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Lecture Outline

e Carlini and Wagner (2017) Towards Evaluating the Robustness of Neural
Networks

e Papernot et al. (2016) The limitations of deep learning in adversarial settings
e Xiao et al. (2018) Spatially Transformed Adversarial Examples

Other white-box evasion attacks
= Elastic Net (EAD) attack
= One-pixel attack

= Universal perturbation attack
= NewtonFool attack
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Evasion Attacks against White-box Models

Evasion Attacks against White-box Models

e So far we covered:
o Fast gradient sign method (FGSM) attack

= Goodfellow (2015) Explaining and Harnessing Adversarial Examples
" Xgqy =X+ €- sign(VxL(h(x, W),y))
o Projected gradient descent (PGD) attack
= Madry (2017) Towards Deep Learning Models Resistant to Adversarial Attacks
= xbg = x71 + a - sign(VL(R(xP1),y)
e DeepFool attack

= Moosavi-Dezfooli (2015) DeepFool: A Simple and Accurate Method to Fool Deep
Neural Networks

= [teratively projects the perturbed image to the hyperplane of the closest class


https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1511.04599
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

o Carlini and Wagner attack
= Carlini and Wagner (2017) Towards Evaluating the Robustness of Neural Networks

e The paper proposed 3 targeted white-box attacks based on different norm
metrics:

= L. attack
= [, attack
= L, attack
e These attacks are sometimes referred to as C&W attacks or C-W attacks
= At the time of publishing, they were the strongest adversarial attacks
e Advantages of proposed approaches:
= Low amount of perturbation

= Resistance to defense algorithms
= Generated adversarial images are transferrable across DL models

o Le., a secured model is not able to detect the adversarial examples

e Evaluated on: MNIST, CIFAR-10, and ImageNet


https://arxiv.org/abs/1608.04644
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Notation

= Given an image x, a classifier F outputs a vector y, i.e., F(x) = y
o The paper focuses on NN classifiers

o The output y is treated as a probability distribution, where y; is the probability that input x
has class i

= The assigned class by the classifier is
C(x) = argmax;(y;) = argmax;(F(x);)

= The correct label (true class label) of x is denoted by C*(x)
= The inputs to the softmax function (i.e., the logits) are denoted by z, where the
function transforming to input x to the logits is Z(x), i.e.,
F(x) = softmax(Z(x)) = softmax(z) =y
= Targeted attack: create an image x’ that is similar to x, such that C(x") = t, where the
target label f is different than the true label C*(x), i.e., t # C*(x)

= Untargeted attack: create an image x’ that is similar to x, such that C(x") # C*(x)

o The paper considers only targeted attacks, as they are more challenging than untargeted
attacks
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Initial problem formulation

= Create an adversarial image x’ by adding small perturbation § to the original image x
(i.e., x' = x + §), such that the distance D(x,x) = D(x,x + &) is minimal

= The classifier should assign the class label ¢ to the adversarial image x’, where f is
different than the true label C*(x), i.e., C(x')) = C(x + 6) =t # C*(x)

= The goal is to find § that minimizes D(x,x + §) and C(x + ) =t

/ distance between x and x+6

such that C'(z + §) =t —— x+8 is classified as target class t
xr+ 6 €[0,1]"
\ each element of x+4 is in [0,1] (to be a valid image)

minimize D(x,x + §)
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e This initial formulation of the optimization problem for creating adversarial
attacks is difficult to solve

= Because the constraint C(x + &) = t is highly non-linear
minimize D(x,x + §)
such that C'(x + ) =t
r+6¢€|0,1]"

e Carlini-Wagner propose the following reformulation of the optimization
problem, which is solvable

= The function f should be chosen such that C(x + §) = tif and only if f(x +6) < 0

= These two optimization problems are not identical: the reformulation by Carlini-
Wagner just finds an approximated solution to the above problem

= Adam optimization algorithm is used for solving the problem
minimize D(x,x + 9)
such that f(x+0) <0
x+6€l0,1]"
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Recall the solution of constrained optimization problems from Lecture 3 using
Lagrange multipliers

minimize f(X)
X

—> mini}gnize f(x) + Z a;c;(x)

subject to ¢;(x) < 0 :

e The same approach can be applied to the Carlini-Wagner approach, and the
optimization problem can be rewritten as shown below

= The authors performed a grid search for the value of the parameter c (from 0.01 to 100)

= The recommended approach is to select the value of c where ¢ > 0, for which
f(x + 6) < 0 and the distance D(x, x + §) is minimal

minimize D(x,x + 9)

) minimize D(z,z+ ) +c- f(x+ 90
such that f(x +6) <0 ( ) f( )
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e The authors considered several variants for the function f
= In the equations below, lossg . (x") is the loss function with respect to the target class ¢
= The class labels are denoted by i
= Other notation: (a)* = max(0, a); softplus(a) = log(1 + e%)

e The best results were obtained by the function fg(x")

f1(z") = —lossp (z') + 1
fa(a’) = (TE:(F(;I:")Q — F(a"))"
fa(z") = %thp]us(max(F( i) — F(2")) —log(2)
fa(z") = (0.5 — F(;'E") )T
fo(a) = — log(2F (+'), — 2)
fola') = (max(Z(');) — Z(2')e)*
(') =

softplus(max(Z(z'):) — Z(x"):) — log(2)

10
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Explanation of the function f(x")
= Inf,, Z(x"), is the logits value of the target class ¢ for the perturbed image x’
= Then, rggg((Z (x");) means the maximum logits values of other class i than the target
class t (i.e., i # t)

= The function calculates the difference in the logits between the target class t and the
closest-to-the-target class

= In some papers, this function is referred to as margin loss function
fal(a') = (1?25(2(11;)@) — Z(«"))"
 In the paper, a modified function f, is also provided
= It introduces a confidence value k
= The authors set k = 0

o But, if k has a higher value, this will require that any other logits value exceeds the logits value
of the true class Z(x"), at least by k

o Examples with large confidence value k have enhanced transferability
f(z") = max(max{Z(z"); 11 # t} — Z(z")¢, —r)

11
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e L attack
= The used distance metric is L, norm, therefore D(x,x + 6) = ||6]|
= In other words, ||§]|, means the pixel in x" with the largest change from x

e The optimization problem becomes:
minimize D(x,x+68) +c-f(x+6) mmm) minimize ||6]le, + ¢ f(x + 5)

= However, this formulation produced poor optimization results, since the term ||§||
penalizes only the largest component of the perturbation vector §

e The authors proposed the following optimization method instead

= In this case, any component of § that exceed a threshold value 7 is considered, that is,
penalize all components of § that have large values

= The value of 7 is set initially to 1, and is decreased by a factor of 0.9 after each iteration
ole., T —> 1-09if all §; < 7, else terminate the search

minimize Y;[(6; —T)*]+c-f(x+5)

12
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Box constraint

= In the optimization problem, the constraint x + § € [0, 1]" requires that in the
perturbed images, all pixel values are in the [0,1] range

= Jle,0<x;+6; <1foralli
= This is called a box constraint
o Or, these values can within the range [0,255] depending on how the images are scaled
e The box constraint can causes difficulties in solving the optimization problem
= Simply clipping the values can cause that optimization to get stuck in a flat region

e The authors introduced a new variable w, such that

xX; + 6; = %(tanh(wi) + 1) —> 5; = L (tanh(w;) + 1) — x;

T2
= As we know —1 < tanh(w;) < 1, therefore it follows 0 < x; + §; < 1
= This change of variables produced more stable optimization results

13
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e L, attack
= The used distance metric is L, norm, therefore D(x,x + 6) = [|5]l,

e Using the variable w for the box-constraint, the optimization problems becomes

1
minimize ||6]|5+c-f(x+8) where 6 =7 (tanh(w) +1) — x

minimize | 3 (tanh(uw) + 1) — 2]}3 + ¢ - (5 (tanh(w) + 1)

= That is, search for w that minimizes the above term

e The function fis based on the fg(x") variant provided earlier
f(z") = max(max{Z(z'); : i £t} — Z(2")¢, —r)

e To avoid the cases when the gradient descent algorithm become stuck in a local
minimum, the authors picked multiple random starting points close to the
original image x

14
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Lyattack
= The used distance metric is Ly norm, or, the number of non-zero pixels in §
e The authors propose an iterative approach

= Where the goal at each iteration is to find pixels that are not important and don’t have
much effect on the classifier’s output

e The iterative procedure includes the following steps:
= Initialization: the allowed set includes all pixels in the image
= Perform L, attack to find an adversarial example x + §
= Compute the gradient g = Vf(x + 6), where fis the objective function in the L, attack

= Identify the least important pixel i = argmin; g;6; and remove this pixel from the
allowed set

= [terate until the L, attack fails to find an adversarial example

e The approach shrinks the set of pixels that are allowed to be changed, until a
minimum number of pixels is found that change the class label to the target ¢

15
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Results on the MNIST dataset

L, attack L, attack L, attack

o) 0 p) 0 1 2
-@EBEE -BEE -BER
- - -
) ) 3

16
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Results on the MNIST dataset for all 10 digits
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Three approaches for selecting the target class were evaluated:

= Average Case: select the target class uniformly at random among the labels that are
not the correct label

= Best Case: perform the attack against all incorrect classes, and report the target class
that was least difficult to attack

= Worst Case: perform the attack against all incorrect classes, and report the target class
that was most ditficult to attack

e The used NN models for MNIST and CIFAR datasets are shown below

= For ImageNet the paper used the Inception-v3 network

Layer Type MNIST Model ~ CIFAR Model Parameter MNIST Model  CIFAR Model
Eom:o%u:?on M Eekt: :X?{:z gxgxgj Learning Rate 0.1 0.01 (decay 0.5)
M(;T?’cl:o]l?r?: ¢ iijx“ - ,é,}x Momentum 0.9 0.9 (decay 0.5)
Convolution + ReLU 3% 3 x 64 3% 3% 128 gféailﬁa[e 05 éoﬁemcm
Convolution + ReLU 3x3x064 Ix3x128 B ph Si ];8 158
Max Pooling 2x2 2x2 Eatch 1z 56 50
Fully Connected + ReLU 200 256 pochs -
Fully Connected + ReLU 200 256
Softmax 10 10 TABL.E Il
MODEL PARAMETERS FOR THE MNIST aND CIFAR MODELS. THESE
TABLE 1 PARAMETERS ARE IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE
MODEL ARCHITECTURES FOR THE MNIST AND CIFAR MODELS. THIS DISTILLATION WORK. [39]

ARCHITECTURE IS IDENTICAL TO THAT OF THE ORIGINAL DEFENSIVE

DISTILLATION WORK. [39] 18
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Comparison to JSMA (Jacobian-based Saliency Map Attack), DeepFool, Fast
Gradient Sign, and Iterative Gradient Sign attacks on the MNIST and CIFAR

datasets
= Mean is the perturbation size

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR
mean prob  mean prob || mean prob  mean prob || mean prob  mean prob
Our Lo 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
JISMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%
Our Lo 1.36  100% 0.17 100% 1.76  100% 0.33 100% 2,60 100% 0.51 100%
Deepfool 211  100% 0.85 100% — - - - - - - -
Our Lo 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% — 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%
TABLE IV

COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO PREVIOUS WORK FOR OUR MNIST AND CIFAR MODELS. WHEN SUCCESS RATE IS
NOT 100%, THE MEAN IS ONLY OVER SUCCESSES.

19
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Carlini-Wagner Paper (C&W Attack)

C&W Attack

e Validation on the ImageNet dataset

Untargeted Average Case Least Likely

mean prob || mean prob || mean prob

Our Lg 48  100% 410  100% 5200 100%
ISMA-Z - 0% - 0% - 0%
ISMA-F - 0% - 0% - 0%

Our Lo 032 100% 0.96 100% 222  100%
Deepfool 091 100% - - }

Our Lo 0004 100% || 0.006 100% 0.01 100%

FGS 0.004 100% || 0.064 2% - 0%
IGS 0.004 100% 0.01 99% 0.03 98%
TABLE V

COMPARISON OF THE THREE VARIANTS OF TARGETED ATTACK TO
PREVIOUS WORK FOR THE INCEPTION V3 MODEL ON IMAGENET. WHEN
SUCCESS RATE IS NOT 100%. THE MEAN IS ONLY OVER SUCCESSES.
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Papernot Paper (JSMA Attack)

JSMA Attack

o Jacobian-based Saliency Map Attack (JSMA)

= Papernot et al. (2016) The limitations of deep learning in adversarial settings

e Targeted white-box attack based on controlling the Ly norm
= The goal is to iteratively change each pixel until misclassification

= The key step is calculation of a saliency map that determines which pixels to be
modified, in order to increase the probability of the target class

Compute VF(X) —— —— Modify input X

Pixels with large saliency
values have large impact on
. the output when perturbed

\
/:a
\ :
= 15

~. 10

a>\/
5

0" "o

Create a Saliency Map

Jacobian matrix

2
S
X
© \
x

21
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JSMA Attack Approach

JSMA Attack

e Notation:
= X - clean (benign) input sample

Y = F(X) — output of a classification model (e.g., NN) given with a function F

X" — adversarial sample, obtained by manipulating the clean sample X

Y* — target output (class label) for the adversarial sample, i.e,Y* = F(X")
= 0 — amount of perturbation that is applied to input features (i.e., pixels in images)

= Y — maximum distortion that is applied to the input (e.g., number of pixel in the input
image that the adversary is allowed to change)

e JSMA attack steps:
= Step 1: compute the forward derivative VF(X*) of the NN

= Step 2: construct an adversarial saliency map S based on the forward derivative
VF(X*)
= Step 3: modify the most impactful input features i,,,, by 0

22
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JSMA Attack Approach

JSMA Attack

e Step 1: compute the forward derivative VF(X*) of the NN

= For input vectors to the NN of size M, and outputs of the NN of size N (i.e., N class
classification), the function of the NN is the mapping F: R® —» R

= Therefore, the forward gradient is the Jacobian matrix of the function F, given with
the first-order partial derivatives of the outputs F(X*) with respect to the inputs X~,

1.e.,
0F; (X™) dF; (X")]
axl axM
VF(X*) = : :
JFy (X¥) JFy (X*)
0x4 0y

= Each element in the Jacobian matrix (i.e., the forward derivative) VF of an NN given
with function F can be computed for any input X by successively differentiating
layers, starting from the input layer until the output layer is reached

23
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JSMA Attack Approach

JSMA Attack

o Step 2: construct an adversarial saliency maps S based on the forward derivative
VF(X*)

= Saliency maps are employed in Explainable Machine Learning, to indicate which
pixels in an image contributed the most to the predicted class by a NN

= Adversarial saliency maps can be used to indicate which pixels in an image an
adversary should perturb in order to impact the predicted class by a NN

e An example of a saliency map for a 28x28 pixels image is shown below
= The pixels with large peaks or valleys have significant impact on the predicted class

24
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JSMA Attack Approach

JSMA Attack

o Step 3: modity the most impactful input pixels by 6

= Once the most impactful input pixels in the saliency map have been identified, they
are perturbed by 8 in order to realize the adversary’s goal

o E.g., 8 are discrete steps applied to change the pixel intensities
= The algorithm perturbs 2 most impactful pixels at each step
o Afterward, all steps are repeated until:
= The adversarial sample X" is classified with the target class Y*, or
= The maximum number of iterations is reached, or
= The maximum number of pixels Y are perturbed

25
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JSMA Attack

e The entire JSMA algorithm:

Algorithm 2 Crafting adversarial samples for LeNet-5
X 1s the benign image, Y * 1is the target network output, F' is
the function learned by the network during training, T is the
maximum distortion, and 8 is the change made to pixels.

Imput: X, Y* F, 71,40

1:

A e A A o

—_— .
L

—_—
b W

X*+X
r={1...|X|}
max_iter = LTQ?%EJ
s = arg max; F(X*); > source class
t = argmax; Y > target class
while s # ¢t & iter < max_iter & I' # 0 do

Compute forward derivative VF(X*)

p1,p2 = saliency_map(VF(X*), [, Y*)

Modify p; and py in X* by 0

Remove p; from I' if p; == 0 or p; ==

Remove po from I' if po == 0 or po == 1

s = arg max,; F(X*);

iter + +

> search domain is all pixels

- end while
. return X*

26
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JSMA Attack Results

JSMA Attack

1on

Output classificat

e Samples of attacked MNIST images with [SMA
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JSMA Attack

e JSMA attack was validated on the MNIST dataset using the LeNet deep model

= The attack achieved a success rate of 97.05% while perturbing on average 4.03% of the
pixels in images

Source set Adversarial Average distortion
of 10, 000 samples All Successful
original successfully | adversarial adversarial
samples misclassified | samples samples
Training 97.05% 4.45% 4.03%
Validation 97.19% 4.41% 4.01%
Test 97.05% 4.45% 4.03%

28
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JSMA Attack

JSMA Attack

 Difference to other approaches:
= JSMA calculates a mapping between the perturbations of input pixels and the
predicted output of the model

o JMSA uses the forward propagated derivatives of the model function with respect to the input
pixels

o The forward propagated derivatives form the Jacobian matrix VF(X)
= FGSM, PGD work by calculating the mapping between the predicted output by the
model and the inputs

o These models use the backward propagated derivatives of the loss function with respect to the
input pixels VL(X)

29
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Xiao, Li, Song Paper (stAdv Attack)

stAdv Attack

stAdv attack
= Xiao, Zhu, Li, He, Liu, Song (2018) Spatially Transformed Adversarial Examples

e The paper proposes an attack that does not manipulate the pixel intensity values
under an L, norm

 Instead, the pixels are spatially moved in an image to create an adversarial
example

= Such attack can result in a large L,, distance between the original and manipulated
images
= Still, the images are perceptually realistic
= The perturbed images are effective against defense algorithms
e The approach minimizes the local geometric distortion of images

e Validation: MNIST, CIFAR-10, and ImageNet datasets

30


https://arxiv.org/abs/1801.02612

Universityorldaho CS 487/587, Spring 2024

Spatial Transformation Attack

stAdv Attack

e Example of a spatially transformed image

= The red flow arrows indicate the local displacement of the pixels in adversarial image
to the pixels in the input image

Benign

Adversarial

Figure 5: Flow visualization on MNIST. The digit “0" is misclassified as *2".

31
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Spatial Transformation Attack

stAdv Attack

e Green color — the pixel 7 in the input (benign, clean) image
e Blue color — the spatially displaced pixel i in the adversarial image
e Red arrows — the displacement flow f: horizontal (Au(V) and vertical (Av®)

= Goal: find an adversarial image with lowest overall displacement f; = (Au®, Av(®)

Benign image x

Adversarial image Xgqv

- ERRRERERN

@ O

(uadv’ vadv)

Bilinear
Interpolation

Flow calculation
(u®,v®) = (u;'(';v +Au®, v+ Av“-’)

' Taav

@ M i
(-uadv'vadv) '”..> All“)
-

-

v 5
AV“] g (u(”,V“:)
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Spatial Transformation Attack

stAdv Attack

o A targeted white-box attack is considered

e The problem is formulated as an optimization problem, that is very similar to the
Carlini-Wagner paper

e For an image x, find the minimum local distortion f*, such that

ff=argmin  Lygy(z, f) + 7LAcw (f)
f

= The term L4, encourages the distorted image to be misclassified as the target class ¢
= The term Lg,,, ensure that the spatial transformation is preserved

= T is a constant that balances the two terms (set to 0.05 for validation)

The authors adopted the f;(x") function from Carlini-Wagner for the term L4,
= That maximizes the logits values of the target class t with respect to other classes

Logw(z, f) = max(%gfg(xﬂdv)i — g(Xadv)t, %)

33
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Spatial Transformation Attack

stAdv Attack

e The term L¢,, is calculated as the sum of spatial movement distance for any two
adjacent pixels p and g
= This makes the stAdv approach computationally expensive, because it require
calculating the distances for all pairs of neighboring pixels

all pixels

Laow(H = 2 30 \IAu® — Au@]|3 4 [|Av®) — Av@]]3

P qeN(p)

e The optimization problem is solved using the L-BFGS algorithm (Limited-
memory BFGS (Broyden—-Fletcher—-Goldfarb—Shanno))

34
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Spatial Transformation Attack

stAdv Attack

e Validation on MNIST for three different NN model architectures A, B, and C

= Accuracy (p) means the model classification accuracy on pristine (original) images

Model A B C

Accuracy (p) 08.58% 98.94% 99.11%
Attack Success Rate  99.95%  99.98% 100.00%

Target class
567 89

G
G

(>R ¥/
[ T
AP AN AN &
32353
4 4 4 4
b6 b5
6 4 6 4§
7777
¥ 89
49949

Qo U2 v v~ GES
QUM OLy~»0

Qo &\ O .2 v N~ GES
LA o Lwvww~rG

(b) Model
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Spatial Transtormation Attack

stAdv Attack

e For CIFAR-10 images, they used ResNet32 and Wide ResNet34

Model ResNet32 (0.47M) Wide ResNet34 (46.16M)
Accuracy (p) 93.16% 95.82%
Attack Success Rate 09.56% 08.84%

e Comparison of adversarial examples generated by FGSM, C&W, and stAdv
= Left: MNIST, right: CIFAR-10

= The generated images by stAdv attack have high perceptual quality

36
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Spatial Transformation Attack

stAdv Attack

e Flow visualization on ImageNet
= (a): the original image, (b)-(c): images are misclassified into goldfish, dog and cat

= Although there are other objects within the image (e.g., trees), most spatial
transformation flows focus on the target object — mountain bike

(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat

e Human participants on Amazon Mechanical Turk (AMT) were recruited to
analyze the visual perceptibility of attacked images

= The users selected the attacked images as visually realistic
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Spatial Transformation Attack

stAdv Attack

e Further analysis includes visualizing the salliency maps of images

= Le, find the regions in the images where the model pays the most attention for
assigning a particular class to an images

= (Class Activation Mapping (CAM) was used for this purpose
= stAdv attack misleads the model to pay attention to different regions than the bike

(a) mountain blke (b) goldﬁsh (c) Maltese dog (d) tabby cat
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stAdv Attack

e Attack evaluation under three defense methods: FGSM adversarial training

(Adv.), ensemble adversarial training (Ens.), and PGD adversarial training (PGD)

Table 3: Attack success rate of adversarial examples generated by stAdv against models A, B, and
C under standard defenses on MNIST, and against ResNet and wide ResNet on CIFAR-10.

Model Def. FGSM C&W. stAdv

A %d‘f- ‘fllzgfﬂ jgg‘f’ ﬁ-ggj Model — Def. FGSM  C&W.  stAdv
POD 449 2060 4838 Adv. 13.10% 11.9% 43.36%
e~ ResNe32  Ens.  10.00% 103%  36.89%

B Ens. 27% 3.18% 46.14% PGD  22.8% 214% 49.19%
PGD 9.0% 30% 49.82%  wide v 0% 7.01% 31.66%
Adv. 3.22% 086% 30.44%  ResNe3d oo 000 BAd 2007

C  Ens. 145% 098% 28.82% PGD  149% 1390% 31.6%
PGD 2.1% 098% 28.13%
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Elastic-Net Attack

Other White-box Evasion Attacks

e FElastic Net (EAD) Attack

= Chen et al. (2017) EAD: Elastic-net attacks to deep neural networks via adversarial
examples

e Modification of the C&W attack for controlling the L; norm of adversarial
perturbations

= Recall than C&W proposed 3 attacks for controlling the Ly, L,, and L, norms
e EAD attack produced visually plausible adversarial samples

ostrich safe shoe shop vacuum
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Elastic-Net Attack

Other White-box Evasion Attacks

e EAD is based on elastic-net regularization (recall from Lecture 2, it uses both
£, and ¥, penalties on the model parameters)

e The solved optimization problem is (compare to C&W):
minimizex ¢ - f(x,1) + B]|x — xol|1 + [|x — %03
subject to x € [0, 1]7,

e EAD employs a box constraint based on Iterative Shrinkage-Thresholding
Algorithm (ISTA)

Algorithm 1 Elastic-Net Attacks to DNNs (EAD)

Input: original labeled image (xy, f(), target attack class
t, attack transferability parameter x, L, regularization pa-

rameter /3, step size o, # of iterations [ Sz : RP +— RP is an element-wise projected shrinkage-

Output: adversarial example x thresholding function, which is defined as

Initialization: x'¥) = y(9) = x; min{z; — 8,1}, ifz; —xo; > f;

for k. =0tol — 1do [Ss(z)]; = { X0i» }f‘sz — Xo;| < 5;
x(k+1) — Sﬁ_(y{k] B ﬂkvg(y{k])) max{z; + 3,0}, ifz; —xg; < -0,

k+1 k+1 k k+1 k
yF+D) = x(k+1) 4 :;(K': +1) — x (k)
end for
Decision rule: determine x from successful examples in

k)T
[x! :'}k . (EN rule or L, rule). "
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Elastic-Net Attack

Other White-box Evasion Attacks

o FElastic-Net attack produces low perturbations in experimental validation on
MNIST, CIFAR-10, and ImageNet

= ASR is Attack Success Rate

= Compared are two EAD approaches: EN rule (uses elastic net regularization) and L,
rule (uses only L, regularization)

= EAD achieved the lowest L, perturbation

MNIST CIFAR10 ImageNet
Attack method | ASR [, Lo Lo ASR L4 Lo Lo ASR I, Lo Lo
C&W (Lo) 100 2246 1972 0514 | 100 1362 0392 0.044 | 100 2322 0.705 0.03
FGM-L; 39 53.5 4186 0.782 | 488 51.97 .48  0.152 | 1 61 0.187 0.007
FGM-Lo 346 39.15 3.284 0.747 | 428 395 1.157 0.136 | 1 2338  6.823 0.25
FGM-L 425 1272 6.09 0296 | 523 127.81 2373 0.047 | 3 3655 7.102 0.014
[-FGM-L; 100 3294 2606 0591 | 100 1753 0502 0.055 | 77 5264 1.609 0.054
[-FGM-L» 100 3032 241 0561 | 100 17.12 0489 0.054 | 100 7741 2358 0.086
[-FGM-L 100 7139 3472 0227 | 100 333 0.68 0.018 | 100 80642 2079 0.01
EAD (ENrule) | 100 174  2.001 0.594 | 100  8.18 0.502 0.097 | 100 6947 1.563 0.238
EAD (L; rule) | 100 1411 2211 0.768 | 100 6.066 0.613 0.17 | 100 40.9 1.598 0.293
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One-Pixel Attack

Other White-box Evasion Attacks

e One-pixel Attack
= Su et al. (2019) One pixel attack for fooling deep neural networks

e Attack under the Ly norm to limit the number of pixels allowed to be changed

= One-pixel attack employs Ditferential Evolution-based optimization for creating
adversarial examples

e [t shows that on CIFAR-10 dataset, most samples can be attacked in an
untargeted manner by changing the value of only one pixel

AllConv NiN VGG

SHIP
CAR(99.7%) FROG(99.9%) AIRPLANE(85.3%)

HORSE DOG BIRD
DOG(70.7%) CAT(75.5%) FROG(86.5%) 43
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Other White-box Evasion Attacks

e One-pixel attack on ImageNet

Cup(16.48%) Bassinet(16.59%)
Soup Bowl(16.74%) Paper Towel(16.21%)

Teapot(24.99%) Hamster(35.79%)
Joystick(37.39%) Nipple(42.36%)
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Other White-box Evasion Attacks

e Validation results on CIFAR-10 dataset using 4 type of DL models: AllConv (all

convolutional network), NIN (network in network), VGG16, and BVLS AlexNet

= QOriginalAcc is accuracy on clean images

= Targeted and Non-targeted is the accuracy for adversarial samples with target class and random

class, respectively

AllConv NiN VGGI16 BVLC

OriginAcc 85.6% 87.2% 83.3% 57.3%
Targeted 19.82% | 23.15% | 16.48% —

Non-targeted | 68.71% | 71.66% | 63.53% | 16.04%
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Universal Attack

Other White-box Evasion Attacks

o Universal Attack
= Moosavi-Dezfooli (2017) Universal adversarial perturbations
e Universal attack is based on an algorithm that finds a single perturbation §
which can be added to almost all test images in a dataset
= This means that NN classifiers have inherent weakness on all input samples
e The authors were able to attack 85.4% of the samples in the ImageNet dataset by
using ResNet-152 model

= E.g., the universal perturbation that can be added to any image of the dataset and be
misclassified by ResNet-152 with a high confidence is shown below
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Other White-box Evasion Attacks

e Examples of clean (left) and
adversarial (right) images under the
universal attack

= The universal perturbation image is
shown in the center

Face powder 0 Chihuahua

|
L1 Joystick o Chihuahua

Grille 0 Jay

Thresher o Labrador

Flagpole Labrador
Tibetan mastiff ) Tibetan mastiff
Lycaenid o Brabancon griffon

L ‘__ Balloon o Labrador [

|

[

|

whipnal Uzand 0 Border tarriar
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Universal Attack

Other White-box Evasion Attacks

Algorithm 1 Computation of universal perturbations.

e Universal attack approach

= The algorithm iteratively finds
perturbation v that moves one
input image at a time toward
the decision boundary

9:
10:
11:

1:

AN U

input: Data points X, classifier ]%, desired ¢, norm of
the perturbation &, desired accuracy on perturbed sam-
ples 4.
output: Universal perturbation vector v.
Initialize v < 0.
while Err(X,) <1 —-4ddo
for each datapoint z; € X do
if k(z; + v) = k(x;) then
Compute the minimal perturbation that
sends x; 4+ v to the decision boundary:

~

Av; < argmin ||r||o s.t. k(z; +v+7) £ k(z;).
Update the perturbation:

v 4 Ppe(v+ Av;).

end if
end for
end while
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Universal Attack

Other White-box Evasion Attacks

e Performance by the universal attack on different NN models for ImageNet
dataset, and the perturbations for each model

= Set X (used to compute the universal perturbation), set Val. (validation set that is not
used to compute the perturbation)

CaffeNet [8] | VGG-F[2] | VGG-16[17] | VGG-19[17] | GoogLeNet [18] | ResNet-152 [0]
¢ X 85.4% 85.9% 90.7% 86.9% 82.9% 89.7%
2| Val. 85.6 87.0% 90.3% 84.5% 82.0% 88.5%
), X 93.1% 93.8% 78.5% 77.8% 80.8% 85.4%
> | Val 93.3% 93.7% 78.3% 77.8% 78.9% 84.0%

(a) CaffeNet (b) VGG-F (c) VGG-16

(d) VGG-19 (e) GoogLeNet (f) ResNet-152
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NewtonFool Attack

Other White-box Evasion Attacks

e NewtonFool Attack

= Jang et al. (2017) Objective metrics and gradient descent algorithms for adversarial

examples in machine learning

e The approach is similar to iterative FGSM attacks (e.g., PGD)

= [t performs iterative gradient descent with an adaptive step size

Input:
x: Input to be adversarially perturbed
n: Strength of adversarial perturbations
i,.... Maximum number of iterations
L y<+ C(x), x4 < x,i+0
2: whilei < i do
3:  Compute

5« min{y- el IVE (eu)l, Fy(a) — 1/K),
5'v1:|y(xadv)

a _
I|VFy(xadv)H%

4 x4, < clip(Xag + d, X, Xon)
5 i<+ i+1
6: end while
Output:
Adversarial sample x,4,.
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List of Adversarial Attacks

I Attack Publication Similarity | Attacking Capability | Algorithm | Apply Domain I
L-BFGS (Szegedy et al., 2013) lo White-Box Iterative Image Classification
FGSM (Goodfellow et al., 2014b) loo,l2 White-Box Single-Step Image Classification
Deepfool (Moosavi-Dezfooli et al., 2016) o White-Box Iterative Image Classification
JSMA (Papernot et al., 2016a) l2 White-Box Iterative Image Classification
BIM (Kurakin et al., 2016a) loo White-Box Iterative Image Classification
C&W (Carlini & Wagner, 2017b) lo White-Box [terative Image Classification
Ground Truth (Carlini et al., 2017) lo White-Box SMT solver Image Classification
Spatial (Xiao et al., 2018b) Total Variation White-Box Iterative Image Classification
Universal (Metzen et al., 2017b) loos I White-Box Iterative Image Classification
One-Pixel (Suetal., 2019) lo White-Box [terative Image Classification
EAD (Chen et al., 2018) l1 4+ 12,12 White-Box Iterative Image Classification
Substitute (Papernot et al., 2017) Iy Black-Box Iterative Image Classification
700 (Chen et al., 2017) [, Black-Box Iterative Image Classification
Biggio (Biggioet al., 2012) lo Poisoning Iterative Image Classification
Explanation (Koh & Liang, 2017) lp Poisoning Iterative Image Classification
Zugner’s (Ziigner et al., 2018) Degree Distribution, Coocurrence Poisoning Greedy Node Classification
Dai’s (Dai et al., 2018) Edges Black-Box RL Node & Graph Classification
Meta (Ziigner & Giinnemann, 2019) Edges Black-Box RL Node Classification
C&W (Carlini & Wagner, 2018) max dB White-Box Iterative Speech Recognition
Word Embedding (Miyato et al., 2016) [, White-Box One-Step Text Classification
HotFlip (Ebrahimi et al., 2017) letters White-Box Greedy Text Classification
Jia & Liang (Jia & Liang, 2017) letters Black-Box Greedy Reading Comprehension
Face Recognition (Sharif et al., 2016) physical White-Box [terative Face Recognition
RL attack (Huang et al., 2017) » White-Box RL

Table from: Xu et al. (2019) - Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
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Additional References

1. Nicolae et al. (2019) Adversarial Robustness Toolbox v1.0.0.
https://arxiv.org/abs/1807.01069

2. Xuetal. (2019) Adversarial Attacks and Defenses in Images, Graphs and Text:
A Review https://arxiv.org/abs/1909.08072
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