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Lecture Outline

• Bhagoji et al. (2017) Exploring the Space of Black-box Attacks on Deep Neural 
Networks

• Brendel et al. (2018) Decision-Based Adversarial Attacks: Reliable Attacks 
Against Black-Box Machine Learning Models

• Transferability in Adversarial Machine Learning

▪ Substitute model attack

▪ Ensemble of local models attack

• Other black-box evasion attacks

▪ HopSkipJump attack

▪ ZOO attack

▪ Simple black-box attack
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Evasion Attacks against Black-box Models

• Black-box adversarial attacks can be classified into two categories:

▪ Query-based attacks

o The adversary queries the model and creates adversarial examples by using the provided 
information to queries

o The queried model can provide:

– Output class probabilities (i.e., confidence scores per class) used with score-based attacks

– Output class, used with decision-based attacks

▪ Transfer-based attacks (or transferability attacks)

o The adversary does not query the model

o The adversary trains its own substitute/surrogate local model, and transfers the adversarial 
examples to the target model 

o This type of approaches are also referred to as zero queries attacks

Black-box Evasion Attacks
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Gradient Estimation Attack

• Bhagoji, He, Li, Song (2017) Exploring the Space of Black-box Attacks on Deep 
Neural Networks

• The paper introduces an approach known as Gradient Estimation attack

• Score-based black-box attack 

▪ Based on query access to the  model’s class probabilities

▪ Both targeted and untargeted attacks are achieved

• Validated on MNIST and CIFAR-10 datasets

▪ The attack is also evaluated on real-world models hosted by Clarifai

• Advantages:

▪ Outperformed other black-box attacks

▪ Performance results are comparable to white-box attacks

▪ Good results against adversarial defenses

Gradient Estimation Attack
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Gradient Estimation Attack

• Gradient Estimation (GE) approach
▪ Uses queries to directly estimate the gradient and carry out black-box attacks

▪ The output to a query is the vector of class probabilities 𝐩𝑓(𝐱) (i.e., confidence scores 
per class) for an input x

o The logits can also be recovered from the probabilities, by taking log 𝐩𝑓 𝐱

• The authors employed the method of finite differences for gradient estimation
▪ Let 𝑔(𝐱) is a function whose gradient needs to be estimated

▪ Finite difference (FD) estimation of the gradient of g with respect to input x is given by

▪ δ is a parameter that controls the estimation accuracy (selected 0.01 or 1)

▪ 𝐞𝑖 are basis vectors such that 𝐞𝑖 is 1 only for the ith component and 0 everywhere else

▪ If the gradient exists, then the finite differences method can calculate an 
approximation of the gradient: lim

𝛿→0
FD𝐱 𝑔(𝐱),δ ≈ 𝛻𝐱 𝑔(𝐱)

Gradient Estimation Attack



7

CS 487/587, Spring 2024

Gradient Estimation Attack

• Approximate FGSM attack with finite difference GE method

▪ Gradient of a model f is taken with respect to the cross-entropy loss ℓ𝑓 𝐱, 𝑦

o For input x with true class label y, the loss is 

o Recall that the derivative of a log function is 
𝑑

𝑑𝑥
log 𝑥 =

1

𝑥
and thus 

𝑑

𝑑𝑥
log ℎ(𝑥) =

ℎ′(𝑥)

ℎ(𝑥)

▪ Therefore, the gradient of the loss function ℓ𝑓 𝐱, 𝑦 with respect to the input x is

▪ An untargeted FGSM adversarial sample can be generated by using the FD estimate of 

the gradient 𝛻𝐱𝑝𝑦
𝑓

(𝐱), i.e.,

▪ Similarly, a targeted FGSM adversarial sample with class T can be found by using

Gradient Estimation Attack
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Gradient Estimation Attack

• Approximate C-W attack with finite difference GE method

▪ Carlini & Wagner attack uses a loss function based on the logits values 𝜙 ∙

▪ Logits values 𝜙 ∙ can be computed by taking the logarithm of the softmax
probabilities, up to an additive constant

▪ For an untargeted C-W attack, the loss is the difference between the logits for the true 
class y and the second-most-likely class y’, i.e., 𝜙 𝑥 + 𝛿 𝑦 − 𝜙 𝑥 + 𝛿 𝑦′

o Since the loss is the difference of logits, the additive constant is canceled

o By using FD approximation of the gradient, it is obtained

▪ For a targeted C-W attack, the adversarial sample is

Gradient Estimation Attack
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Gradient Estimation Attack

• Iterative FGSM attack with finite difference GE method

▪ This is similar to the Projected Gradient Descent attack, which uses several iterations 
of the FGSM attack and achieves higher success rate than the single step FGSM attack

▪ An iterative FD attack with 𝑡 + 1 iterations using the cross-entropy loss is

𝐱adv
𝑡+1 = 𝐱adv

𝑡 + 𝛼 ∙ sign
FD 𝛻𝐱adv

𝑡 𝑝𝑦
𝑓

𝐱adv
𝑡 , 𝛿

𝑝𝑦
𝑓

𝐱adv
𝑡

• Iterative C-W attack is also applied in a similar manner by modifying the single-
step approach presented on the previous page

𝐱adv
𝑡+1 = 𝐱adv

𝑡 + 𝛼 ∙ sign sign FD 𝜙 𝑥 𝑦′ − 𝜙 𝑥 𝑦, 𝛿

Gradient Estimation Attack
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Experimental Validation

• Validation of non-targeted black-box attacks using Gradient Estimation with FD

▪ The table presents the success rate and average distortion (in parenthesis)

▪ Baseline methods:

o D. of M. – Difference of Means attack, uses the mean difference between the true class and the 
target class as added perturbation

o Rand. – Random perturbation by adding random noise from a distribution (e.g., Gaussian)

▪ ‘xent’ is for cross-entropy loss, ‘logit’ is C-W logits loss, ‘I’ is iterative

▪ MNIST with 𝐿∞ constraint of  ϵ = 0.3, and CIFAR-10 with 𝐿∞ constraint of ϵ = 8

▪ Iterative C-W attack (IFD-logit) produced best results

Gradient Estimation Attack



11

CS 487/587, Spring 2024

Experimental Validation

• Validation of targeted black-box attacks using Gradient Estimation with FD

▪ Iterative FGSM (IFD-xent) attack produced best results on MNIST

▪ Iterative C-W (IFD-logit) attack produced best results on CIFAR-10

Gradient Estimation Attack
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Query Reduction

• Shortcoming of the proposed approach: 

▪ Requires 𝑂(𝑑) queries per input, where d is the dimension of the input (e.g., number 
of pixels in images)

▪ The presented FD approximation required 2 ∙ 𝑑 queries

• The authors propose two approaches for reducing the number of queries

▪ Random grouping

o The gradient is estimated only for a random group of selected pixels, instead of estimating the 
gradient per each pixel

▪ PCA (Principal Component Analysis)

o Compute the gradient only along a number of principal component vectors

Gradient Estimation Attack
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Query Reduction

• Validation of the methods for query reduction

▪ For random grouping, the success rate decreases with decreasing the group size (left 
figure)

o I.e., using only 3 group of pixels to estimate the gradient is less efficient than using 112 groups 
of pixels

▪ For PCA, the success rate decreases as the number of PC is decreased (middle and 
right figure)

o The success rate is still high for smaller number of PC

Gradient Estimation Attack
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Adversarial Samples

• Non-targeted adversarial samples

▪ WB-IFGS – white-box iterative FGSM attack

▪ IFD-logit – black-box iterative C&W attack (logit loss)

▪ IGE-QR-PCA  - black-box Iterative Gradient Estimation with Query Reduction using 
PCA

Gradient Estimation Attack
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Defense Evaluation

• Evaluation of adversarial samples against three adversarial defenses

▪ Adversarial training (Szagedy et al, 2014): Adv column in the table

▪ Ensemble adversarial training (Tramer et al, 2017): Adv-Ens column

▪ Iterative adversarial training (Madry et al, 2017): Adv-Iter column

• The accuracy is almost the same as for benign (non-attacked) images (first 
column in the table)

Gradient Estimation Attack
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Attacks on Real Models

• Attacks on two real-world models hosted by Clarifai

▪ Not Safe For Work (NSFW) model

o Two categories: ‘safe’, ‘not safe’

▪ Content Moderation model

o Five categories: ‘safe’, ‘suggestive’, ‘explicit’, ‘drug,’ and ‘gore’

o Example: an adversary could upload violent adversarially-modified images, which may be 
marked incorrectly as ‘safe’ by the Content Moderation model

Gradient Estimation Attack

Original image
Class: ‘drug’

Confidence: 0.99

Adversarial image
Class: ‘safe’

Confidence: 0.96
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Boundary Attack

• Brendel, Rauber, and Bethge (2018) Decision-Based Adversarial Attacks: 
Reliable Attacks Against Black-Box Machine Learning Models

• A query-based black-box attack called Boundary Attack 

▪ This is a decision-based attack, i.e., it requires only queries of the output class, and not 
the logits or output probabilities

▪ Can perform both non-targeted and targeted attacks

• Advantage:

▪ Finds low-perturbation images only by using the output class information

▪ Relevant to real-world application, where access to the model may not be possible

• Disadvantage:

▪ Requires many iterations to converge (i.e., large number of queries)

• Validation on MNIST, CIFAR-10, and ImageNet

▪ And, on real-world applied models

Boundary Attack
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Boundary Attack

• Boundary Attack intuition

▪ The starting image is drawn from a uniform 
random distribution (random noise), and is 
adversarial (i.e., different than the true label)

▪ Iteratively reduce the L2 distance to the original 
image by adding small perturbations

▪ Walk along the boundary between the 
adversarial and the non-adversarial region, but 
stay in the adversarial region

o I.e., whenever the added perturbation results in 
correct classification, reject those samples (a.k.a., 
sample rejection)

▪ When the distance to the original image cannot 
be further reduced, or when the number of set 
iteration steps is reached, stop 

Boundary Attack
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Boundary Attack Algorithm

• Boundary Attack algorithm

▪ The initial image 𝐨0 is sampled from a uniform distribution 𝒰(0,1)

▪ The adversarially perturbed image at the kth step is denoted 𝐨𝑘

▪ Adversarial criterion 𝑐(∙) is: misclassification

o I.e., different class than the true class (non-targeted attack), or the target class (targeted attack)

▪ Decision of model 𝑑(∙) is: L2 distance between the perturbed and the original image

▪ The proposal distribution for the perturbation 𝜂𝑘 is discussed on next page

Boundary Attack
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Boundary Attack

• For the proposal distribution 𝒫 𝐨𝑘−1 of the perturbation 𝜂𝑘, the authors used a 
Gaussian distribution 𝒩(0,1)

▪ This perturbation is denoted as #1 – random orthogonal step in the figure below

• Next, it is ensured that the proposed adversarial sample is a regular image with 
all pixels clipped in the range [0,1] 

𝐨𝒊
𝒌−𝟏 + 𝜂𝑖

𝑘 ∈ 0,1

Boundary Attack

• It is also ensured that the perturbation 𝜂𝑘  is 
within a ball with radius 𝛿 around the original 
image 𝐨 ( i.e., the added perturbation at each step 
is limited)

𝜂𝑘
2

= 𝛿 ∙ 𝑑 𝐨, 𝐨𝑘−1

• Afterward, a small movement 𝜖 (#2 step in the 
image) is made toward the original image 𝐨, so 
that the distance to 𝐨 is iteratively reduced

 𝑑 𝐨, 𝐨𝑘−1 + 𝜂𝑘 − 𝑑 𝐨, 𝐨𝑘−1 = 휀𝑑 𝐨, 𝐨𝑘−1
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Boundary Attack

• The two parameters 𝛿 (random orthogonal step) and 𝜖 (step toward the original 
image) are adjusted dynamically

Boundary Attack

• The parameters 𝛿 is adjusted to that that 
about 50% of the perturbations are 
adversarial 

▪ If this ratio is much lower than 50%, the 
step size 𝛿 is reduced

▪ In the opposite case, 𝛿 is increased

• Next, a small step 𝜖 toward the original 
image is applied

▪ If the success rate is too small, 𝜖 is 
decreased 

▪ If it is too large, 𝜖 is increased

• The attack is converged whenever 𝜖 
converges to zero

▪ I.e., the L2 distance to the original image 
can not be reduced anymore
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Adversarial Examples

• Example of an untargeted attack

▪ Starts from upper left and proceeds to the lower right image

▪ Above: total number of calls, i.e., queries

▪ Below: L2 distance between the attacked image and the original image

▪ The original image used for the attack is shown in the lower right corner

Boundary Attack
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Adversarial Examples

• Example of a targeted attack

▪ Original class: tiger cat (lower right image)

▪ Target class: Dalmatian dog (upper left image)

• Goal: create an adversarial image that is perceptually close (in L2 distance) to a 
given image of a tiger cat (lower right), but is classified as a Dalmatian dog

▪ The algorithm is initialized from a sample image of the target class that is correctly 
classified by the model (upper left image of Dalmatian dog)

Boundary Attack
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Experimental Validation

• Comparison to FGSM, DeepFool, and Carlini-Wagner non-targeted attacks

▪ Presented values: median L2 distance to the original images

▪ The added perturbations by the Boundary Attack are comparable and not much larger 
than the perturbation by white box models

• Comparison to Carlini-Wagner targeted attack

Boundary Attack
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Real-World Applications

• In many real-world 
applications, the attacker has no 
access to the model or the 
training data, but can only 
observe the final decision

▪ E.g., security systems (face 
identification), autonomous 
cars, speech recognition (Alexa,  
Cortana)

• The authors applied Boundary 
Attack to two models by 
Clarifai

▪ For identifying over 500 brand 
names in natural images

▪ For identifying over 10,000 
celebrities

Boundary Attack

https://www.clarifai.com/model-gallery
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Transfer-based Attacks 

• Transfer-based attacks (or transferability attacks)

▪ The adversary does not query the model

• Reviewed attacks

▪ Substitute model attack (a.k.a. surrogate local model attack)

o Train a substitute model, and transfer the generated adversarial samples to the target model

▪ Ensemble of local models  attack

o Use an ensemble of local models for generating adversarial examples

Transfer-based Attacks
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Substitute Model Attack 

• Substitute model attack (or surrogate local model attack)

▪ Papernot et al. (2016) Transferability in Machine Learning: from Phenomena to Black-
Box Attacks using Adversarial Samples

• Create adversarial example for a substitute model, and afterward transfer the 
generated examples to the target model

• Transferability between the following ML models is explored:

▪ Deep neural networks (DNNs)

▪ Logistic regression (LR)

▪ Support vector machines (SVM)

▪ Decision trees (DT)

▪ k-Nearest neighbors (kNN)

▪ Ensembles (Ens)

• Evaluated on MNIST

Substitute Model Attack 

https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
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Substitute Model Attack 

• Intra-technique variability

▪ Five models (A,B,C,D,E) of the same ML method are trained on different subsets of the 
training data and the generated adversarial examples are transferred 

o E.g., adversarial examples created by one DNN are transferred to the other DNNs

▪ Model accuracies (left figure), and attack success rate for DNNs (right figure)

Substitute Model Attack 
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Substitute Model Attack 

• Intra-technique variability

▪ Attack success rates for SVM, DT, and kNN are shown below, when transferring 
examples between the models A, B, C, D, and E of the same ML method

▪ Differentiable models like DNNs and LR are more vulnerable to intra-technique 
transferability than non-differentiable models like SVMs, DTs, and kNNs

Substitute Model Attack 
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Substitute Model Attack 

• Cross-technique variability

▪ Transfer adversarial samples from one ML method to the other ML methods

o E.g., adversarial examples created by DNN transferred to other ML models (the first row)

▪ The most vulnerable model is DT: misclassification rates from 79.31% to 89.29%

▪ The most resilient is DNN (first column): misclassification between 0.82% and 38.27%

Substitute Model Attack 
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Ensemble of Local Models Attack

• Ensemble of local models attack

▪ Liu et al. (2017)  Delving into Transferable Adversarial Examples and Black-box 
Attacks

• Observations regarding transferability

▪ Transferable non-targeted adversarial examples are easy to find

▪ However, targeted adversarial examples rarely transfer with their target labels

• The proposed approach allows transferring targeted adversarial examples

Ensemble of Local Models Attack

https://arxiv.org/abs/1611.02770
https://arxiv.org/abs/1611.02770
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Ensemble of Local Models Attack

• On ImageNet, targeted examples do not transfer across models

▪ Only a small percentage of adversarial images retain the target label when transferred 
to other models (between 1% and 4%, off diagonal values in the table)

▪ RMSD is the average perturbation of the used adversarial images

• On the other hand, untargeted examples transfer well 

Ensemble of Local Models Attack
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Ensemble of Local Models Attack

• Hypothesis: if an adversarial image remains adversarial for multiple models, it is 
more likely to transfer to other models as well

• Approach: solve the following optimization problem (for targeted attack):

• The problem is similar to C&W

▪ 𝑥 is a clean image 

▪ 𝑥∗ is an adversarial image

▪ 𝑑 𝑥, 𝑥∗ is distance function

▪ 𝐽1, 𝐽2, … , 𝐽𝑘 are white-box models in the ensemble

▪ 𝛼1, 𝛼2, … , 𝛼𝑘 are the ensemble weights

▪ −log 𝛼1𝐽1 ∙ 𝟏𝑦∗ is the cross-entropy loss between the prediction by model 𝐽1 and the 

one-hot vector for the target class 𝟏𝑦∗

Ensemble of Local Models Attack
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Targeted Attack Evaluation

• Targeted attack using the ensemble attack

▪ E.g., the first row shows the attack success rate when an ensemble of 4 models 
(ResNet-101, ResNet-50.VGG-16, and GoogLeNet) is trained, and the samples are 
transferred to ResNet-152

o The success rate of transferred attack is 38%

Ensemble of Local Models Attack
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Non-targeted Attack Evaluation

• Non-targeted ensemble attack results

▪ Using an ensemble of four models, the success rate is very high for non-targeted attack

Ensemble of Local Models Attack
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HopSkipJump Attack

• HopSkipJump Attack

▪ Chen and Jordan (2019) HopSkipJumpAttack: A Query-efficient Decision-based 
Adversarial Attack

• This attack is an extension of the Boundary Attack

▪ I.e., it is a decision-based attack, and therefore has access only to the predicted output 
class

o HopSkipJump Attack requires significantly fewer queries than the Boundary Attack

▪ It includes both untargeted and targeted attacks

▪ Proposes a a novel approach for estimation of the gradient direction along the 
decision boundary

HopSkipJump Attack

https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1904.02144
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HopSkipJump Attack

• Approach:

1. Start from an adversarial image 𝑥𝑡

2. Perform a binary search to the original image x* to find the boundary (left figure)

3. Estimate the gradient direction at the boundary point 𝑥𝑡 (second figure from left)

4. Perform a step-size search, and update to the next image 𝑥𝑡+1

5. Search again for the next boundary point 𝑥𝑡+1 (right figure)

6. Repeat until the closest adversarial image to the original image x* is found

HopSkipJump Attack
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HopSkipJump Attack

• Experimental evaluation

▪ Comparison to Boundary attack and Opt attack on CIFAR-10

▪ HopSkipJump (blue curve) achieves lower ℓ2 perturbation using fewer queries

HopSkipJump Attack
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HopSkipJump Attack

• Untargeted attack

▪ 2nd to 9th columns: images at 100, 200, 500, 1K, 2K, 5K, 10K, 25K queries

▪ The original image for the attack is shown on the right

• Targeted attack

HopSkipJump Attack



40

CS 487/587, Spring 2024

ZOO Attack

• ZOO attack

▪ Chen (2017) Zoo: Zeroth-order optimization based black-box attacks to deep neural 
networks without training substitute models

• Zeroth-order optimization refers to optimization based on access to the function 
values 𝑓(𝑥) only

▪ As opposed to first-order optimization via the gradient 𝛻𝑓(𝑥)

▪ E.g., score-based and decision-based black-box approaches are zeroth-order 
optimization methods, as they don’t require the gradient information

• ZOO attack has similarities with the Gradient Estimation Attack 

• It is a score-based black-box version of the Carlini-Wagner attack

ZOO Attack

https://arxiv.org/abs/1708.03999
https://arxiv.org/abs/1708.03999
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Adversarial Attack

• Recall again that the Gradient Estimation attack uses the finite difference 

approach to approximate the gradient as 𝒈 = 𝛻𝒙𝒇 𝐱 ≈
𝑓 𝐱+ℎ −𝒇 𝐱−ℎ

2ℎ

▪ E.g., if the intensity of a pixel 𝑥𝑖 is 150, and ℎ = 10, then we will query the model to 
give us the predictions for 𝑓 150 + 10 = f 160 and for 𝑓 150 − 10 = f 140 , so we 
can estimate the gradient ෞ𝒈𝑖 = 𝛻𝑥𝑖

𝒇 𝐱 for the pixel 𝑥𝑖

▪ We need to do 2 queries for each pixel, and for an images with 28×28 pixels = 784 
pixels, we need to do 2 ∙ 784 = 1,568 queries to estimate the gradient

• ZOO attack solves an optimization, similar to C&W targeted white-box attack

minimize 𝐱 − 𝐱𝟎 2
2 + 𝑐 ∙ 𝑍 𝑥 𝑦′ − 𝑍 𝑥 𝑇

subject to 𝐱 ∈ 0,1

▪ ZOO solves the optimization problem with the FD estimated loss based on:

minimize 𝐱 − 𝐱𝟎 2
2 + 𝑐 ∙ 𝐹𝐷 𝑍 𝑥 𝑦′ − 𝑍 𝑥 𝑇 , ℎ

subject to 𝐱 ∈ 0,1

▪ Adam optimization is used to solve the problem

ZOO Attack
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Adam Optimization Attack

• Algorithm for the ZOO attack using Adam optimization

ZOO Attack
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Newton Optimization Attack

• The paper proposed one more similar approach, that instead of Adam 
optimization uses Newton optimization method

▪ Newton optimization method finds a minimum of 𝑓(𝑥) by performing the following 

iterations: 𝑥𝑘+1 = 𝑥𝑘 −
𝑓′(𝑥𝑘)

𝑓′′(𝑥𝑘)

• The approximation of the Hessian matrix of the model is estimated based on

𝒉 =
𝜕2

𝜕𝒙2 𝒇 𝐱 ≈
𝑓 𝐱+ℎ −𝟐𝑓 𝐱 +𝒇 𝐱−ℎ

𝒉𝟐

▪ If 𝒉 > 𝟎, then the loss function is convex, update is based on Τ𝒈 𝒉 (i.e., 𝑥𝑘 −
𝑓′ 𝑥𝑘

𝑓′′ 𝑥𝑘
)

▪ If 𝒉 ≤ 𝟎, then the loss function is concave, update is based only on the gradient 𝒈 (i.e.,
𝑥𝑘 − 𝑓′ 𝑥𝑘 )

ZOO Attack

Convex Concave

𝜕2𝒇 𝐱

𝜕𝒙2
> 0

𝜕2𝒇 𝐱

𝜕𝒙2
< 0
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Newton Optimization Attack

• Algorithm for the ZOO attack with Newton optimization

ZOO Attack
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Experimental Evaluation

• On MNIST and Cifar-10, ZOO attacks achieved almost 100% success rate

▪ The added 𝐿2 perturbations are comparable to C&W white-box attack

▪ As expected, the time for generating adversarial samples is longer than white-box 
attacks

ZOO Attack
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Experimental Evaluation

• Comparison between C&W white-box (left) and ZOO attack (right)

ZOO Attack
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Queries Reduction

• The authors proposed techniques to reduce the number of queries

▪ Note that for 28×28 pixels, we need 2 ∙ 784 = 1,568 queries to estimate the gradient

▪ Recall that PCA and random sets of pixels were used in Gradient Estimation attack

• The proposed approach starts with reduced resolution, and the resolution is 
progressively increased (referred to as hierarchical attack)

▪ E.g., an original image of a size 299×299 pixels is used

▪ Divide the image into 8×8 regions

o Make only 64 queries to estimate the gradients

o Optimize until the loss start decreasing

▪ Increase to 16×16 regions

o Make queries and optimize until the loss start decreasing

▪ Increase to 32×32 regions

o Make queries and optimize until the loss start decreasing

▪ Repeat until the attack is successful

ZOO Attack
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Queries Reduction

• Another technique for query reduction is based on importance sampling
o Estimate the gradient only for the most important regions in an image

– Upper figures show the gradient for the Red, Green, and Blue channels
» E.g., corner pixels are less important for this image, and the changes in R are more important than G and B channels

– Lower figures shows the most important pixels for R, G, B channels, that are queried first

ZOO Attack
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Experimental Evaluation

• ImageNet untargeted attack

▪ Recall that there are 1,000 classes in ImageNet

▪ InceptionV3 model used

▪ ZOO attack required about 192,000 queries per image, 20 minutes per image

▪ The success rate is lower than C&W white-box attack, but is still high

ZOO Attack
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Examples

• Targeted attack

▪ The added perturbations are imperceptible

ZOO Attack
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Examples

• Untargeted attack

ZOO Attack
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Simple Black-box Attack

• Simple Black-box Attack

▪ Guo et al. (2019) Simple Black-box Adversarial Attacks

• A.k.a. SimBA attack

▪ Score-based attack (using probability vectors)

▪ Focus on query efficiency

▪ Both targeted and untargeted attacks were demonstrated

• Approach:

▪ Use random orthonormal perturbations for each query

▪ Focus on regions in images with high-frequency content to reduce the overall number 
of queries

SimBA Attack

https://arxiv.org/abs/1905.07121
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Simple Black-box Attack

• Steps:

▪ Randomly sample perturbation vectors from a predefined orthonormal basis

▪ Query the model to obtain the probability score and find out if it is pointing toward or 
away from the decision boundary

▪ Perturb the image by adding or subtracting the perturbation vector

• Goal:

▪ Each iteration moves the image away from the original image, and towards the 
decision boundary

SimBA Attack
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Simple Black-box Attack

• Algorithm

▪ Random director vectors q are sampled, and perturbation with step size 𝜖 are added 
or subtracted to misclassify the image

SimBA Attack
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Simple Black-box Attack

• Perturbation vectors are selected to be orthonormal

▪ I.e., the random directions for each pixel do not cancel each other out, or amplify each 
other

• For orthonormal vectors x and y, their dot product is 𝐱 ∙ 𝐲 = 0

▪ The angle between the vectors is 90 degrees

▪ I.e., they are orthogonal

• How to choose orthonormal perturbation vector?

▪ One inefficient option are the vectors [1,0,0,…,0], [0,1,0,…,0], [0,0,1,…,0],…,[0,0,0,…,1]

o I.e., only one pixel is changed at a time

▪ The authors propose an approach called Discrete Cosine Transform (DCT)

o It is based on frequency coefficients that correspond to the magnitudes of cosine functions

o I.e., low-frequency regions in images (e.g., image background) change less at each step

o Focus on querying high-frequency regions in images

SimBA Attack
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Simple Black-box Attack

• The average change of the output probability scores is larger when the DCT 
approach is employed, in comparison to changing individual pixels

▪ I.e., SimBA attack with DCT can find perturbations for many pixels in a single query 
that impact the output probability 

SimBA Attack
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Simple Black-box Attack

• Experimental evaluation

▪ Full lines display attack success rate, dotted lines display average perturbation

▪ SimBA attacks achieved high success rate with small average ℓ2 norm, and fewer 
queries

SimBA Attack
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Simple Black-box Attack

• Experimental evaluation

▪ SimBA achieved good query-efficiency

SimBA Attack
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Simple Black-box Attack

• Attack on Google Cloud Vision API

▪ Checked on 50 random images

▪ 70% success rate after 5,000 queries

SimBA Attack

https://cloud.google.com/vision
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Additional References

1. Nicolae et al. (2019) Adversarial Robustness Toolbox v1.0.0. 
https://arxiv.org/abs/1807.01069

2. Xu et al. (2019) Adversarial Attacks and Defenses in Images, Graphs and Text: 
A Review https://arxiv.org/abs/1909.08072

https://arxiv.org/abs/1807.01069
https://arxiv.org/abs/1909.08072
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