
CS 487/587

Adversarial

Machine Learning

Dr. Alex Vakanski

2

CS 487/587, Spring 2024

Lecture 3

Mathematics for Machine Learning

3

CS 487/587, Spring 2024

Lecture Outline

• Linear algebra

▪ Vectors

▪ Matrices

▪ Eigen decomposition

• Differential calculus

• Optimization algorithms

• Probability

▪ Random variables

▪ Probability distributions

• Information theory

4

CS 487/587, Spring 2024

Notation

• 𝑎, 𝑏, 𝑐 Scalar (integer or real)

• 𝐱, 𝐲, 𝐳 Vector (bold-font, lower case)

• 𝐀, 𝐁, 𝐂 Matrix (bold-font, upper-case)

• A, B, C Tensor (bold-font, upper-case)

• 𝑋, 𝑌, 𝑍 Random variable (normal font, upper-case)

• 𝑎 ∈ 𝒜 Set membership: 𝑎 is member of set 𝒜

• 𝒜 Cardinality: number of items in set 𝒜

• 𝐯 Norm of vector 𝐯

• 𝐮 ∙ 𝐯 or 𝐮, 𝐯 Dot product of vectors 𝐮 and 𝐯

• ℝ Set of real numbers

• ℝ𝑛 Real numbers space of dimension n

• 𝑦 = 𝑓 𝑥 or 𝑥 ↦ 𝑓 𝑥 Function (map): assign a unique value 𝑓(𝑥) to each input
value 𝑥

• 𝑓: ℝ𝑛 → ℝ Function (map): map an n-dimensional vector into a scalar

5

CS 487/587, Spring 2024

Notation

• 𝐀 ⊙ 𝐁 Element-wise product of matrices A and B

• 𝐀† Pseudo-inverse of matrix A

•
𝑑𝑛𝑓

𝑑𝑥𝑛 n-th derivative of function f with respect to x

• 𝛻𝐱𝑓 𝐱 Gradient of function f with respect to x

• 𝐇𝑓 Hessian matrix of function f

• 𝑋~𝑃 Random variable 𝑋 has distribution 𝑃

• 𝑃 𝑋|𝑌 Probability of 𝑋 given 𝑌

• 𝒩 𝜇, 𝜎2 Gaussian distribution with mean 𝜇 and variance 𝜎2

• 𝔼𝑋~𝑃 𝑓 𝑋 Expectation of 𝑓 𝑋 with respect to 𝑃 𝑋

• Var 𝑓 𝑋 Variance of 𝑓 𝑋

• Cov 𝑓 𝑋 , 𝑔 𝑌 Covariance of 𝑓 𝑋 and 𝑔 𝑌

• corr 𝑋, 𝑌 Correlation coefficient for 𝑋 and 𝑌

• 𝐷𝐾𝐿 𝑃||𝑄 Kullback-Leibler divergence for distributions 𝑃 and 𝑄

• 𝐶𝐸 𝑃, 𝑄 Cross-entropy for distributions 𝑃 and 𝑄

6

CS 487/587, Spring 2024

Vectors

• Vector definition

▪ Computer science: vector is a one-dimensional array of ordered real-valued scalars

▪ Mathematics: vector is a quantity possessing both magnitude and direction,
represented by an arrow indicating the direction, and the length of which is
proportional to the magnitude

• Vectors are written in column form or in row form

▪ Denoted by bold-font lower-case letters

• For a general form vector with 𝑛 elements, the vector lies in the 𝑛-dimensional
space 𝐱 ∈ ℝ𝑛

Vectors

𝐱 =

𝑥1
𝑥2

⋮
𝑥𝑛

𝐱 =

1
7
0
1

𝐱 = 1 7 0 1 𝑇

7

CS 487/587, Spring 2024

Geometry of Vectors

• First interpretation of a vector: point in space

▪ E.g., in 2D we can visualize the data points with
respect to a coordinate origin

• Second interpretation of a vector: direction in
space

▪ E.g., the vector 𝐯 = 3, 2 𝑇 has a direction of 3 steps
to the right and 2 steps up

▪ The notation 𝐯 is sometimes used to indicate that the
vectors have a direction

▪ All vectors in the figure have the same direction

• Vector addition

▪ We add the coordinates, and follow the directions
given by the two vectors that are added

Vectors

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

8

CS 487/587, Spring 2024

Geometry of Vectors

• The geometric interpretation of vectors as points in space allow us to consider a
training set of input examples in ML as a collection of points in space

▪ Hence, classification can be viewed as discovering how to separate the clusters of
points belonging to different classes (left picture)

o Rather than distinguishing images containing cars, planes, buildings, for example

▪ Or, it can help to visualize zero-centering and standardization of training data (right
figure)

Vectors

standardized data

9

CS 487/587, Spring 2024

• Geometric interpretation of a dot product:
angle between two vectors

▪ I.e., dot product 𝐯 ∙ 𝐰 over the norms of the
vectors is cos 𝜃

Dot Product and Angles

• Dot product of vectors, 𝐮 ∙ 𝐯 = 𝐮𝑇𝐯 = σ𝑖 𝑢𝑖 ∙ 𝑣𝑖

▪ It is also referred to as inner product, or scalar product of vectors

▪ The dot product 𝐮 ∙ 𝐯 is also often denoted by 𝐮, 𝐯

• The dot product is a symmetric operation, 𝐮 ∙ 𝐯 = 𝐮𝑇𝐯 = 𝐯𝑇𝐮 = 𝐯 ∙ 𝐮

Vectors

𝐮 ∙ 𝐯 = 𝐮 𝐯 𝑐𝑜𝑠 𝜃 cos𝜃 =
𝐮 ∙ 𝐯

𝐮 𝐯

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

• If two vectors are orthogonal: 𝜃 = 90°, i.e., cos(𝜃) = 0, then 𝐮 ∙ 𝐯 = 0

• Also, in ML the term cos𝜃 =
𝐮∙𝐯

𝐮 𝐯
 is sometimes employed as a measure of

closeness of two vectors/data instances, and it is referred to as cosine similarity

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#geometry-of-vectors

10

CS 487/587, Spring 2024

Norm of a Vector

• A vector norm is a function that maps a vector to a scalar value

▪ E.g., the norm can be a measure of the size of the vector

• The norm 𝑓 should satisfy the following properties:

▪ Scaling: 𝑓 𝛼𝐱 = 𝛼 𝑓 𝐱

▪ Triangle inequality: 𝑓 𝐱 + 𝐲 ≤ 𝑓 𝐱 + 𝑓 𝐲

▪ Must be non-negative: 𝑓 𝐱 ≥ 0

• The general ℓ𝑝 norm of a vector 𝐱 is obtained as:

▪ On next page we will review common norms, obtained for 𝑝 = 1, 2, and ∞

Vectors

𝐱 𝑝 = ෍

𝑖=1

𝑛

𝑥𝑖
𝑝

1
𝑝

11

CS 487/587, Spring 2024

Norm of a Vector

• For 𝑝 = 2, we have ℓ2 norm

▪ Also called Euclidean norm

▪ It is the most often used norm

▪ ℓ2 norm is often denoted just as 𝐱 with the subscript 2 omitted

• For 𝑝 = 1, we have ℓ1 norm

▪ Uses the absolute values of the elements

▪ Discriminate between zero and non-zero elements

• For 𝑝 = ∞, we have ℓ∞ norm

▪ Known as infinity norm, or max norm

▪ Outputs the absolute value of the largest element

• ℓ0 norm outputs the number of non-zero elements

▪ It is not an ℓ𝑝 norm, and it is not really a norm function either (it is incorrectly called a

norm)

Vectors

𝐱 ∞ = max
𝑖

𝑥𝑖

𝐱 2 = ෍

𝑖=1

𝑛

𝑥𝑖
2 = 𝐱𝑇𝐱

𝐱 1 = ෍

𝑖=1

𝑛

𝑥𝑖

12

CS 487/587, Spring 2024

Vector Projection

• Orthogonal projection of a vector 𝐲 onto vector 𝐱

▪ The projection can take place in any space of
dimensionality ≥ 2

▪ The unit vector in the direction of 𝐱 is
𝐱

𝐱

o A unit vector has norm equal to 1

▪ The length of the projection of 𝐲 onto 𝐱 is 𝐲 ∙ 𝑐𝑜𝑠 𝜃

▪ The orthogonal project is the vector 𝐩𝐫𝐨𝐣𝐱 𝐲

𝐩𝐫𝐨𝐣𝐱 𝐲 =
𝐱 ∙ 𝐲 ∙ 𝑐𝑜𝑠 𝜃

𝐱

Vectors

Picture from: Jeff Howbert — Machine Learning Math Essentials

13

CS 487/587, Spring 2024

Hyperplanes

• Hyperplane is a subspace whose dimension is one less than that of its ambient
space

▪ In a 2D space, a hyperplane is a straight line (i.e., 1D)

▪ In a 3D, a hyperplane is a plane (i.e., 2D)

▪ In a d-dimensional vector space, a hyperplane has 𝑑 − 1 dimensions, and divides the
space into two half-spaces

• Hyperplane is a generalization of a concept of plane in high-dimensional space

• In ML, hyperplanes are decision boundaries used for linear classification

▪ Data points falling on either sides of the hyperplane are attributed to different classes

Hyperplanes

Picture from: https://kgpdag.wordpress.com/2015/08/12/svm-simplified/

https://kgpdag.wordpress.com/2015/08/12/svm-simplified/

14

CS 487/587, Spring 2024

Hyperplanes

• For example, for a given data point 𝐰 = 2, 1 𝑇, we
can use dot-product to find the hyperplane for which
𝐰 ∙ 𝐯 = 1

▪ The solution to 𝐰 ∙ 𝐯 = 1 is the set of points that lay on
the line that is orthogonal to the vector 𝐰 (the line is
2𝑥 + 𝑦 = 1)

• In a 3D space, the points that satisfy 𝐰 ∙ 𝐯 = 1 lay on
a plane that is orthogonal to the vector 𝐰

▪ The inequalities 𝐰 ∙ 𝐯 > 1 and 𝐰 ∙ 𝐯 < 1 define the two
subspaces that are created by the plane

▪ The same concept applies to high-dimensional spaces
as well

Hyperplanes

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html#hyperplanes

15

CS 487/587, Spring 2024

Matrices

• Matrix is a rectangular array of real-valued scalars arranged in m horizontal
rows and n vertical columns

▪ Each element 𝑎𝑖𝑗 belongs to the ith row and jth column

▪ The elements are denoted 𝑎𝑖𝑗 or 𝐀𝑖𝑗 or 𝐀 𝑖𝑗 or 𝐀 𝒊, 𝒋

• For the matrix 𝐀 ∈ ℝ𝑚×𝑛, the size (dimension) is 𝑚 × 𝑛 or 𝑚, 𝑛

▪ Matrices are denoted by bold-font upper-case letters

Matrices

16

CS 487/587, Spring 2024

Matrices

• Addition or subtraction

• Scalar multiplication

• Matrix multiplication

▪ Defined only if the number of columns of the left matrix is the same as the number of
rows of the right matrix

▪ Note that 𝐀𝐁 ≠ 𝐁𝐀

Matrices

() , ,, i j i ji j
 = A B A B

() ,, i ji j
c c= A A

() ,1 1, ,2 2, , ,, i j i j i n n ji j
= + + +AB A B A B A B

17

CS 487/587, Spring 2024

Matrices

• Transpose of the matrix: 𝐀𝑇 has the rows and columns exchanged

▪ Some properties

• Square matrix: has the same number of rows and columns

• Identity matrix (In): has ones on the main diagonal, and zeros elsewhere

▪ E.g.: identity matrix of size 3×3 :

Matrices

() ,,

T

j ii j
=A A

3

1 0 0

0 1 0

0 0 1

 
 

=
 
  

I

𝐀 + 𝐁 = 𝐁 + 𝐀

𝐀 + 𝐁 𝑇 = 𝐀𝑇 + 𝑩𝑇

𝐀𝑇 𝑇 = 𝐀

𝐀 𝐁 + 𝐂 = 𝐀𝐁 + 𝐀𝐂

𝐀 𝐁𝐂 = 𝐀𝐁 𝐂

𝐀𝐁 𝑇 = 𝑩𝑇𝐀𝑇

18

CS 487/587, Spring 2024

Matrices

• Determinant of a matrix, denoted by det(A) or 𝐀 , is a real-valued scalar
encoding certain properties of the matrix

▪ E.g., for a matrix of size 2×2:

▪ For larger-size matrices the determinant of a matrix id calculated as

det 𝐀 = ෍

𝑗

𝑎𝑖𝑗 −1 𝑖+𝑗𝑑𝑒𝑡 𝐀 𝑖,𝑗

▪ In the above, 𝐀 𝑖,𝑗 is a minor of the matrix obtained by removing the row and column

associated with the indices i and j

• Trace of a matrix is the sum of all diagonal elements

Tr 𝐀 = ෍

𝑖

𝑎𝑖𝑖

• A matrix for which 𝐀 = 𝐀𝑇 is called a symmetric matrix

Matrices

det
a b

ad bc
c d

  
= −  

  

19

CS 487/587, Spring 2024

Matrices

• Elementwise multiplication of two matrices A and B is called the Hadamard
product or elementwise product

▪ The math notation is ⊙

Matrices

20

CS 487/587, Spring 2024

Matrix-Vector Products

• Consider a matrix 𝐀 ∈ ℝ𝑚×𝑛 and a vector 𝐱 ∈ ℝ𝑛

• The matrix can be written in terms of its row vectors (e.g., 𝐚1
𝑇 is the first row)

• The matrix-vector product is a column vector of length m, whose ith element is
the dot product 𝐚𝑖

𝑇𝐱

• Note the size: 𝐀 𝑚 × 𝑛 ∙ 𝐱 𝑛 × 1 = 𝐀𝐱 𝑚 × 1

Matrices

21

CS 487/587, Spring 2024

Matrix-Matrix Products

• To multiply two matrices 𝐀 ∈ ℝ𝑛×𝑘and 𝐁 ∈ ℝ𝑘×𝑚

• We can consider the matrix-matrix product as dot-products of rows in 𝐀 and
columns in 𝐁

• Size: 𝐀 𝑛 × 𝑘 ∙ 𝐁 𝑘 × 𝑚 = 𝐂 𝑛 × 𝑚

Matrices

22

CS 487/587, Spring 2024

Linear Dependence

• For the following matrix

• Notice that for the two columns 𝐛1 = 2, 4 𝑇 and 𝐛2= −1, −2 𝑇, we can write
𝐛1= −2 ∙ 𝐛2

▪ This means that the two columns are linearly dependent

• The weighted sum 𝑎1𝐛1 + 𝑎2𝐛2 is referred to as a linear combination of the
vectors 𝐛1 and 𝐛2

▪ In this case, a linear combination of the two vectors exist for which 𝐛1+2 ∙ 𝐛2= 𝟎

• A collection of vectors 𝐯1, 𝐯2, … , 𝐯𝑘 are linearly dependent if there exist
coefficients 𝑎1, 𝑎2, … , 𝑎𝑘 not all equal to zero, so that

• If there is no linear dependence, the vectors are linearly independent

Matrices

𝐁 =
2 −1
4 −2

23

CS 487/587, Spring 2024

Matrix Rank

• For an 𝑛 × 𝑚 matrix, the rank of the matrix is the largest number of linearly
independent columns

• The matrix B from the previous example has 𝑟𝑎𝑛𝑘 𝐁 = 1, since the two columns
are linearly dependent

• The matrix C below has 𝑟𝑎𝑛𝑘 𝐂 = 2, since it has two linearly independent
columns

▪ I.e., 𝐜4= −1 ∙ 𝐜1, 𝐜5= −1 ∙ 𝐜3, 𝐜2= 3 ∙ 𝐜1 +3 ∙ 𝐜3

𝐂 =

1 3
−1 0
0
2

3
3

0 −1 0
1 1 −1
1

−1
0

−2
−1
1

Matrices

𝐁 =
2 −1
4 −2

24

CS 487/587, Spring 2024

Inverse of a Matrix

• For a square 𝑛 × 𝑛 matrix A with rank 𝑛, 𝐀−𝟏 is its inverse matrix if their product
is an identity matrix I

• Properties of inverse matrices

• If det 𝐴 = 0 (i.e., rank 𝐴 < 𝑛), then the inverse does not exist

▪ A matrix that is not invertible is called a singular matrix

• Note that finding an inverse of a large matrix is computationally expensive

▪ In addition, it can lead to numerical instability

• If the inverse of a matrix is equal to its transpose, the matrix is said to be
orthogonal matrix

Matrices

()

()

1
1

1 1 1

−
−

− − −

=

=

A A

AB B A

1 T− =A A

25

CS 487/587, Spring 2024

Pseudo-Inverse of a Matrix

• Pseudo-inverse of a matrix

▪ Also known as Moore-Penrose pseudo-inverse

• For matrices that are not square, the inverse does not exist

▪ Therefore, a pseudo-inverse is used

• If 𝑚 < 𝑛, then the pseudo-inverse is 𝐀† = 𝐀T𝐀
−1

𝐀𝑇 and 𝐀†𝐀 = 𝐈

▪ E.g., for a matrix with dimension 𝐗2×3, a pseudo-inverse can be found of size 𝐗3×2
† , so

that 𝐗3×2
† 𝐗2×3 = 𝐈3×3

• If 𝑚 > 𝑛, then the pseudo-inverse is 𝐀† = 𝐀𝑇 𝐀𝐀T −1
and 𝐀𝐀† = 𝐈

▪ E.g., for a matrix with dimension 𝐗3×2, a pseudo-inverse can be found of size 𝐗2×3
† , so

that 𝐗3×2𝐗2×3
† = 𝐈3×3

Matrices

26

CS 487/587, Spring 2024

Tensors

• Tensors are n-dimensional arrays of scalars

▪ Vectors are first-order tensors, 𝐯 ∈ ℝ𝑛

▪ Matrices are second-order tensors, 𝐀 ∈ ℝ𝑚×𝑛

▪ E.g., a fourth-order tensor is T ∈ ℝ𝑛1×𝑛2×𝑛3×𝑛4

• Tensors are denoted with upper-case letters of a special font face (e.g., X, Y, Z)

• RGB images are third-order tensors, i.e., as they are 3-dimensional arrays

▪ The 3 axes correspond to width, height, and channel

▪ E.g., 224 × 224 × 3

▪ The channel axis corresponds to the color channels (red, green, and blue)

Tensors

27

CS 487/587, Spring 2024

Manifolds

• Earlier we learned that hyperplanes generalize the concept of planes in high-
dimensional spaces

▪ Similarly, manifolds can be informally imagined as generalization of the concept of
surfaces in high-dimensional spaces

• To begin with an intuitive explanation, the surface of the Earth is an example of a
two-dimensional manifold embedded in a three-dimensional space

▪ This is true because the Earth looks locally flat, so on a small scale it is like a 2-D plane

▪ However, if we keep walking on the Earth in one direction, we will eventually end up
back where we started

o This means that Earth is not really flat, it only looks locally like a Euclidean plane, but at large
scales it folds up on itself, and has a different global structure than a flat plane

Manifolds

28

CS 487/587, Spring 2024

Manifolds

• Manifolds are studied in mathematics under topological spaces

• An n-dimensional manifold is defined as a topological space with the property
that each point has a neighborhood that is homeomorphic to the Euclidean space
of dimension n

▪ This means that a manifold locally resembles Euclidean space near each point

▪ Informally, a Euclidean space is locally smooth, it does not have holes, edges, or other
sudden changes, and it does not have intersecting neighborhoods

▪ Although the manifolds can have very complex structure on a large scale, resemblance
of the Euclidean space on a small scale allows to apply standard math concepts

Manifolds

• Examples of 2-dimensional manifolds are shown
in the figure

▪ The surfaces in the figure have been conveniently
cut up into little rectangles that were glued together

▪ Those small rectangles locally look like flat
Euclidean planes

Picture from: http://bjlkeng.github.io/posts/manifolds/

http://bjlkeng.github.io/posts/manifolds/

29

CS 487/587, Spring 2024

Manifolds

• Examples of one-dimensional manifolds

▪ Upper figure: a circle is a l-D manifold embedded in 2-D,
where each arc of the circle locally resembles a line segment

▪ Lower figures: other examples of 1-D manifolds

▪ Note that a number 8 figure is not a manifold because it has
an intersecting point (it is not Euclidean locally)

• It is hypothesized that in the real-world, high-dimensional
data (such as images) lie on low-dimensional manifolds
embedded in the high-dimensional space

▪ E.g., in ML, let’s assume we have a training set of images with
size 224 × 224 × 3 pixels

▪ Learning an arbitrary function in such high-dimensional
space would be intractable

▪ Despite that, all images of the same class (“cats” for example)
might lie on a low-dimensional manifold

▪ This allows function learning and image classification

Manifolds

Picture from: http://bjlkeng.github.io/posts/manifolds/

http://bjlkeng.github.io/posts/manifolds/

30

CS 487/587, Spring 2024

Manifolds

• Example:

▪ The data points have 3 dimensions (left figure), i.e., the input space of the data is 3-
dimensional

▪ The data points lie on a 2-dimensional manifold, shown in the right figure

▪ Most ML algorithms extract lower-dimensional data features that enable to
distinguish between various classes of high-dimensional input data

o The low-dimensional representations of the input data are called embeddings

Manifolds

31

CS 487/587, Spring 2024

Eigen Decomposition

• Eigen decomposition is decomposing a matrix into a set of eigenvalues and
eigenvectors

• Eigenvalues of a square matrix 𝐀 are scalars 𝜆 and eigenvectors are non-zero
vectors 𝐯 that satisfy

𝐀𝐯 = 𝜆𝐯

• Eigenvalues are found by solving the following equation

det 𝐀 − 𝜆𝐈 = 0

• If a matrix 𝐀 has n linearly independent eigenvectors 𝐯1, … , 𝐯𝑛 with
corresponding eigenvalues 𝜆1, … , 𝜆𝑛 , the eigen decomposition of 𝐀 is given by

𝐀 = 𝐕𝚲𝐕 −1

▪ Columns of the matrix 𝐕 are the eigenvectors, i.e., 𝐕 = 𝐯1, … , 𝐯𝑛

▪ 𝚲 is a diagonal matrix of the eigenvalues, i.e., 𝚲 = 𝜆1, … , 𝜆𝑛

• To find the inverse of the matrix A, we can use 𝐀−𝟏 = 𝐕𝚲−𝟏𝐕 −1

▪ This involves simply finding the inverse 𝚲−𝟏 of a diagonal matrix

Eigen Decomposition

32

CS 487/587, Spring 2024

Eigen Decomposition

• Decomposing a matrix into eigenvalues and eigenvectors allows to analyze
certain properties of the matrix

▪ If all eigenvalues are positive, the matrix is positive definite

▪ If all eigenvalues are positive or zero-valued, the matrix is positive semidefinite

▪ If all eigenvalues are negative or zero-values, the matrix is negative semidefinite

o Positive semidefinite matrices are interesting because they guarantee that ∀𝐱, 𝐱𝑇𝐀𝐱 ≥ 0

• Eigen decomposition can also simplify many linear-algebraic computations

▪ The determinant of A can be calculated as

det 𝐀 = 𝜆1 ∙ 𝜆2 ⋯ 𝜆𝑛

▪ If any of the eigenvalues are zero, the matrix is singular (it does not have an inverse)

• However, eigen decomposition is defined only for square matrices

▪ Also, in some cases the decomposition may involve complex numbers

▪ Still, every real symmetric matrix is guaranteed to have an eigen decomposition
according to 𝐀 = 𝐕𝚲𝐕 −1, where 𝐕 is an orthogonal matrix

Eigen Decomposition

33

CS 487/587, Spring 2024

Eigen Decomposition

• Geometric interpretation of the eigenvalues and eigenvectors is that they allow
to stretch the space in specific directions

▪ Figure: the two eigenvectors 𝐯1 and 𝐯2 are multiplied with the eigenvalues 𝜆1 and 𝜆2

o We can see how the space is scaled in the direction of the larger eigenvalue 𝜆1

• E.g., this is used for dimensionality reduction with PCA (principal component
analysis) where the eigenvectors corresponding to the largest eigenvalues are
used for extracting the most important data dimensions

Eigen Decomposition

Picture from: Goodfellow (2017) – Deep Learning

34

CS 487/587, Spring 2024

Singular Value Decomposition

• Singular value decomposition (SVD) provides another way to factorize a matrix,
into singular vectors and singular values

▪ SVD is more generally applicable than eigen decomposition

▪ Every real matrix has an SVD, but the same is not true of the eigen decomposition

o E.g., if a matrix is not square, the eigen decomposition is not defined, and we must use SVD

• SVD of an 𝑚 × 𝑛 matrix 𝐀 is given by

𝐀 = 𝐔𝐃𝐕𝑻

▪ 𝐔 is an 𝑚 × 𝑚 matrix, 𝐃 is an 𝑚 × 𝑛 matrix, and 𝐕 is an 𝑛 × 𝑛 matrix

▪ The elements along the diagonal of 𝐃 are known as the singular values of A

▪ The columns of 𝐔 are known as the left-singular vectors

▪ The columns of 𝐕 are known as the right-singular vectors

• For a non-square matrix 𝐀, the squares of the singular values 𝜎𝑖 are the
eigenvalues 𝜆𝑖 of 𝐀𝑻𝐀, i.e., 𝜎𝑖

2 = 𝜆𝑖 for 𝑖 = 1,2, … , 𝑛

• Applications of SVD include computing the pseudo-inverse of non-square
matrices, matrix approximation, determining the matrix rank

Singular Value Decomposition

35

CS 487/587, Spring 2024

Matrix Norms

• Frobenius norm – calculates the square-root of the
summed squares of the elements of matrix 𝐗

▪ This norm is similar to Euclidean norm of a vector

• Spectral norm – is the largest singular value of matrix 𝐗

▪ Denoted 𝐗 2

▪ The singular values of 𝐗 are 𝜎1, 𝜎2,…, 𝜎𝑚

• 𝑳2,1 norm – is the sum of the Euclidean norms of the
columns of matrix 𝐗

• Max norm – is the largest element of matrix X

Matrix Norms

𝐗 𝐹 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝑥𝑖𝑗
2

𝐗 2 = 𝜎𝑚𝑎𝑥 𝐗

𝐗 2,1 = ෍

𝑗=1

𝑛

෍

𝑖=1

𝑚

𝑥𝑖𝑗
2

𝐗 max = max
𝑖,𝑗

𝑥𝑖𝑗

36

CS 487/587, Spring 2024

Differential Calculus

• For a function 𝑓: ℝ → ℝ, the derivative of f is defined as

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

• If 𝑓′ 𝑎 exists, f is said to be differentiable at a

• If f ‘ 𝑐 is differentiable for ∀𝑐 ∈ 𝑎, 𝑏 , then f is differentiable on this interval

▪ We can also interpret the derivative 𝑓′(𝑥) as the instantaneous rate of change of 𝑓(𝑥)
with respect to x

▪ I.e., for a small change in x, what is the rate of change of 𝑓(𝑥)

• Given 𝑦 = 𝑓(𝑥), where x is an independent variable and y is a dependent
variable, the following expressions are equivalent:

𝑓′ 𝑥 = 𝑓′ =
𝑑𝑦

𝑑𝑥
=

𝑑𝑓

𝑑𝑥
=

𝑑

𝑑𝑥
𝑓 𝑥 = 𝐷𝑓 𝑥 = 𝐷𝑥𝑓(𝑥)

• The symbols
𝑑

𝑑𝑥
, D, and 𝐷𝑥 are differentiation operators that indicate operation of

differentiation

Differential Calculus

37

CS 487/587, Spring 2024

Differential Calculus

• The following rules are used for computing the derivatives of explicit functions

Differential Calculus

38

CS 487/587, Spring 2024

Higher Order Derivatives

• The derivative of the first derivative of a function 𝑓 𝑥 is the second derivative of
𝑓 𝑥

𝑑2𝑓

𝑑𝑥2
=

𝑑

𝑑𝑥

𝑑𝑓

𝑑𝑥

• The second derivative quantifies how the rate of change of 𝑓 𝑥 is changing

▪ E.g., in physics, if the function describes the displacement of an object, the first
derivative gives the velocity of the object (i.e., the rate of change of the position)

▪ The second derivative gives the acceleration of the object (i.e., the rate of change of the
velocity)

• If we apply the differentiation operation any number of times, we obtain the n-th
derivative of 𝑓 𝑥

𝑓 𝑛 𝑥 =
𝑑𝑛𝑓

𝑑𝑥𝑛
=

𝑑

𝑑𝑥

𝑛

𝑓 𝑥

Differential Calculus

39

CS 487/587, Spring 2024

Taylor Series

• Taylor series provides a method to approximate any function 𝑓(𝑥) at a point 𝑥0 if

we have the first n derivatives 𝑓 𝑥0 , 𝑓 1 𝑥0 , 𝑓 2 𝑥0 , … , 𝑓 𝑛 𝑥0

• For instance, for 𝑛 = 2, the second-order approximation of a function 𝑓(𝑥) is

𝑓 𝑥 ≈ อ
1

2

𝑑2𝑓

𝑑𝑥2

𝑥0

𝑥 − 𝑥0
2 + ቤ

𝑑𝑓

𝑑𝑥
𝑥0

𝑥 − 𝑥0 + 𝑓 𝑥0

• Similarly, the approximation of 𝑓(𝑥) with a Taylor polynomial of n-degree is

𝑓(𝑥) ≈ σ𝑖=0
𝑛 ฬ

1

𝑖!

𝑑 𝑖 𝑓

𝑑𝑥𝑖
𝑥0

𝑥 − 𝑥0
𝑖

Differential Calculus

• For example, the figure shows the first-order,
second-order, and fifth-order polynomial of
the exponential function 𝑓(𝑥) = 𝑒𝑥 at the
point 𝑥0 = 0

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

40

CS 487/587, Spring 2024

Geometric Interpretation

• To provide a geometric interpretation of the derivatives, let’s consider a first-
order Taylor series approximation of 𝑓 𝑥 at 𝑥 = 𝑥0

𝑓 𝑥 ≈ 𝑓 𝑥0 + ቤ
𝑑𝑓

𝑑𝑥
𝑥0

𝑥 − 𝑥0

• The expression approximates the function 𝑓 𝑥 by a line which passes through

the point 𝑥0, 𝑓 𝑥0 and has slope ቚ
𝑑𝑓

𝑑𝑥 𝑥0

(i.e., the value of
𝑑𝑓

𝑑𝑥
at the point 𝑥0)

Differential Calculus

• Therefore, the first derivative of a
function is also the slope of the
tangent line to the curve of the
function

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/single-variable-calculus.html

41

CS 487/587, Spring 2024

Partial Derivatives

• So far, we looked at functions of a single variable, where 𝑓: ℝ → ℝ

• Functions that depend on many variables are called multivariate functions

• Let 𝑦 = 𝑓 𝐱 = 𝑓(𝑥1, 𝑥2 , … , 𝑥𝑛) be a multivariate function with n variables

▪ The input is an n-dimensional vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛
𝑇 and the output is a scalar y

▪ The mapping is 𝑓: ℝ𝑛 → ℝ

• The partial derivative of y with respect to its ith parameter 𝑥𝑖 is

𝜕𝑦

𝜕𝑥𝑖
= lim

ℎ→0

𝑓(𝑥1, 𝑥2 , … , 𝑥𝑖 +ℎ, … , 𝑥𝑛) − 𝑓(𝑥1, 𝑥2 , … , 𝑥𝑖 , … , 𝑥𝑛)

ℎ

• To calculate
𝜕𝑦

𝜕𝑥𝑖
(𝜕 pronounced “del” or we can just say “partial derivative”), we

can treat 𝑥1, 𝑥2 , … , 𝑥𝑖−1, 𝑥𝑖+1… , 𝑥𝑛 as constants and calculate the derivative of y
only with respect to 𝑥𝑖

• For notation of partial derivatives, the following are equivalent:

𝜕𝑦

𝜕𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
𝑓 𝐱 = 𝑓𝑥𝑖

= 𝑓𝑖 = 𝐷𝑖𝑓 = 𝐷𝑥𝑖
𝑓

Differential Calculus

42

CS 487/587, Spring 2024

Gradient

• We can concatenate partial derivatives of a multivariate function with respect to
all its input variables to obtain the gradient vector of the function

• The gradient of the multivariate function 𝑓(𝐱) with respect to the n-dimensional
input vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛

𝑇, is a vector of n partial derivatives

𝛻𝐱𝑓 𝐱 =
𝜕𝑓 𝐱

𝜕𝑥1
,
𝜕𝑓 𝐱

𝜕𝑥2
, … ,

𝜕𝑓 𝐱

𝜕𝑥𝑛

𝑇

• When there is no ambiguity, the notations 𝛻𝑓 𝐱 or 𝛻𝐱𝑓 are often used for the
gradient instead of 𝛻𝐱𝑓 𝐱

▪ The symbol for the gradient is the Greek letter 𝛻 (pronounced “nabla”), although
𝛻𝐱𝑓 𝐱 is more often it is pronounced “gradient of f with respect to x”

• In ML, the gradient descent algorithm relies on the opposite direction of the
gradient of the loss function ℒ with respect to the model parameters 𝜃 𝛻𝜃ℒ for
minimizing the loss function

▪ Adversarial examples can be created by adding perturbation in the direction of the
gradient of the loss ℒ with respect to input examples 𝑥 𝛻𝑥ℒ for maximizing the loss
function

Differential Calculus

43

CS 487/587, Spring 2024

Hessian Matrix

• To calculate the second-order partial derivatives of multivariate functions, we
need to calculate the derivatives for all combination of input variables

• That is, for a function 𝑓(𝐱) with an n-dimensional input vector 𝐱 =
𝑥1, 𝑥2 , … , 𝑥𝑛

𝑇, there are 𝑛2 second partial derivatives for any choice of i and j
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗

• The second partial derivatives are assembled in a matrix called the Hessian

𝐇𝑓 =

𝜕2𝑓

𝜕𝑥1𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
…

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛

• Computing and storing the Hessian matrix for functions with high-dimensional
inputs can be computationally prohibitive

▪ E.g., the loss function for a ResNet50 model with approximately 23 million
parameters, has a Hessian of 23 M × 23 M = 529 T (trillion) parameters

Differential Calculus

44

CS 487/587, Spring 2024

Jacobian Matrix

• The concept of derivatives can be further generalized to vector-valued functions
(or, vector fields) 𝑓: ℝ𝑛 → ℝ𝑚

• For an n-dimensional input vector 𝐱 = 𝑥1, 𝑥2 , … , 𝑥𝑛
𝑇 ∈ ℝ𝑛, the vector of

functions is given as

𝐟 𝐱 = 𝑓1 𝐱 , 𝑓2 𝐱 , … , 𝑓𝑚 𝐱 𝑇 ∈ ℝ𝑚

• The matrix of first-order partial derivates of the vector-valued function 𝐟 𝐱 is an
𝑚 × 𝑛 matrix called a Jacobian

𝐉 =

𝜕𝑓1 𝐱

𝜕𝑥1
⋯

𝜕𝑓1 𝐱

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚 𝐱

𝜕𝑥1
…

𝜕𝑓𝑚 𝐱

𝜕𝑥𝑛

▪ For example, in robotics a robot Jacobian matrix gives the partial derivatives of the
translational and angular velocities of the robot end-effector with respect to the joints
(i.e., axes) velocities

Differential Calculus

45

CS 487/587, Spring 2024

Integral Calculus

• For a function 𝑓(𝑥) defined on the domain [𝑎, 𝑏], the definite integral of the
function is denoted

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥

• Geometric interpretation of the integral is the area between the horizontal axis
and the graph of 𝑓(𝑥) between the points a and b

▪ In this figure, the integral is the sum of blue areas (where 𝑓 𝑥 > 0) minus the pink
area (where 𝑓 𝑥 < 0)

Integral Calculus

Picture from: https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/clc/t

https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/clc/t

46

CS 487/587, Spring 2024

Optimization

• Optimization is concerned with optimizing an objective function — finding the
value of an argument that minimizes of maximizes the function

▪ Most optimization algorithms are formulated in terms of minimizing a function 𝑓(𝑥)

▪ Maximization is accomplished vie minimizing the negative of an objective function
(e.g., minimize −𝑓(𝑥))

▪ In minimization problems, the objective function is often referred to as a cost function
or loss function or error function

• Optimization is very important for machine learning

▪ The performance of optimization algorithms affect the model’s training efficiency

• Most optimization problems in machine learning are nonconvex

▪ Meaning that the loss function is not a convex function

▪ Nonetheless, the design and analysis of algorithms for solving convex problems has
been very instructive for advancing the field of machine learning

Optimization

47

CS 487/587, Spring 2024

Optimization

• Optimization and machine learning have related, but somewhat different goals

▪ Goal in optimization: minimize an objective function

o For a set of training examples, reduce the training error

▪ Goal in ML: find a suitable model, to predict on data examples

o For a set of testing examples, reduce the generalization error

• For a given empirical function g (dashed purple curve), optimization algorithms
attempt to find the point of minimum empirical risk (error on the training
dataset)

Optimization

• ML algorithms attempt to find the point of
minimum expected risk, based on minimizing
the error on a set of testing examples (blue
curve)

o Which may be at a different location than the
minimum of the training examples

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html

48

CS 487/587, Spring 2024

Stationary Points

• Stationary points (or critical points) of a differentiable function 𝑓(𝑥) of one
variable are the points where the derivative of the function is zero, i.e., 𝑓′(𝑥) = 0

• The stationary points can be:

▪ Minimum, a point where the derivative changes from negative to positive

▪ Maximum, a point where the derivative changes from positive to negative

▪ Saddle point, derivative is either positive or negative on both sides of the point

• The minimum and maximum points are collectively known as extremum points

Optimization

• The nature of stationary points can be
determined based on the second derivative
of 𝑓(𝑥) at the point

▪ If 𝑓′′ 𝑥 > 0, the point is a minimum

▪ If 𝑓′′ 𝑥 < 0, the point is a maximum

▪ If 𝑓′′ 𝑥 = 0, inconclusive, the point can be a
saddle point, but it may not

• The same concept also applies to gradients
of multivariate functions

49

CS 487/587, Spring 2024

Local Minima

• Among the challenges in optimization of model’s parameters in ML involve local
minima, saddle points, vanishing gradients

• For an objective function 𝑓(𝑥), if the value at a point x is the minimum of the
objective function over the entire domain of x, then it is the global minimum

• If the value of 𝑓(𝑥) at x is smaller than the values of the objective function at any
other points in the vicinity of x, then it is the local minimum

Optimization

▪ The objective functions in ML usually have
many local minima

o When the solution of the optimization
algorithm is near the local minimum, the
gradient of the loss function approaches or
becomes zero (vanishing gradients)

o Therefore, the obtained solution in the final
iteration can be a local minimum, rather than
the global minimum

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html

50

CS 487/587, Spring 2024

Saddle Points

• The gradient of a function 𝑓(𝑥) at a saddle point is 0, but the point is not a
minimum or maximum point

▪ The optimization algorithms may stall at saddle points, without reaching a minima

• Note also that the point of a function at which the sign of the curvature changes
is called an inflection point

▪ An inflection point (𝑓′′ 𝑥 = 0) can also be a saddle point, but it does not have to be

• For the 2D function (right figure), the saddle point is at (0,0)

▪ The point looks like a saddle, and gives the minimum with respect to x, and the
maximum with respect to y

Optimization

saddle point

x

Picture from: http://d2l.ai/chapter_optimization/optimization-intro.html

http://d2l.ai/chapter_optimization/optimization-intro.html

51

CS 487/587, Spring 2024

Convex Optimization

• A function of a single variable is concave if every line segment joining two points
on its graph does not lie above the graph at any point

• Symmetrically, a function of a single variable is convex if every line segment
joining two points on its graph does not lie below the graph at any point

Optimization

Picture from: https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cv1/t

https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/cv1/t

52

CS 487/587, Spring 2024

Convex Functions

• In mathematical terms, the function f is a convex function if for all points 𝑥1, 𝑥2

and for all 𝜆 ∈ [0,1]

𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) ≥ 𝑓 𝜆𝑥1 + (1 − 𝜆)𝑥2

Optimization

53

CS 487/587, Spring 2024

Convex Functions

• One important property of convex functions is that they do not have local
minima

▪ Every local minimum of a convex function is a global minimum

▪ I.e., every point at which the gradient of a convex function = 0 is the global minimum

▪ The figure below illustrates two convex functions, and one nonconvex function

Optimization

Picture from: http://d2l.ai/chapter_optimization/convexity.html

convex non-convex convex

http://d2l.ai/chapter_optimization/convexity.html

54

CS 487/587, Spring 2024

Convex Functions

• Another important property of convex functions is stated by the Jensen’s
inequality

• Namely, if we let 𝛼1 = 𝜆 and 𝛼2 = 1 − 𝜆, the definition of convex function
becomes

𝛼1𝑓(𝑥1) + 𝛼2𝑓(𝑥2) ≥ 𝑓 𝛼1𝑥1 + 𝛼2𝑥2

• The Danish mathematician Johan Jensen showed that this can be generalized for
all 𝛼𝑖 that are non-negative real numbers and σ𝑖 𝛼𝑖=1, to the following:

𝛼1𝑓 𝑥1 + 𝛼2𝑓 𝑥2 + ⋯ + 𝛼𝑛𝑓 𝑥𝑛 ≥ 𝑓 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛

Optimization

55

CS 487/587, Spring 2024

Convex Sets

• A set 𝒳 in a vector space is a convex set if for any 𝑎, 𝑏 ∈ 𝒳 the line segment
connecting a and b is also in 𝒳

• For all 𝜆 ∈ [0,1], we have

𝜆 ∙ 𝑎 + 1 − 𝜆 ∙ 𝑏 ∈ 𝒳 for all 𝑎, 𝑏 ∈ 𝒳

Optimization

• In the figure, each point represents a 2D vector

▪ The left set is nonconvex, and the other two sets are convex

• Properties of convex sets include:

▪ If 𝒳 and 𝒴 are convex sets, then 𝒳 ∩ 𝒴 is also convex

▪ If 𝒳 and 𝒴 are convex sets, then 𝒳 ∪ 𝒴 is not necessarily convex

Picture from: http://d2l.ai/chapter_optimization/convexity.html

http://d2l.ai/chapter_optimization/convexity.html

56

CS 487/587, Spring 2024

Derivatives and Convexity

• A twice-differentiable function of a single variable 𝑓: ℝ → ℝ is convex if and only
if its second derivative is non-negative everywhere

▪ Or, we can write,
𝑑2𝑓

𝑑𝑥2 ≥ 0

▪ For example, 𝑓 𝑥 = 𝑥2 is convex, since 𝑓′ 𝑥 = 2𝑥, and 𝑓′′ 𝑥 = 2, meaning that
𝑓′′ 𝑥 ≥ 0

• A twice-differentiable function of many variables 𝑓: ℝ𝑛 → ℝ is convex if and only
if its Hessian matrix is positive semi-definite everywhere

▪ Or, we can write, 𝐇𝑓 ≽ 0

▪ This is equivalent to stating that all eigenvalues of the Hessian matrix are non-negative
(i.e., ≥ 0)

Optimization

57

CS 487/587, Spring 2024

Constrained Optimization

• The optimization problem that involves a set of constraints which need to be
satisfied to optimize the objective function is called constrained optimization

• E.g., for a given objective function 𝑓(𝐱) and a set of constraint functions 𝑐𝑖 𝐱

minimize
𝐱

𝑓(𝐱)

subject to 𝑐𝑖 𝐱 ≤ 0 for all 𝑖 ∈ 1, 2, … , 𝑁

• The points that satisfy the constraints form the feasible region

• Various optimization algorithms have been developed for handling optimization
problems based on whether the constraints are equalities, inequalities, or a
combination of equalities and inequalities

Optimization

58

CS 487/587, Spring 2024

Lagrange Multipliers

• One approach to solving optimization problems is to substitute the initial
problem with optimizing another related function

• The Lagrange function for optimization of the constrained problem on the
previous page is defined as

𝐿 𝐱, 𝛼 = 𝑓 𝐱 + σ𝑖 𝛼𝑖𝑐𝑖 𝐱 where 𝛼𝑖 ≥ 0

• The variables 𝛼𝑖 are called Lagrange multipliers and ensure that the constraints
are properly enforced

▪ They are chosen to ensure that 𝑐𝑖 𝐱 ≤ 0 for all 𝑖 ∈ 1, 2, … , 𝑁

• This is a saddle-point optimization problem where one wants to minimize
𝐿 𝐱, 𝛼 with respect to 𝐱 and simultaneously maximize 𝐿 𝐱, 𝛼 with respect to 𝛼𝑖

▪ The saddle point of 𝐿 𝐱, 𝛼 gives the optimal solution to the original constrained
optimization problem

Optimization

59

CS 487/587, Spring 2024

Projections

• An alternative strategy for satisfying constraints are projections

• E.g., gradient clipping in NNs can require that the norm of the gradient is
bounded by a constant value c

• Approach:

▪ At each iteration during training

▪ If the norm of the gradient 𝑔 ≥ c, then the update is 𝑔𝑛𝑒𝑤 ← 𝑐 ∙
𝑔𝑜𝑙𝑑

𝑔𝑜𝑙𝑑

▪ If the norm of the gradient 𝑔 < c, then the update is 𝑔𝑛𝑒𝑤 ← 𝑔𝑜𝑙𝑑

• Note that since
𝑔𝑜𝑙𝑑

𝑔𝑜𝑙𝑑 is a unit vector (i.e., it has a norm = 1), then the vector 𝑐 ∙

𝑔𝑜𝑙𝑑

𝑔𝑜𝑙𝑑 has a norm = 𝑐

• Such clipping is the projection of the gradient g onto the ball of radius c

▪ For 𝑐 = 1, it is a projection on the unit ball (i.e., ball with radius 1)

Optimization

60

CS 487/587, Spring 2024

Projections

• More generally, a projection of a vector 𝐱 onto a set 𝒳 is defined as

Proj
𝒳

𝐱 = argmin
𝐱′∈𝒳

𝐱 − 𝐱′ 2

• This means that the vector 𝐱 is projected onto the closest vector 𝐱′ that belongs to
the set 𝒳

Optimization

Picture from: http://d2l.ai/chapter_optimization/convexity.html

• For example, in the figure, the blue circle represents
a convex set 𝒳

▪ The points inside the circle project to itself

o E.g., if 𝐱 is the yellow vector, its closest point 𝐱′ in the set
𝒳 is itself: the distance between 𝐱 and 𝐱′ is 𝐱 − 𝐱′ 2 = 0

▪ The points outside the circle project to the closest
point inside the circle

o E.g., if 𝐱 is the black vector, its closest point 𝐱′ in the set 𝒳
is the red vector

o Among all vectors in the set 𝒳, the red vector 𝐱′ has the
smallest distance to 𝐱, i.e., 𝐱 − 𝐱′ 2

http://d2l.ai/chapter_optimization/convexity.html

61

CS 487/587, Spring 2024

First-order vs Second-order Optimization

• First-order optimization algorithms use the gradient of a function for finding
the extrema points

▪ Methods: gradient descent, proximal algorithms, optimal gradient schemes

▪ The disadvantage is that they can be slow and inefficient

• Second-order optimization algorithms use the Hessian matrix of a function for
finding the extrema points

▪ This is since the Hessian matrix holds the second-order partial derivatives

▪ Methods: Newton’s method, conjugate gradient method, Quasi-Newton method,
Gauss-Newton method, BFGS (Broyden-Fletcher-Goldfarb-Shanno) method,
Levenberg-Marquardt method, Hessian-free method

▪ The second-order derivatives can be thought of as measuring the curvature of the loss
function

▪ Recall also that the second-order derivative can be used to determine whether a
stationary points is a maximum (𝑓′′ 𝑥 < 0), minimum (𝑓′′ 𝑥 > 0)

▪ This information is richer than the information provided by the gradient

▪ Disadvantage: computing the Hessian matrix is computationally expensive, and even
prohibitive for high-dimensional data

Optimization

62

CS 487/587, Spring 2024

Lower Bound and Infimum

• Lower bound of a subset 𝒮 from a partially ordered set 𝒳 is an element 𝑎 of 𝒳,
such that 𝑎 ≤ 𝑠 for all 𝑠 ∈ 𝒮

▪ E.g., for the subset 𝒮 = 3, 4, 6, 8 from the natural numbers ℕ, lower bounds are the
numbers 3, 2, and 1, i.e., all natural numbers ≤ 3

• Infimum of a subset 𝒮 from a partially ordered set 𝒳 is the greatest lower bound
in 𝒳, denoted inf𝑠∈𝒮 𝑠

▪ It is the maximal quantity ℎ such that ℎ ≤ 𝑠 for all 𝑠 ∈ 𝒮

▪ E.g., the infimum of the set 𝒮 = 3, 4, 6, 8 is ℎ =3, since it is the greatest lower bound

• Example: consider the subset of positive real numbers (excluding zero) ℝ≥0=ሼ
ሽ

𝑥 ∈
ℝ: 𝑥 ≥ 0

▪ The subset ℝ≥0 does not have a minimum, because for every small positive number,
there is a another even smaller positive number

▪ On the other hand, all real negative numbers and 0 are lower bounds on the subset ℝ≥0

▪ 0 is the greatest lower bound of all lower bounds, and therefore, the infimum of ℝ≥0 is 0

Optimization

63

CS 487/587, Spring 2024

Upper Bound and Supremum

• Upper bound of a subset 𝒮 from a partially ordered set 𝒳 is an element 𝑏 of 𝒳,
such that 𝑏 ≥ 𝑠 for all 𝑠 ∈ 𝒮

▪ E.g., for the subset 𝒮 = 3, 4, 6, 8 from the natural numbers ℕ, upper bounds are the
numbers 8, 9, 40, and all other natural numbers ≥ 8

• Supremum of a subset 𝒮 from a partially ordered set 𝒳 is the least upper bound
in 𝒳, denoted sup𝑠∈𝒮 𝑠

▪ It is the minimal quantity 𝑔 such that g ≥ 𝑠 for all 𝑠 ∈ 𝒮

▪ E.g., the supremum of the subset 𝒮 = 3, 4, 6, 8 is 𝑔 = 8, since it is the least upper
bound

• Example: for the subset of negative real numbers (excluding zero)

ℝ≤0= 𝑥 ∈ ℝ: 𝑥 ≤ 0

▪ All real positive numbers and 0 are upper bounds

▪ 0 is the least upper bound, and therefore, the supremum of ℝ≤0

Optimization

64

CS 487/587, Spring 2024

Lipschitz Function

• A function 𝑓 𝑥 is a Lipschitz continuous function if a constant 𝜌 > 0 exists, such
that for all points 𝑥1, 𝑥2

𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝜌 𝑥1 − 𝑥2

• Such function is also called a 𝜌-Lipschitz function

• Intuitively, a Lipschitz function cannot change too fast

▪ I.e., if the points 𝑥1 and 𝑥2 are close (i.e., the distance 𝑥1 − 𝑥2 is small), that means
that the 𝑓 𝑥1 and 𝑓 𝑥2 are also close (i.e., the distance 𝑓 𝑥1 − 𝑓 𝑥2 is also small)

o The smallest real number that bounds the change of 𝑓 𝑥1 − 𝑓 𝑥2 for all points 𝑥1, 𝑥2 is the
Lipschitz constant 𝜌 of the function 𝑓 𝑥

▪ For a 𝜌-Lipschitz function 𝑓 𝑥 , the first derivative 𝑓′ 𝑥 is bounded everywhere by 𝜌

• E.g., the function 𝑓 𝑥 = 𝑙𝑜𝑔 1 + 𝑒𝑥 is 1-Lipschitz over ℝ

▪ Since 𝑓′ 𝑥 =
𝑒𝑥

1+𝑒𝑥 =
1

𝑒−𝑥+1
=

𝟏

𝑒−𝑥+1
≤ 1

▪ I.e., 𝜌 = 1

Optimization

65

CS 487/587, Spring 2024

Lipschitz Continuous Gradient

• A differentiable function 𝑓 𝑥 has a Lipschitz continuous gradient if a constant
𝜌 > 0 exists, such that for all points 𝑥1, 𝑥2

𝛻𝑓 𝑥1 − 𝛻𝑓 𝑥2 ≤ 𝜌 𝑥1 − 𝑥2

• For a function 𝑓 𝑥 with a 𝜌-Lipschitz gradient, the second derivative 𝑓′′ 𝑥 is
bounded everywhere by 𝜌

• E.g., consider the function 𝑓 𝑥 = 𝑥2

▪ 𝑓 𝑥 = 𝑥2 is not a Lipschitz continuous function, since 𝑓′(𝑥) = 2𝑥, so when 𝑥 → ∞
then 𝑓′(𝑥) → ∞, i.e., the derivative is not bounded everywhere

▪ Since 𝑓′′(𝑥) = 2, therefore the gradient 𝑓′(𝑥) is 2-Lipschitz everywhere, since the
second derivative is bounded everywhere by 2

Optimization

66

CS 487/587, Spring 2024

Probability

• Intuition:

▪ In a process, several outcomes are possible

▪ When the process is repeated a large number of times, each outcome occurs with a
relative frequency, or probability

▪ If a particular outcome occurs more often, we say it is more probable

• Probability arises in two contexts

▪ In actual repeated experiments

o Example: You record the color of 1,000 cars driving by. 57 of them are green. You estimate the
probability of a car being green as 57/1,000 = 0.057.

▪ In idealized conceptions of a repeated process

o Example: You consider the behavior of an unbiased six-sided die. The expected probability of
rolling a 5 is 1/6 = 0.1667.

o Example: You need a model for how people’s heights are distributed. You choose a normal
distribution to represent the expected relative probabilities.

Probability

67

CS 487/587, Spring 2024

Probability

• Solving machine learning problems requires to deal with uncertain quantities, as
well as with stochastic (non-deterministic) quantities

▪ Probability theory provides a mathematical framework for representing and
quantifying uncertain quantities

• There are different sources of uncertainty:

▪ Inherent stochasticity in the system being modeled

o For example, most interpretations of quantum mechanics describe the dynamics of subatomic
particles as being probabilistic

▪ Incomplete observability

o Even deterministic systems can appear stochastic when we cannot observe all of the variables
that drive the behavior of the system

▪ Incomplete modeling

o When we use a model that must discard some of the information we have observed, the
discarded information results in uncertainty in the model’s predictions

o E.g., discretization of real-numbered values, dimensionality reduction, etc.

Probability

68

CS 487/587, Spring 2024

Random variables

• A random variable 𝑋 is a variable that can take on different values

▪ Example: 𝑋 = rolling a die

o Possible values of 𝑋 comprise the sample space, or outcome space, 𝒮 = 1, 2, 3, 4, 5, 6

o We denote the event of “seeing a 5” as 𝑋 = 5 or 𝑋 = 5

o The probability of the event is 𝑃 𝑋 = 5 or 𝑃 𝑋 = 5

o Also, 𝑃 5 can be used to denote the probability that 𝑋 takes the value of 5

• A probability distribution is a description of how likely a random variable is to
take on each of its possible states

▪ A compact notation is common, where 𝑃 𝑋 is the probability distribution over the
random variable 𝑋

o Also, the notation X~𝑃 𝑋 can be used to denote that the random variable 𝑋 has probability
distribution 𝑃 𝑋

• Random variables can be discrete or continuous

▪ Discrete random variables have finite number of states: e.g., the sides of a die

▪ Continuous random variables have infinite number of states: e.g., the height of a
person

Probability

69

CS 487/587, Spring 2024

Axioms of probability

• The probability of an event 𝒜 in the given sample space 𝒮, denoted as 𝑃 𝒜 ,
must satisfies the following properties:

▪ Non-negativity

o For any event 𝒜 ∈ 𝒮, 𝑃 𝒜 ≥ 0

▪ All possible outcomes

o Probability of the entire sample space is 1, 𝑃 𝒮 = 1

▪ Additivity of disjoint events

o For all events 𝒜1, 𝒜2∈ 𝒮 that are mutually exclusive (𝒜1 ∩ 𝒜2 = ∅), the probability that both
events happen is equal to the sum of their individual probabilities, 𝑃 𝒜1 ∪ 𝒜2 =
𝑃 𝒜1 +𝑃 𝒜2

• The probability of a random variable 𝑃 𝑋 must obey the axioms of probability
over the possible values in the sample space 𝒮

Probability

70

CS 487/587, Spring 2024

Discrete Variables

• A probability distribution over discrete
variables may be described using a
probability mass function (PMF)

▪ E.g., sum of two dice

• A probability distribution over continuous
variables may be described using a
probability density function (PDF)

▪ E.g., waiting time between eruptions of Old
Faithful

▪ A PDF gives the probability of an infinitesimal
region with volume 𝛿𝑋

▪ To find the probability over an interval [a, b],
we can integrate the PDF as follows:

𝑃 𝑋 ∈ 𝑎, 𝑏 = 𝑎׬

𝑏
𝑃 𝑋 𝑑𝑋

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

71

CS 487/587, Spring 2024

Multivariate Random Variables

• We may need to consider several random variables at a time

▪ If several random processes occur in parallel or in sequence

▪ E.g., to model the relationship between several diseases and symptoms

▪ E.g., to process images with millions of pixels (each pixel is one random variable)

• Next, we will study probability distributions defined over multiple random
variables

▪ These include joint, conditional, and marginal probability distributions

• The individual random variables can also be grouped together into a random
vector, because they represent different properties of an individual statistical
unit

• A multivariate random variable is a vector of multiple random variables 𝐗 =
𝑋1, 𝑋2, … , 𝑋𝑛

𝑇

▪ It is also referred to as a random vector

Probability

72

CS 487/587, Spring 2024

Joint Probability Distribution

• Probability distribution that acts on many variables at the same time is known as
a joint probability distribution

• Given any values x and y of two random variables 𝑋 and 𝑌, what is the
probability that 𝑋 = x and 𝑌 = y simultaneously?

▪ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) denotes the joint probability

▪ We may also write 𝑃(𝑥, 𝑦) for brevity

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

73

CS 487/587, Spring 2024

Marginal Probability Distribution

• Marginal probability distribution is the probability distribution of a single
variable

▪ It is calculated based on the joint probability distribution 𝑃 𝑋, 𝑌

▪ I.e., using the sum rule: 𝑃 𝑋 = 𝑥 = σ𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

o For continuous random variables, the summation is replaced with integration, 𝑃 𝑋 = 𝑥 =

׬ 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝑑𝑦

▪ This process is called marginalization

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

74

CS 487/587, Spring 2024

Conditional Probability Distribution

• Conditional probability distribution is the probability distribution of one
variable provided that another variable has taken a certain value

▪ Denoted 𝑃(𝑋 = 𝑥| 𝑌 = 𝑦)

• Note that: 𝑃 𝑋 = 𝑥| 𝑌 = 𝑦 =
𝑃 𝑋=𝑥, 𝑌=𝑦

𝑃 𝑌=𝑦

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

75

CS 487/587, Spring 2024

Bayes’ Theorem

• Bayes’ theorem – allows to calculate conditional probabilities for one variable
when conditional probabilities for another variable are known

𝑃 𝑋| 𝑌 =
𝑃 𝑌| 𝑋 𝑃 𝑋

𝑃 𝑌

• Also known as Bayes’ rule

• Multiplication rule for the joint distribution is used: 𝑃 𝑋, 𝑌 = 𝑃 𝑌| 𝑋 𝑃 𝑋

• By symmetry, we also have: 𝑃 𝑌, 𝑋 = 𝑃 𝑋| 𝑌 𝑃 𝑌

• The terms are referred to as:

▪ 𝑃 𝑋 , the prior probability, the initial degree of belief for 𝑋

▪ 𝑃 𝑋| 𝑌 , the posterior probability, the degree of belief after incorporating the
knowledge of 𝑌

▪ 𝑃 𝑌| 𝑋 , the likelihood of 𝑌 given 𝑋

▪ P(Y), the evidence

▪ Bayes’ theorem: posterior probability =
𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 × 𝐩𝐫𝐢𝐨𝐫 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

𝐞𝐯𝐢𝐝𝐞𝐧𝐜𝐞

Probability

76

CS 487/587, Spring 2024

Independence

• Two random variables 𝑋 and 𝑌 are independent if the occurrence of 𝑌 does not
reveal any information about the occurrence of 𝑋

▪ E.g., two successive rolls of a die are independent

• Therefore, we can write: 𝑃 𝑋| 𝑌 = 𝑃 𝑋

▪ The following notation is used: 𝑋 ⊥ 𝑌

▪ Also note that for independent random variables: 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃 𝑌

• In all other cases, the random variables are dependent

▪ E.g., duration of successive eruptions of Old Faithful

▪ Getting a king on successive draws form a deck (the drawn card is not replaced)

• Two random variables 𝑋 and 𝑌 are conditionally independent given another
random variable 𝑍 if and only if 𝑃 𝑋, 𝑌|𝑍 = 𝑃 𝑋|𝑍 𝑃 𝑌|𝑍

▪ This is denoted as 𝑋 ⊥ 𝑌|𝑍

Probability

77

CS 487/587, Spring 2024

Continuous Multivariate Distributions

• Same concepts of joint, marginal, and conditional probabilities apply for
continuous random variables

• The probability distributions use integration of continuous random variables,
instead of summation of discrete random variables

▪ Example: a three-component Gaussian mixture probability distribution in two
dimensions

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

78

CS 487/587, Spring 2024

Expected Value

• The expected value or expectation of a random variable 𝑋 drawn from a
probability distribution 𝑃 𝑋 is the average (mean) value of all possible outcomes

▪ For a discrete random variable X, it is calculated as

𝔼𝑋~𝑃 𝑋 = ෍
𝑋

𝑋 𝑃 𝑋

▪ For a continuous random variable X, it is calculated as

𝔼𝑋~𝑃 𝑋 = න 𝑋 𝑃 𝑋 𝑑𝑋

▪ When the identity of the distribution is clear from the context, we can write 𝔼 𝑋

▪ E.g., for a sample of observations: μ = 𝔼 𝑋 = σ𝑖 𝑃 𝑋𝑖 ∙ 𝑋𝑖 =
1

𝑁
σ𝑖 𝑋𝑖

• Mean is the most common measure of central tendency of a distribution

▪ Other measures of central tendency: median, mode

• By analogy, the expected value of a function 𝑓(𝑋) of a discrete random variable
𝑋 with respect to a probability distribution 𝑃 𝑋 is:

𝔼𝑋~𝑃 𝑓 𝑋 = ෍
𝑋

𝑓 𝑋 𝑃 𝑋

Probability

79

CS 487/587, Spring 2024

Variance

• Variance of a random variable 𝑋 gives the measure of how much the values
of 𝑋 deviate from the expected value as we sample 𝑋 from 𝑃 𝑋

Var 𝑋 = 𝔼 𝑋 − 𝔼 𝑋 2

• When the variance is low, the values of 𝑋 cluster near the expected value

• Variance is commonly denoted with 𝜎2

▪ The above equation is similar to an expected value of a function 𝑓 𝑋 = 𝑋𝑖 − μ 2

▪ We can write:

𝜎2 = 𝔼 𝑋𝑖 − μ 2 = ෍

𝑖

𝑋𝑖 − μ 2 ∙ 𝑃 𝑋𝑖

▪ Similarly, the variance of a sample of observations can be calculated as:

▪ 𝜎2 =
1

𝑁
σ𝑖 𝑋𝑖 − μ 2

• The square root of the variance is the standard deviation

▪ 𝜎 = Var 𝑋

Probability

80

CS 487/587, Spring 2024

Covariance

• Covariance is a measure of the joint variability of two random variables 𝑋 and
𝑌 from their means

Cov 𝑋, 𝑌 = 𝔼 𝑋 − 𝔼 𝑋 𝑌 − 𝔼 𝑌

• If 𝑓 𝑋 = 𝑋𝑖 − μ𝑋 and 𝑔 𝑌 = 𝑌𝑖 − μ𝑌

▪ Then, the covariance is: Cov 𝑋𝑖 , 𝑌𝑖 = 𝔼 𝑓 𝑋 𝑔 𝑌 = σ𝑖 𝑃 𝑋𝑖 , 𝑌𝑖 ∙ 𝑋𝑖 − μ𝑋 ∙ 𝑌𝑖 − μ𝑌

▪ Covariance of samples of observations is: Cov 𝑋, 𝑌 =
1

𝑁
σ𝑖 𝑌𝑖 − μ𝑋 𝑌𝑖 − μ𝑌

• The covariance measures the tendency for 𝑋 and 𝑌 to deviate from their means
in the same (or opposite) directions at same time

Probability

𝑋 𝑋

𝑌 𝑌No covariance High covariance

Picture from: Jeff Howbert — Machine Learning Math Essentials

81

CS 487/587, Spring 2024

Correlation

• Correlation coefficient is the covariance normalized by the standard deviations
of the two variables

corr 𝑋, 𝑌 =
Cov 𝑋, 𝑌

𝜎𝑋 ∙ 𝜎𝑌

▪ It is also called Pearson’s correlation coefficient and it is denoted 𝜌 𝑋, 𝑌

▪ The values are in the interval −1, 1

▪ It only reflects linear dependence between variables, and it does not measure non-
linear dependencies between the variables

Probability

Picture from: Jeff Howbert — Machine Learning Math Essentials

82

CS 487/587, Spring 2024

Covariance Matrix

• Covariance matrix of a multivariate random variable 𝐗 = 𝑋1, 𝑋2, … , 𝑋𝑛
𝑇 is an

𝑛 × 𝑛 matrix, such that

Cov 𝐗 𝑖,𝑗 = Cov 𝑋𝑖 , 𝑋𝑗

• I.e.,

Cov 𝐗 =

Cov 𝑋1, 𝑋1 Cov 𝑋1, 𝑋2 ⋯ Cov 𝑋1, 𝑋𝑛

Cov 𝑋2, 𝑋1

⋮
⋱

Cov 𝑋2, 𝑋𝑛

⋮
Cov 𝑋𝑛, 𝑋1 Cov 𝑋𝑛, 𝑋2 ⋯ Cov 𝑋𝑛, 𝑋𝑛

• The diagonal elements of the covariance matrix are the variances of the elements
of the random vector 𝐗

Cov 𝑋𝑖 , 𝑋𝑖 = Var 𝑋𝑖

• Also note that the covariance matrix is symmetric, since Cov 𝑋𝑖 , 𝑋𝑗 = Cov 𝑋𝑗 , 𝑋𝑖

Probability

83

CS 487/587, Spring 2024

Probability Distributions

• Bernoulli distribution

▪ Binary random variable 𝑋 with states 0, 1

▪ E.g., the random variable can encode a coin
flip which comes up 1 with probability p and
0 with probability 1 − 𝑝

▪ Notation: 𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝

• Uniform distribution

▪ The probability of each value 𝑖 ∈ 1,2, … , 𝑛 is

𝑝𝑖 =
1

𝑛

▪ Notation: 𝑋 ∼ 𝑈 𝑛

▪ Figure: 𝑛 = 5, 𝑝 = 0.2

Probability

𝑝 = 0.3

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

84

CS 487/587, Spring 2024

Probability Distributions

• Binomial distribution
▪ Performing a sequence of n independent

experiments, each of which has probability p of
succeeding, where 𝑝 ∈ 0, 1
o E.g., tossing a coin 100 times, head probability is 0.5

▪ The probability of getting k successes in n trials

is 𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

▪ Notation: 𝑋 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝

• Poisson distribution
▪ A number of events occurring independently in

a fixed interval of time with a known rate 𝜆
o E.g., number of arriving patients in ER

▪ A discrete random variable 𝑋 with states 𝑘 ∈

0, 1, 2, … has probability 𝑃 𝑋 = 𝑘 =
𝜆𝑘∙𝑒−𝜆

𝑘!

▪ The rate 𝜆 is the average number of occurrences
of the event

▪ Notation: 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆

Probability

𝑛 = 10, 𝑝 = 0.2

𝜆 = 5

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

85

CS 487/587, Spring 2024

Probability Distributions

• Gaussian distribution

▪ The most well-studied distribution

o Referred to as normal distribution or informally bell-shaped distribution

▪ Defined with the mean 𝜇 and variance 𝜎2

o Notation: 𝑋 ∼ 𝒩 𝜇, 𝜎2

▪ For a random variable 𝑋 with n independent measurements, the density is

𝑃𝑋 𝑥 =
1

2𝜋𝜎2
𝑒

−
𝑥−𝜇 2

2𝜎2

▪ E.g., shown below is a Binomial distribution; as the number of experiments increases
from 1 to 1000, it yields a Gaussian distribution

o Central limit theorem: the distribution of the mean of samples approximates a normal
distribution as the sample size becomes larger

Probability

Picture from: http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

http://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html

86

CS 487/587, Spring 2024

Probability Distributions

• Multinoulli distribution

▪ It is an extension of the Bernoulli distribution, from binary class to multi-class

▪ Multinoulli distribution is also called categorical distribution or generalized Bernoulli
distribution

▪ Multinoulli is a discrete probability distribution that describes the possible results of a
random variable that can take on one of k possible categories

o A categorical random variable is a discrete variable with more than two possible outcomes
(such as the roll of a die)

▪ For example, in multi-class classification in machine learning, we have a set of data
examples 𝐱1, 𝐱2, … , 𝐱𝑛 , and corresponding to the data example 𝐱𝑖 is a k-class label
𝐲𝑖 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 representing one-hot encoding

o One-hot encoding is also called 1-of-k vector, where one element has the value 1 and all other
elements have the value 0

o Let’s denote the probabilities for assigning the class labels to a data example by 𝑝1, 𝑝2, … , 𝑝𝑘

o We know that 0 ≤ 𝑝𝑗 ≤ 1 and σ 𝑝𝑗 = 1 for the different classes 𝑗 = 1, 2, … , 𝑘

o The multinoulli probability of the data example 𝐱𝑖 is 𝑃 𝐱𝑖 = 𝑝1
𝑦𝑖1 ∙ 𝑝2

𝑦𝑖2 ⋯ 𝑝𝑘
𝑦𝑖𝑘 = ς𝑗 𝑝𝑗

𝑦𝑖𝑗

o Similarly, we can calculate the probability of all data examples as ς𝑖 ς𝑗 𝑝𝑗
𝑦𝑖𝑗

Probability

87

CS 487/587, Spring 2024

Information Theory

• Information theory studies encoding, decoding, transmitting, and manipulating
information

▪ It is a branch of applied mathematics that revolves around quantifying how much
information is present in different signals

• As such, information theory provides fundamental language for discussing the
information processing in computer systems

▪ E.g., machine learning applications use the cross-entropy loss, derived from
information theoretic considerations

• A seminal work in this field is the paper A Mathematical Theory of Communication
by Clause E. Shannon, which introduced the concept of information entropy for
the first time

▪ Information theory was originally invented to study sending messages over a noisy
channel, such as communication via radio transmission

Information Theory

88

CS 487/587, Spring 2024

Self-information

• The basic intuition behind information theory is that learning that an unlikely
event has occurred is more informative than learning that a likely event has
occurred

▪ E.g., a message saying “the sun rose this morning” is so uninformative that it is
unnecessary to be sent

▪ But, a message saying “there was a solar eclipse this morning” is very informative

• Based on that intuition, Shannon defined the self-information of an event 𝑋 as

𝐼 𝑋 = −log 𝑃 𝑋

▪ 𝐼 𝑋 is the self-information, and𝑃 𝑋 is the probability of the event 𝑋

• The self-information outputs the bits of information received for the event 𝑋

▪ For example, if we want to send the code “0010” over a channel

▪ The event “0010” is a series of codes of length n (in this case, the length is 𝑛 =4)

▪ Each code is a bit (0 or 1), and occurs with probability of
1

2
; for this event 𝑃 =

1

2𝑛

𝐼 "0010" = −log 𝑃 "0010" = −log
1

24 = −log2 1 + log2 24 = 0 + 4 = 4 bits

Information Theory

89

CS 487/587, Spring 2024

Entropy

• For a discrete random variable 𝑋 that follows a probability distribution 𝑃 with a
probability mass function 𝑃(𝑋), the expected amount of information through
entropy (or Shannon entropy) is

𝐻 𝑋 = 𝔼𝑋~𝑃 𝐼 𝑋 = −𝔼𝑋~𝑃 [log 𝑃(𝑋)]

• Based on the expectation definition 𝔼𝑋~𝑃 𝑓 𝑋 = σ𝑋 𝑃 𝑋 𝑓 𝑋 , we can rewrite
the entropy as

𝐻 𝑋 = − σ𝑋 𝑃 𝑋 log 𝑃 𝑋

• If 𝑋 is a continuous random variable that follows a probability distribution 𝑃
with a probability density function 𝑃(𝑋), the entropy is

𝐻 𝑋 = − න
𝑋

𝑃 𝑋 log 𝑃 𝑋 𝑑𝑋

▪ For continuous random variables, the entropy is also called differential entropy

Information Theory

90

CS 487/587, Spring 2024

Entropy

• Intuitively, we can interpret the self-information (𝐼 𝑋 = −log 𝑃(𝑋)) as the
amount of surprise we have at seeing a particular outcome

▪ We are less surprised when seeing a more frequent event

• Similarly, we can interpret the entropy (𝐻 𝑋 = 𝔼𝑋~𝑃 𝐼 𝑋) as the average
amount of surprise from observing a random variable 𝑋

▪ Therefore, distributions that are closer to a uniform distribution have high entropy

▪ Because there is little surprise when we draw samples from a uniform distribution,
since all samples have similar values

Information Theory

91

CS 487/587, Spring 2024

Kullback–Leibler Divergence

• Kullback-Leibler (KL) divergence (or relative entropy) provides a measure of
how different two probability distribution are

• For two probability distributions 𝑃(𝑋) and 𝑄 𝑋 over the same random variable
𝑋, the KL divergence is

𝐷𝐾𝐿 𝑃||𝑄 = 𝔼𝑋~𝑃 log
𝑃(𝑋)

𝑄 𝑋

• For discrete random variables, this formula is equivalent to

𝐷𝐾𝐿 𝑃||𝑄 = σ𝑋 𝑃 𝑋 log
𝑃(𝑋)

𝑄 𝑋

• KL divergence can be considered as the amount of information lost when the
distribution 𝑄 is used to approximate the distribution 𝑃

Information Theory

92

CS 487/587, Spring 2024

Kullback–Leibler Divergence

• KL divergence is non-negative: 𝐷𝐾𝐿 𝑃||𝑄 ≥ 0

• 𝐷𝐾𝐿 𝑃||𝑄 = 0 if and only if 𝑃(𝑋) and 𝑄 𝑋 are the same distribution

• The most important property of KL divergence is that it is non-symmetric, i.e.,

𝐷𝐾𝐿 𝑃||𝑄 ≠ 𝐷𝐾𝐿 𝑄||𝑃

• Because 𝐷𝐾𝐿 is non-negative and measures the difference between distributions,
it is often considered as a “distance metric” between two distributions

▪ However, KL divergence is not a true distance metric, because it is not symmetric

▪ The asymmetry means that there are important consequences to the choice of whether
to use 𝐷𝐾𝐿 𝑃||𝑄 or 𝐷𝐾𝐿 𝑄||𝑃

• An alternative divergence which is non-negative and symmetric is the Jensen-
Shannon divergence, defined as

𝐷𝐽𝑆 𝑃||𝑄 =
1

2
𝐷𝐾𝐿 𝑃||𝑀 +

1

2
𝐷𝐾𝐿 𝑄||𝑀

▪ In the above, M is the average of the two distributions, 𝑀 =
1

2
𝑃 + 𝑄

Information Theory

93

CS 487/587, Spring 2024

Cross-entropy

• Cross-entropy is closely related to the KL divergence, and it is defined as the
summation of the entropy 𝐻 𝑃 and KL divergence 𝐷𝐾𝐿 𝑃||𝑄

𝐶𝐸 𝑃, 𝑄 = 𝐻 𝑃 + 𝐷𝐾𝐿 𝑃||𝑄

• Alternatively, the cross-entropy can be written as

𝐶𝐸 𝑃, 𝑄 = −𝔼𝑋~𝑃 [log 𝑄(𝑋)]

• In machine learning, let’s assume a classification problem based on a set of data
examples 𝑥1, 𝑥2, … , 𝑥𝑛 , that need to be classified into k classes

▪ For each data example 𝑥𝑖 we have a class label 𝑦𝑖

o The true labels 𝐲 follow the true distribution 𝑃

▪ The goal is to train a classifier (e.g., a NN) parameterized by 𝜃, that outputs a
predicted class label ො𝑦𝑖 for each data example 𝑥𝑖

o The predicted labels ෝ𝒚 follow the estimated distribution 𝑄

▪ The cross-entropy loss between the true distribution 𝑃 and the estimated distribution
𝑄 is calculated as: 𝐶𝐸 𝐲, ො𝐲 = −𝔼𝑋~𝑃 log 𝑄 𝑋 = − σ𝑋 𝑃 𝑋 log 𝑄 𝑋 = − σ𝑖 𝑦𝑖log ො𝑦𝑖

o The further away the true and estimated distributions are, the greater the cross-entropy loss is

Information Theory

94

CS 487/587, Spring 2024

References

1. A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Dive into Deep Learning, https://d2l.ai,
2020.

2. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2017.

3. M. P. Deisenroth, A. A. Faisal, C. S. Ong, Mathematics for Machine Learning,
Cambridge University Press, 2020.

4. Jeff Howbert — Machine Learning Math Essentials presentation

5. Brian Keng – Manifolds: A Gentle Introduction blog

6. Martin J. Osborne – Mathematical Methods for Economic Theory (link)

https://d2l.ai/
http://bjlkeng.github.io/posts/manifolds/#:~:text=The%20manifold%20hypothesis%20is%20that,actually%20some%20lower%2Ddimensional%20representation.
https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/toc

95

CS 487/587, Spring 2024

Appendix

(Not required for quizzes or assignments)

96

CS 487/587, Spring 2024

Maximum Likelihood

• Cross-entropy is also related to the maximum likelihood estimation

• In ML, we want to find a model with parameters 𝜃 that maximize the probability
that the data is assigned the correct class, i.e., argmax𝜃 𝑃 model | data
▪ For the classification problem from previous page, we want to find parameters 𝜃 so that for the

data examples 𝑥1, 𝑥2, … , 𝑥𝑛 the probability of outputting class labels 𝑦1, 𝑦2, … , 𝑦𝑛 is maximized

o I.e., for some data examples, the predicted class ො𝑦𝑗 will be different than the true class 𝑦𝑗 , but

the goal is to find 𝜃 that results in an overall maximum probability

• From Bayes’ theorem, argmax 𝑃 model | data is proportional to argmax 𝑃 data | model

𝑃 𝜃|𝑥1, 𝑥2, … , 𝑥𝑛 =
𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 𝑃 𝜃

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛

▪ This is true since 𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 does not depend on the parameters 𝜃

▪ Also, we can assume that we have no prior assumption on which set of parameters
𝜃 are better than any others

• Recall that 𝑃 data|model is the likelihood, therefore, the maximum likelihood
estimate of 𝜃 is based on solving

arg max
𝜃

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃

Information Theory

97

CS 487/587, Spring 2024

Maximum Likelihood

• For a total number of n observed data examples 𝑥1, 𝑥2, … , 𝑥𝑛 , the predicted
class labels for the data example 𝑥𝑖 is ො𝐲𝑖

▪ Using the multinoulli distribution, the probability of predicting the true class label
𝐲𝑖 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘 is 𝒫 𝑥𝑖 |𝜃 = ς𝑗 ො𝑦𝑖𝑗

𝑦𝑖𝑗, where 𝑗 ∈ 1,2, … , 𝑘

▪ E.g., we have a problem with 3 classes [car, house, tree], and an image of a car 𝑥𝑖, the
true label 𝐲𝑖 = 1,0,0 , and let’s assume a predicted label ො𝐲𝑖 = 0.7, 0.1, 02 , then the
probability is 𝒫 𝑥𝑖 |𝜃 = ς𝑗 ො𝑦𝑖𝑗

𝑦𝑖𝑗 = 0.71 ∙ 0.10 ∙ 0.20 = 0.7 ∙ 1 ∙ 1 = 0.7

• Assuming that the data examples are independent, the likelihood of the data
given the model parameters 𝜃 can be written as 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 =
𝒫 𝑥1|𝜃 ⋯ 𝒫 𝑥𝑛 |𝜃 = ς𝑗 ො𝑦1𝑗

𝑦1𝑗 ∙ ς𝑗 ො𝑦2𝑗
𝑦2𝑗 ⋯ ς𝑗 ො𝑦𝑛𝑗

𝑦𝑛𝑗 = ς𝑖 ς𝑗 ො𝑦𝑖𝑗
𝑦𝑖𝑗

• Log-likelihood is often used because it simplifies numerical calculations, since it
transforms a product with many terms into a summation, e.g., log 𝑎1

𝑏1 ∙ 𝑎2
𝑏2 =

𝑏1log 𝑎1 + 𝑏2log 𝑎2

▪ log 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 = log ς𝑖 ς𝑗 ො𝑦𝑖𝑗
𝑦𝑖𝑗 = σ𝑖 σ𝑗 𝑦𝑖𝑗 log ො𝑦𝑖𝑗

▪ A negative of the log-likelihood allows us to use minimization approaches, i.e.,
− log 𝒫 𝑥1, 𝑥2, … , 𝑥𝑛|𝜃 = − σ𝑖 σ𝑗 𝑦𝑖𝑗 log ො𝑦𝑖𝑗 = 𝐶𝐸 𝐲, ෝ𝐲

• Thus, maximizing the likelihood is the same as minimizing the cross-entropy

Information Theory

	Slide 1: CS 487/587 Adversarial Machine Learning
	Slide 2: Lecture 3
	Slide 3: Lecture Outline
	Slide 4: Notation
	Slide 5: Notation
	Slide 6: Vectors
	Slide 7: Geometry of Vectors
	Slide 8: Geometry of Vectors
	Slide 9: Dot Product and Angles
	Slide 10: Norm of a Vector
	Slide 11: Norm of a Vector
	Slide 12: Vector Projection
	Slide 13: Hyperplanes
	Slide 14: Hyperplanes
	Slide 15: Matrices
	Slide 16: Matrices
	Slide 17: Matrices
	Slide 18: Matrices
	Slide 19: Matrices
	Slide 20: Matrix-Vector Products
	Slide 21: Matrix-Matrix Products
	Slide 22: Linear Dependence
	Slide 23: Matrix Rank
	Slide 24: Inverse of a Matrix
	Slide 25: Pseudo-Inverse of a Matrix
	Slide 26: Tensors
	Slide 27: Manifolds
	Slide 28: Manifolds
	Slide 29: Manifolds
	Slide 30: Manifolds
	Slide 31: Eigen Decomposition
	Slide 32: Eigen Decomposition
	Slide 33: Eigen Decomposition
	Slide 34: Singular Value Decomposition
	Slide 35: Matrix Norms
	Slide 36: Differential Calculus
	Slide 37: Differential Calculus
	Slide 38: Higher Order Derivatives
	Slide 39: Taylor Series
	Slide 40: Geometric Interpretation
	Slide 41: Partial Derivatives
	Slide 42: Gradient
	Slide 43: Hessian Matrix
	Slide 44: Jacobian Matrix
	Slide 45: Integral Calculus
	Slide 46: Optimization
	Slide 47: Optimization
	Slide 48: Stationary Points
	Slide 49: Local Minima
	Slide 50: Saddle Points
	Slide 51: Convex Optimization
	Slide 52: Convex Functions
	Slide 53: Convex Functions
	Slide 54: Convex Functions
	Slide 55: Convex Sets
	Slide 56: Derivatives and Convexity
	Slide 57: Constrained Optimization
	Slide 58: Lagrange Multipliers
	Slide 59: Projections
	Slide 60: Projections
	Slide 61: First-order vs Second-order Optimization
	Slide 62: Lower Bound and Infimum
	Slide 63: Upper Bound and Supremum
	Slide 64: Lipschitz Function
	Slide 65: Lipschitz Continuous Gradient
	Slide 66: Probability
	Slide 67: Probability
	Slide 68: Random variables
	Slide 69: Axioms of probability
	Slide 70: Discrete Variables
	Slide 71: Multivariate Random Variables
	Slide 72: Joint Probability Distribution
	Slide 73: Marginal Probability Distribution
	Slide 74: Conditional Probability Distribution
	Slide 75: Bayes’ Theorem
	Slide 76: Independence
	Slide 77: Continuous Multivariate Distributions
	Slide 78: Expected Value
	Slide 79: Variance
	Slide 80: Covariance
	Slide 81: Correlation
	Slide 82: Covariance Matrix
	Slide 83: Probability Distributions
	Slide 84: Probability Distributions
	Slide 85: Probability Distributions
	Slide 86: Probability Distributions
	Slide 87: Information Theory
	Slide 88: Self-information
	Slide 89: Entropy
	Slide 90: Entropy
	Slide 91: Kullback–Leibler Divergence
	Slide 92: Kullback–Leibler Divergence
	Slide 93: Cross-entropy
	Slide 94: References
	Slide 95
	Slide 96: Maximum Likelihood
	Slide 97: Maximum Likelihood

