correct classification), and add smaller levels of noise

o Eliminate queries where teachers don’t reach strong consensus regarding the predicted class

2. Interactive Aggregator

o Check student confidence in class prediction, and if the student confidently predicts the same 
class as the teachers, eliminate those queries

Scalable Private Learning with PATE



70

CS 487/587, Spring 2024

Experimental Setup

• Datasets (contain private personal attributes)

▪ MNIST 

▪ Street View House Numbers (SVHN)

▪ US Census Income Adult (CI Adult)

▪ Glyph: synthetically generated computer font symbols with 150 different classes

• Teacher ensembles: 250 number of teachers & partitions of data for MNIST, 
SVHN, and Adult, and 5,000 for Glyph

• Privacy probability parameter is set to δ = 10−5 for MNIST and ADULT, δ = 10−6 
for SVHN, δ = 10−8 for Glyph (probability privacy will not be held)

• The total privacy loss ε is calculated on a subset from 100 to 12,000 queries 
depending on dataset

Scalable Private Learning with PATE
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Experimental Results

• Comparison of the proposed Confident-GNMax aggregation approach (based on 
Gaussian noise) to LNMax aggregation approach (based on Laplacian noise)

▪ GNMax approach reduced the privacy bound/loss ε for all datasets, and increased the 
accuracy in student predictions for all datasets, in comparison to LNMax

Scalable Private Learning with PATE
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