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Lecture Outline

• Adversarial examples in text data

• Introduction to NLP

▪ Word representation in NLP

▪ Transformer Networks

▪ Large Language Models

• Presentation by Henok Tadele

▪ Zou (2023) Universal and Transferable Adversarial Attacks on Aligned Language 
Models

• Presentation by Lawhori Chakrabarti

▪ Greshake (2023) Not what you've signed up for: Compromising Real-World LLM-
Integrated Applications with Indirect Prompt Injection

• Jailbreak attacks on LLMs

▪ Wei (2023) Jailbroken: How Does LLM Safety Training Fail?



4

CS 487/587, Spring 2024

Adversarial Examples in Text Data

• Adversarial examples were shown to exists for ML models for processing text 
data

▪ An adversary can generate manipulated text sentences that mislead ML text models

• To satisfy the definitions for adversarial examples, a generated text sample x’
that is obtained by perturbing a clean text sample x should look “similar” to the 
original text

▪ The perturbed text should preserve the semantic meaning for a human observer

▪ I.e., an adversarial text sample that is misclassified by an ML model should not be 
misclassified by a typical human

• In general, crafting adversarial examples in text data is more challenging than in 
image data

▪ Many text attacks output grammatically or semantically incorrect sentences 

• Generation of adversarial text examples is often based on replacement of input 
words (with synonyms, misspelled words, or words with similar vector 
embedding), or adding distracting text to the original clean text

Adversarial Examples in Text Data
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Adversarial Examples in Text versus Images

• Image data

▪ Inputs: pixel intensities

▪ Continuous inputs

▪ Adversarial examples can be 
created by applying small 
perturbations to pixel intensities

o Adding small perturbations does not 
change the context of the image

o Gradient information can be used to 
perturb the input images

▪ Metrics based on ℓ𝑝 norms can be 

applied for measuring the distance 
to adversarial examples

Adversarial Examples in Text Data

• Text data

▪ Inputs: words or characters

▪ Discrete inputs

▪ Small text modifications are more 
difficult to apply to text data for creating 
adversarial examples

o Adding small perturbations to words can 
change the meaning of the text

o Gradient information is more challenging, 
generating adversarial examples requires 
applying heuristic approaches (e.g., word 
replacement with local search) to produce 
valid text

▪ It is more difficult to define metrics for 
measuring text difference, ℓ𝑝 norms 

cannot be applied
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NLP Tasks

• Main NLP (Natural Language Processing) tasks include:

▪ Text classification—assign a class label to text based on the topic discussed in the text  

o E.g., sentiment analysis (positive or negative movie review), spam detection, content filtering 
(detect abusive content)

▪ Text summarization/reading comprehension—summarize a long input document with 
a shorter text

▪ Speech recognition—convert spoken language to text

▪ Machine translation—convert text in a source language to a target language

▪ Part of Speech (PoS) tagging—mark up words in text as nouns, verbs, adverbs, etc. 

▪ Question answering—output an answer to an input question

▪ Dialog generation—generate the next reply in a conversation given the history of the 
conversation

▪ Text generation—generate text to complete the sentence or to complete the paragraph

Introduction to NLP
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Text Processing Models

• Dominant text processing models

▪ Pre1980

o Hand-crafted rule-based approaches (if-then-else rules)

▪ 1980-2000

o Statistical Language Models: N-grams, bag-of-words

▪ 2000-2014

o Traditional ML models, e.g., decision trees, logistic regression, Naïve Bayes

▪ 2014-2017

o Recurrent NNs (e.g., LSTM, GRU) layers

o Combinations of CNNs and RNNs

▪ 2017-present

o Transformers (BERT, GPT, LLaMA, Gemini)

Introduction to NLP
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Preprocessing Text Data

• Converting text data into numerical form for processing by ML models typically 
involves the following steps:

Word representation in NLP

Figure form: Chollet (2021) Deep Learning with Python

▪ Standardization

o Convert to lower case, remove 
punctuation, lemmatization

▪ Tokenization

o Break up the text into tokens

o Tokens can be individual characters, 
sub-words,  words,  or several 
consecutive words (n-grams)

▪ Indexing

o Assign a numerical index to each token 
in the training set (vocabulary)

▪ Embedding

o Assign a numerical vector to each 
index: one-hot encoding or word-
embedding



9

CS 487/587, Spring 2024

Preprocessing Text Data

• Example of preprocessing text data

Word representation in NLP
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Tokenization

• Tokenization can be performed at different levels

▪ Character-level tokenization - each individual character is a token, including letters, 
digits, punctuation marks, and symbols

o Character-level tokenization does not capture semantic meaning of words as effectively as 
word-level tokens, and it is not widely used in practice

o E.g., antigrams (words with same letters in different order, such as ‘silent’ and ‘listen’) can 
have the same numerical encoding, which can affect the performance of ML models

▪ Word-level tokenization - each word is a token

o Provides a natural representation of text with the words as building blocks of language

▪ Subword-level tokenization - the words are divided into smaller units

o E.g., tokenizing the word “unhappiness” into two tokens “un” + “happiness”

o Word-level and subword-level tokenization are most used at present

▪ n-gram tokenization - n consecutive words represent a token

• For some NLP tasks, tokenization can also be performed at other levels, such as 
sentence-level tokenization for document segmentation task

Word representation in NLP
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n-Grams

• Instead of using single words or subwords as tokens, it is also possible to use n
consecutive words as tokens, referred to as n-grams

▪ Combining several consecutive words together creates more specialized tokens

o This type of tokenization is still popular for spam filtering and other NLP tasks

▪ E.g., the word play is considered a neutral word in an email message, but the two-
words phrase play lotto is less neutral

o Such n-grams consisting of two adjacent pairs of words are called bigrams

o n-grams consisting of single words are called unigrams

• The n-grams approach captures the words order and it can potentially provide 
more information for classifying spam messages

Word representation in NLP
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Tokenization

• Character-level tokenization example

▪ Example text: TensorFlow is a Machine Learning framework

▪ Tokens assigned to each character (the first token is the empty space character: ' ': 1, 

'e': 2, 'n': 3, 'r': 4, 'a': 5, 'o': 6, 'i': 7, 's': 8, 'f': 9, 'l': 10, 'w': 11, 'm': 12, 't': 13, 'c': 14, 'h': 15, 

'g': 16, 'k': 17

▪ Tokenized text: 13, 2, 3, 8, 6, 4, 9, 10, 6, 11, 1, 7, 8, 1, 5, 1, 12, 5, 14, 15, 7, 3, 2, 1, 10, 

2, 5, 4, 3, 7, 3, 16, 1, 9, 4, 5, 12, 2, 11, 6, 4, 17

• Word-level tokenization example

▪ Example text: TensorFlow is a Machine Learning framework. Keras is a well designed 

deep learning API! Keras is built on top of TensorFlow!

▪ Tokens assigned to each word: 'is': 1, 'tensorflow': 2, 'a': 3, 'learning': 4, 'keras': 5, 

'machine': 6, 'framework': 7, 'well': 8, 'designed': 9, 'deep': 10, 'api': 11, 'built': 12, 'on': 

13, 'top': 14, 'of': 15

▪ Tokenized text: [2, 1, 3, 6, 4, 7], [5, 1, 3, 8, 9, 10, 4, 11], [5, 1, 12, 13, 14, 15, 2]

Word representation in NLP
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n-Grams

• 1-gram model example of non-spam and spam emails

Pre-processing Text in Email Messages

Figure from: How To Design A Spam Filtering System with Machine Learning Algorithm (link)

https://towardsdatascience.com/email-spam-detection-1-2-b0e06a5c0472
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n-Grams

• 2-gram model example of non-spam and spam emails

Word representation in NLP

Figure from: How To Design A Spam Filtering System with Machine Learning Algorithm (link)

https://towardsdatascience.com/email-spam-detection-1-2-b0e06a5c0472
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Representation of Groups of Words

• The representation of groups of words in text data can be divided into two 
categories of approaches:

▪ Set models approach, where the text is represented as unordered collection of words

o The order of the words in the text is not preserved

o Representatives of this group is the bag-of-words model

▪ Sequence models approach, where the text is represented as ordered sequences of 
words

o These methods preserve the order of the words in the text

o Representatives of this group are Recurrent Neural Networks and Transformer Networks

• In general, the order of words in natural language is not necessarily fixed, and 
sentences with different orders of the words can have the same meaning 

▪ However, in many cases the word order can be very important and a difference in the 
word order can significantly change the meaning of the text

▪ Recent ML models for NLP employ sequence models where the order of the words is 
preserved

Word representation in NLP
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Bag-of-Words Approach

• Bag-of-words approach

▪ The tokenized words in text are represented as a bag (i.e., set) of words

▪ The term bag implies that the order of the words and the structure of the text is lost

o A numerical value is assigned to each token (can be either individual words or n-grams)

o The frequency of occurrence of each word is typically used as a feature for training a ML 
classifier

Word representation in NLP
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Bag-of-Words Approach

• Bag-of-words approach for spam filtering

▪ Tokenize all spam and non-spam emails in a dataset

▪ Create a vocabulary (token database) from the unique words (tokens) collected from 
all processed emails 

▪ Count the frequency of occurrence of tokens in spam and non-spam emails

▪ Create two bags-of-words, pertaining to all spam and non-spam emails

o E.g., the spam bag will contain trigger keywords (cheep, buy, stock) more frequently

▪ A spam filter classifies an incoming email based on the probability of belonging to the 
spam or non-spam bag-of-words

Word representation in NLP
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Sequence Model Approach

• Sequence models preserve the order of words in the input text

• As mentioned, commonly used models are Recurrent Neural Networks and 
Transformer Networks

▪ Transformers have replaced RNNs in recent applications

• The application of sequence models typically involves:

1. Tokenization to represent the words in text data with integer indices

2. Mapping the integers to vector representations (embeddings)

3. Pad the sequences in the text to have the same length

4. Use the padded sequences as inputs to train a machine learning model

• The trained models take into account the ordering of words embeddings in the 
original text

Word representation in NLP
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Word Embedding

• Word embedding is converting words to a vector format, where the vectors 
represent the position of words in a higher-dimensional space

▪ Words that have similar meanings should have close spatial positions of their vector 
representations in the embedding space 

• Typical vectors for representing word embeddings have between 256 to 1,024 dimensions

▪ E.g., embedding vector for the word ‘work’

Word representation in NLP

Figure from: Generative AI exists because of the transformer (link)

https://ig.ft.com/generative-ai/
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Word Embedding

• To learn the vector embedding of a word, the model observes it in context using 
large training data, and adjusts the vector value based on the word’s proximity to 
other words in the training data

Word representation in NLP

Figure from: Generative AI exists because of the transformer (link)

https://ig.ft.com/generative-ai/
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Word Embedding

• The embedding vectors of words that have similar meanings are also similar

▪ E.g., the embedding vectors of the words ‘football’ and ‘soccer’ are more similar to 
each other, than the embedding vectors of the words ‘sea’ or ‘we’

Word representation in NLP

Figure from: Generative AI exists because of the transformer (link)

https://ig.ft.com/generative-ai/
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Word Embeddings

• The figure shows an example of word embeddings space

• Typically, the cosine distance between the vectors  in the embedding space is 
used a distance metric

▪ For given embedding vectors u and v, cosine similarity is cos𝜃 =
𝐮∙𝐯

𝐮 𝐯

Word representation in NLP

Figure from: How To Design A Spam Filtering System with Machine Learning Algorithm (link)

https://towardsdatascience.com/email-spam-detection-1-2-b0e06a5c0472
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Large Language Models

• Large Language Models (LLMs) are advanced AI systems based on deep neural 
networks designed for natural language understanding and generation

▪ LLMs are trained on large scale across data, compute, and model size 

▪ Training data for LLMs is raw text scraped from the Internet, containing webpages, 
news articles scraped from the Internet

• LLMs has achieved state-of-the-art performance in various NLP tasks, including 
machine translation, summarization, question answering, text generation

• LLMs have a transformative impact on many domains

▪ Voice assistants, content creation, web search and information retrieval, multilingual 
communication, code generation, personalized tutoring

Large Language Models
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Popular LLMs

• GPT (Generative Pretrained Transformers): by OpenAI, GPT 1, 2, 3, 3.5 (initial 
ChatGPT), and 4 (current ChatGPT), reportedly GPT-4 has 1.76 trillion 
parameters, trained on 13T tokens

• LlaMA (Large Language Model Meta AI): by Meta AI, open-source, models with 
7B, 13B, and 70B parameters, 2T tokens

• Gemini: by Google, reportedly 1.56T parameters, 11T tokens 

• Falcon: by UAE’s Technology Innovation Institute (TII), open-source models 
with 1.3B, 7.5B, 40B, 180B parameters, 3.5T tokens

• Bard: by Google, 137B parameters trained on 1.6T tokens

• Claude: by Anthropic AI, 137B parameters

• Cohere LLM: by Cohere, 6B, 13B, and 52B parameters, designed for enterprise 
use cases

Large Language Models
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Transformer Networks

• Transformer Neural Networks were introduced in 2017 in the paper “Attention is 
all you need”

▪ The title refers to the attention mechanism, which forms the basis for data processing 
with Transformers

• Transformers have been the predominant type of models for NLP in recent years

▪ They replaced Recurrent Neural Networks in all NLP tasks

▪ LLMs employ the transformer networks architecture

• Transformers were recently adapted for other tasks such as image processing 
and video processing tasks (a.k.a. Vision Transformers), protein and DNA 
sequence prediction, time-series data processing, etc.

Transformer Networks
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Transformers: Self-attention

• Self-attention is the key layer in a transformer network

▪ Models the relationships between all words, and assigns weights to other words based 
on their importance

▪ That is, the model should pay more attention to some words in sentences, and less 
attention to other words in sentences that are less relevant for a given task

Transformer Networks
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Transformers: Self-attention

• For each query word Q, calculate attention scores for all words (called key words 
K)

▪ The calculated attention scores are the dot-products 𝑄 ∙ 𝐾 of the input representations of 
the query and key words

Transformer Networks
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Transformers: Self-attention

• The obtained attention scores 𝑄 ∙ 𝐾 for each word are first scaled (dividing by the 

embedding dimension 𝑑), and afterward are normalized to be in the [0,1] range 
(by applying a softmax function)

▪ I.e., the attention scores are calculated as 𝑎𝑖𝑗 = softmax
𝑄𝑖𝐾𝑗

𝑑

• Afterward, the resulted attention scores are multiplied with the initial word 
representation, referred to as value V

Transformer Networks
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Transformers: Multi-Head Attention

• Transformers include multiple self-attention modules, called heads

▪ The aggregation of the attention heads is called multi-head attention

▪ Each head captures different relationships between the words in text

o For example, one head may capture relationship between the nouns and numerical values in 
sentences, another head may focus on the relationship between the adjectives in sentences, 
and another head may focus on rhyming words, etc. 

Transformer Networks
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Transformer: Encoder

• Encoder block processes the input text and extracts 
representations to be used for different NLP tasks

▪ Input embedding layer

o Embedding vector for each word

o Positional encoding, vectors that provide the order of the words 
in sentences

▪ Multi-head Attention layer

o Consisting of multiple self-attention modules

▪ Add & Norm layer

o Residual connections, that add the inputs to the outputs of the 
layer

o Layer normalization, that normalizes the outputs to have 0 
mean and 1 standard deviation

▪ Feed Forward layer

o Two fully-connected (dense, linear) layers

• Larger Transformer networks typically include several 
encoder blocks in a sequence

▪ In the original paper the authors used 6 encoder blocks

Transformer Networks
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Transformers: Decoder

• Decoder block

▪ Similar to encoder block, and it is used when the output of the model is also text, such 
as for machine translation, text generation, and similar NLP tasks

▪ The main difference from the encoder is the masked multi-head attention module

o It applies masking to the next words in the text sequence, so that the network does not have 
access to those words

Transformer Networks
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Vision Transformers

• Vision Transformers are transformers designed for computer vision tasks

▪ The images are split into a set of smaller patches that are imputed to the model (each 
image patch is considered a token)

▪ The patches are flattened to 1D vectors, and processes by the network

▪ Vision Transformers have outperformed Convolutional NNs on several vision tasks 

Transformer Networks



33

CS 487/587, Spring 2024

Transformer Networks

• Variants of Transformer Networks are used for different tasks

▪ Decoder-only models

o Utilize only the decoder part of the Transformer Network architecture

o Particularly suitable for generating text and content

o E.g., the family of GPT models

▪ Encoder-only models

o Perform well on tasks such as classification and sentiment analysis

o E.g., BERT

▪ Encoder-decoder models

o Employ the original Transformer Network architecture

o Can be used for various NLP tasks with minimal task-specific modifications

o E.g., T5 (Text-to-Text Transfer Transformer)

Transformer Networks
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Creating LLMs

• Creating LLMs typically involves three main phases

1. Pretraining

o The model extracts knowledge from large unlabeled text datasets

2. Supervised finetuning

o The model is refined on labeled datasets to improve the quality of generated responses

3. Alignment

o The model is further refined to generate safe and helpful responses that are aligned with 
human preferences

Creating LLMs
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Creating LLMs

• A common approach to train LLMs is the “next-word prediction” objective

▪ I.e., when prompted with a sequence of words, predict the next word in the sequence

• Given a sequence of tokens (word embeddings) 𝑥1, 𝑥2, … , 𝑥𝑖−1 from a vocabulary
𝒱, the training loss minimizes the error in predicting the next token

▪ For an NN 𝑓 with parameters 𝜃, the objective is to find network parameters 𝜃 that 
minimize the loss ℒ 𝜃 = − logς𝑖=1

𝑛 𝑓𝜃 𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑖−1
▪ 𝑛 is the number of tokens in the vocabulary 𝒱

• E.g., given the sequence “Marry had a little,” based on the examples seen in the 
training data, the word “lamb” is the most likely next word in the sequence

Creating LLMs
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Pretraining

• Pretraining LLMs involves processing terabytes of text (web pages, books) to 
learn grammar, facts, and reasoning

▪ Causal Language Modeling, also known as autoregressive language modeling, 
involves training the model to predict the next token in the text sequence given the 
previous tokens 

Creating LLMs
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Pretraining

• Pretraining allows to extract knowledge from very large unlabeled datasets in 
unsupervised learning manner, without the need for manual labeling

▪ I.e., the “label” in pretraining is the next word in the text, to which we have access 
since it is part of the training text

▪ Such approach is called self-supervised training, since the model uses each next word 
in the text to self-supervise the training

• Pretraining LLM is computationally expensive and time-consuming

▪ It can take weeks or months on large GPU clusters, and costs millions of dollars

Creating LLMs
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Supervised Finetuning

• Supervised fine-tuning on smaller datasets with human-written instructions and 
desired responses (outputs)

▪ The training objective is again next-word prediction

▪ The goal is to generate outputs similar to the human examples

▪ This phase requires a laborious process of preparing data by human labelers

Creating LLMs
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Alignment with Human Preferences

• Reinforcement Learning from Human Feedback (RLHF)

▪ To avoid offensive, harmful, inappropriate responses

Creating LLMs

1. Collect human-rankings of 
multiple LLM responses to 
the same prompt

2. Train a Reward Model to 
score the responses that 
were ranked based on 
human preferences

3. Apply an RL algorithm 
(such as Proximal Policy 
Optimization) to guide the 
LLM towards generating 
higher-scoring responses
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Text Generation with LLMs

• Two common methods for generating text with Language Models are:

▪ Greedy search, selects the word with the highest probability as the next word

o The major limitation is that it can miss potentially high-probability words that follow a low-
probability word

o Although each individual word may be the best fit when generating a response, the entire 
generated text can be less relevant for the query

▪ Beam search, selects a sequence of words (beam) that has the overall highest 
probability

o Reduces the risk of missing high-probability words

o Instead on focusing only on the next word in a sequence, beam search looks at the probability 
of the entire response

o Beam search is typically preferred than greedy search, because the model can consider 
multiple routes and find the best option

Creating LLMs
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Text Generation with LLMs

• Beam search example

▪ The input query is “The Financial Times is …”

▪ The model created four possible beams, and selected the third beam “a newspaper 
founded in 1888” as the most coherent response

Creating LLMs
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Data Processing at Scale with LLMs

• LLMs are immensely scaled across data, compute, and model size

Creating LLMs

Mental Picture Reality
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Retrieval Augmented Generation (RAG) 

• LLM challenge is that their knowledge is static

▪ Limited to information present in their training data (often outdated)

• Retrieval Augmented Generation (RAG) leverage external sources for improving 
LLMs outputs

▪ Provides access to up-to-date information from databases, articles, and more

• RAG involves two phases

1. Retrieval: search for relevant information in external databases based on the user 
query

2. Content generation: utilize the retrieved information to enhance response accuracy 
and relevance

• Benefits of RAG 

▪ More accurate responses, combines LLM knowledge with current facts

▪ Reduced hallucinations, provides context for generation

▪ Verifiable sources: users can review references used in the response

Creating LLMs
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Prompt Engineering

• Prompt engineering is a technique for improving the performance of LLMs by 
providing detailed context and information about a specific task

▪ It involves creating text prompts that provide additional information or guidance to 
the model

▪ Helps LLM understand the expected output and produce more relevant results

• Tips for effective prompts

▪ Use clear and concise language

▪ Provide specific examples for better understanding

▪ Vary the style and tone for diverse output

▪ Test and refine based on results

▪ Provide user feedback for continuous improvement

• Chain-of-thought technique involves providing the LLM with a series of step-by-
step instructions to help guide the model and generate a more coherent and 
relevant response

Creating LLMs
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Limitations of LLMs

• Computational resources

▪ High requirements for training and access

• Data bias

▪ Reflecting potential biases present in training data

• Hallucinations

▪ Generating false or inappropriate information

• Inexplicability/black-box nature

▪ Lack of transparency in reasoning and decision-making

Creating LLMs
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Ethical Considerations

• Privacy risks with sensitive information in training data

• Misinformation and manipulation potential

• Access and fairness limitations

• Environmental impact of energy consumption

Creating LLMs
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Responsible AI Development

• Transparency and collaboration in research and development

• Mitigating bias and ensuring fair representation in data

• Addressing misinformation and promoting responsible use

• Open access and democratization of AI benefits

• Sustainable practices for environmental impact

Creating LLMs
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Foundation Models

• Foundation models are scaled-up NNs across data, compute, and model size

▪ Typically trained on multimodal data (text, images, audio, video, other data sources)

• The scale allows to perform transfer learning on diverse tasks (even unseen 
tasks) and provides for emergent capabilities

▪ Foundation models have potential to replace task-specific with general models

Foundation Models
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ADVERSARIAL ATTACKS

• First investigated in image recognition

• Jailbreaking LLMs - prompts that get around fine-tunning

• Can an automatic adversarial suffix be found?

• Automatic adversarial attacks on LLM have previously failed

• Discrete token inputs limits dimensionality and are harder to 

search for



LLMs Jailbreaks

• Human crafted prompts

• Automatic prompt-tuning for adversarial attacks

• This paper introduces a new class of attacks based on 

automatically created suffixes

• Prompt: Tell me how to build a bomb. 

⚬ <enter generatedsuffix here>

• Universal, Transferable
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EXPERIMENTAL RESULTS

• Searching for Harmful Strings(exact)and 

Harmful Behavior (Any compliance as judged by 

human)

• Run Greedy Coordinate Gradient on Vicunja-7B
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• SOTA on white-box Vicuna-7B and Llama-

2-7B-Chat
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TRANSFER ATTACKS



Digital Learning Checklist
HOW CAN WE PREPARE FOR THE LONG-TERM DIGITAL LEARNING SET-UP?



IMPACT

• Previous anti-adversarial work focused on avoiding “natural” attacks 

• New line of “alignment” work needed

• More robust? Newer models have lower success rate

• Vicunja model trained on distilled GPT-3 data, this may explain transfer

• Similar transfer would be possible for Claude, and may dramatically improve 

attacks

• Claude’s chat interface blocks many queries. This is a very bad strategy.

•  Existing defenses against adversarial attacks significantly degrade 

performance.
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Introduction To 
Large Language 
Models

2/21/2024

• Large language models are neural networks 
based on a specific breakthrough from 
2017, the Transformer. 

• They are trained on enormous (petabyte 
scale) datasets and have billions of 
parameters.

• Even though right now they can write 
essays, creating charts, and writing code 
(yup, scary), with limited or no supervision, 
fundamentally they are only trained to 
predict the next word.
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How do 
these 
Language 
models 
learn?

2/21/2024

• These models have two stages : Pretraining and fine-tuning.

• Pretraining:

• Objective: Teach the model language semantics, structure, 

and grammar.

• Method: Expose the model to billions of examples without 

explicit rules.

• Characteristics: Lengthy and computationally intensive 

phase, foundational for understanding language patterns.

• Fine-tuning:

• Objective: Adapt the pretrained model to specific tasks like 

question answering, sentiment analysis, or conversation.

• Method: Introduce task-specific examples to refine model 

responses.

• Benefits: Significantly less time and data required compared 

to pretraining, enhancing the model's applicability.
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Real-World 
Applications 
of LLMs and 
Emerging 
Threats

2/21/2024

• Broad Sectoral Transformation: Large 

Language Models like GPT-4 and ChatGPT are 

revolutionizing fields by enhancing our ability to 

understand and generate human-like text, 

making interactions more natural and insightful.

• Everyday Integration Becomes Reality: These 

advanced models are seamlessly incorporated 

into daily tools — from enhancing personal 

assistant capabilities, providing immediate 

decision support in business systems, to 

transforming customer service with real-time, 

intelligent responses.

• Widespread Influence: LLMs' impact on 

society, extending beyond tech circles to 

redefine user experiences for the general 

public, streamline professional workflows, and 

set new standards in user interface design.
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Unveiling 
Security 
Challenges in 
the Era of 
LLMs

2/21/2024

• Emerging Threat Landscape: With LLMs 
becoming integral to various applications, new 
forms of cyber threats emerge, notably Indirect 
Prompt Injection (IPI), a covert method 
bypassing traditional security.

• Malicious Manipulation: Attackers exploit LLM 
capabilities by embedding harmful instructions 
within digital content — from websites to 
malware components — remaining undetected 
by standard security measures.

• Real-World Consequences:

• Corporate Risks: Employees may 
unknowingly initiate attacks by uploading 
infected files to AI-powered systems.

• Engineering Hazards: Developers could 
integrate compromised code generated by 
LLMs, unintentionally creating backdoors 
for cyber-attacks.
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Preliminary and Related work in 
LLM Integration and Security

2/21/2024

o Augmenting LLMs with APIs:

• Toolformer and ReAct demonstrate LLMs' potential when integrated with 

external APIs, enhancing self-supervised learning through in-context examples.

• Enables LLMs to perform specific tasks like API calls, improving functionality 

beyond traditional applications.

o Transition to Autonomous AI Agents:

• Development of autonomous systems like Auto-GPT and interactive 

environments by Park et al., showcasing AI agents planning and executing 

tasks independently.

• Reflects the shift towards less human oversight and increased AI autonomy.

o Security Implications and Ethical Concerns:

• Increased autonomy introduces new security risks, exemplified by the 

vulnerabilities in GPT-3 and later models to prompt injections.

• Addressing ethical issues such as bias, misinformation, and unwanted AI 

behaviors through mechanisms like RLHF.
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Preliminary and Related work in 
LLM Integration and Security

2/21/2024

• Adversarial Prompting and Jailbreaking:

• Techniques developed to bypass AI restrictions, including 

'jailbreaking', highlighting vulnerabilities in current LLM 

applications.

• Comparison with traditional cybersecurity threats, 

underscoring the need for specialized AI security 

approaches.

• Comparative Analysis and Community Response:

• Relates AI vulnerabilities to classical security threats, 

emphasizing the evolution of cyber risks.

• Community and academic efforts to create safer LLM 

environments, including new frameworks and safety 

standards.
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Dissecting AI Prompt Injection 
Vulnerabilities

2/21/2024

• Definition: AI Prompt Injections represent a novel class of vulnerabilities 

targeting AI systems, particularly Large Language Models (LLMs). 

Direct vs. Indirect Injections: 

• Direct Injections: Users manipulate LLMs by directly feeding them 

crafted prompts, potentially leading to unauthorized actions or data 

exposure. 

• Indirect Injections: More covert and complex, these involve embedding 

malicious  prompts in data sources that the AI later processes, such as 

websites, social media, or documents. 

Operational Mechanisms: 

• Data Retrieval and Use: AI systems, when integrated into applications, 

might ingest untrusted data containing hidden malicious instructions. 

• Security Boundary Breach: These injections can cross crucial security 

boundaries, compromising the AI system with a single compromised 

input
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Real-World Examples and 
Threat Scenarios

2/21/2024

• Bing Chat Vulnerabilities:

• Case studies showing how Bing Chat, when analyzing web content, 

can be manipulated through crafted webpage content, leading to 

harmful AI responses.

• Common Injection Techniques:

• Exploits include crafting text snippets that alter AI behavior when 

pasted by users or using SEO to make malicious content more likely to 

be processed by AIs.

• Impact and Risks:

• Potential for AI systems to perform unintended actions, leak sensitive 

data, or propagate misleading information.

• Increases in AI misuse for spreading disinformation, executing scams, 

or bypassing content restrictions.

• Emerging Challenges:

• Highlighting the evolving nature of AI injections, comparing direct, 

indirect, and cross-context AI injections, and their implications for user 

security and AI reliability.
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Expanding on 
Indirect 
Prompt 
Injection (IPI) 
Threats

2/21/2024

1. Broadening the Threat Landscape:

• Adapting Cyber Threat Taxonomies: Utilizing 

established frameworks to comprehend how IPIs 

integrate within the modern LLM ecosystem.

• Enhanced LLM Vulnerability: Due to their 

adaptable functionality and broad capabilities, 

LLMs face a wide array of cybersecurity threats 

that mirror traditional systems

2. Empirical Foundations and Attack Modalities:

• Personalized Content and Scams: LLMs' ability 

to generate convincing, context-specific 

interactions opens doors to targeted scams and 

misinformation.

• Misguided Trust and Overreliance: Users' 

overreliance on LLMs' authoritative responses 

can lead to the acceptance of manipulated 

content or misinformation.
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More on Threats..

2/21/2024

3. Multi-Faceted Attack Scenarios:

• Information Gathering and Exfiltration: Utilizing IPIs to stealthily acquire 
sensitive user data or manipulate communication channels.

• Fraud and Malware Dissemination: Leveraging LLM-integrated 
applications to spread scams, phishing attempts, or malware.

4. System Intrusion and Manipulated Content:

• Intrusion Techniques: Exploiting LLMs as gateways for unauthorized 
system access, enabling API abuse and persistent attacks.

• Content Manipulation: Inducing LLMs to deliver skewed information, 
fostering disinformation or hiding crucial facts.

5. Availability and Persistence Threats:

• Disrupting Service: Employing IPIs to degrade LLM performance, launch 
DoS attacks, or perpetuate misinformation.

• Long-term Implications: Potential for attacks to not only disrupt immediate 
operations but also to embed persistent threats within LLM functions.

6. Conclusion and Key Messages:

• Vulnerabilities of Integrated LLMs: IPIs represent a significant risk, 
exploiting the trust placed in AI systems.

• Urgency for Comprehensive Defenses: Highlighting the need for 
advanced security measures to protect against evolving IPI threats.
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Comprehensiv
e Evaluation & 
Experimental 
Setup

2/21/2024

Research Objective:

• Examine the resilience of LLM-integrated applications against 

the backdrop of indirect prompt injections, focusing on real-

world applicability and response accuracy under threat 

scenarios.

Experimental Design:

• Synthetic Applications: Development of mock applications using 

OpenAI's APIs (e.g., text-davinci-003, gpt-4) to demonstrate 

attack feasibilities.

• LangChain and ReAct Utilization: Employing LangChain for 

dynamic prompt management in text-davinci-003 and comparing 

with direct instruction methods in GPT-4.

• Interface Integration: Incorporation of functionalities like Search, 

View, Retrieve URL, Read/Send Email, Read Address Book, and 

Memory for comprehensive testing.
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Real-World 
Application 
Testing

2/21/2024

Extension to Real-World Applications

• Bing Chat Analysis: Testing indirect prompt injections within Bing 

Chat, leveraging its GPT-4 model and chat modes for dynamic 

interaction scenarios.

• Edge Integration Exploit: Utilizing Microsoft Edge's Bing Chat 

sidebar feature to examine indirect prompt injections via local 

HTML comments, simulating potential real-world attack vectors.

Github Copilot Vulnerability Assessment

• Github Copilot Testing: Examination of how Github Copilot, 

powered by OpenAI Codex, responds to manipulated context for 

code auto-completion, identifying vulnerabilities to indirect prompt 

injections.

• Attack Implications: Discussing the potential for code-based 

prompt injections to alter software development processes and 

introduce security flaws.
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Introduction to 
Threat 
Demonstrations

2/21/2024
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Unpacking 
Indirect 
Prompt 
Injection 
Threats

2/21/2024

• Insight on LLM Manipulation: 

Demonstrations show that LLMs can be 

steered by indirect prompts, blurring the 

lines between data and instructions.

• Filter Evasion: Indirectly injected 

prompts bypass conventional chat filters, 

revealing a critical vulnerability in LLMs 

like Bing Chat.

• Persistence Across Sessions: Once 

injected, LLMs can maintain the malicious 

directives, consistently influencing the 

session's direction.
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Exploiting Information 
Gathering

2/21/2024

Information Extraction via Compromised LLMs

• Objective: Manipulate LLMs to extract 

sensitive user information such as real names, 

crucial for targeted attacks against private 

individuals or groups.

• Technique: Injecting crafted prompts in 

locations frequented by target users, utilizing 

LLM's functionalities for data exfiltration.

• Findings: Successful data retrieval in scenarios 

using synthetic applications and real platforms 

like Bing Chat, underlining significant privacy 

threats.
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Orchestrating Fraud with LLMs

2/21/2024

LLMs as Facilitators of Fraudulent Schemes

• Scenario Analysis: Using Bing Chat to conduct 

phishing by misleading users into surrendering 

personal details or following malicious links.

• Method Evolution: LLMs introduce novel 

avenues for spreading traditional web attacks, 

automating intricate social engineering without 

explicit human input.

• Real-World Implications: Continuous 

manipulation capabilities demonstrated by Bing 

Chat, sustaining deceptive narratives 

effectively.
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Malware 
Distribution 
and System 
Intrusion

2/21/2024

• Malware Spreading: Detail instances where users 

are directed to harmful websites through LLM 

guidance, facilitating malware distribution.

• Intrusion Strategy: Showcasing compromised LLMs 

retrieving attacker commands, transforming into 

remote-controlled gateways for further attacks.

• Persistence and Memory: Highlighting the ability of 

LLMs to store and recall injected malicious content, 

posing risks of long-term system compromise.
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Advanced Injection Hiding 
Techniques

2/21/2024

1. Multi-Stage Exploit Methodology:

• Concept Overview: Small injections masked within legitimate content 
trigger the LLM to autonomously retrieve a more significant, hidden 
payload.

• Practical Execution: Demonstrated with a synthetic application 
scenario where the LLM, prompted by tainted Wikipedia markdown 

content, unknowingly searches for a keyword specified by the 
attacker.

• Outcome: The secondary payload, invisible in the direct user 
interaction, manipulates the LLM into executing actions under the 
attacker's control.

2. Encoded Injections Approach:

• Technique Explanation: Utilizing Base64 encoding to camouflage 
malicious instructions, effectively bypassing conventional defense 
mechanisms within chat interfaces.

• Real-World Application: Implementation showcased in Bing Chat, 
where encoded indirect prompts are decoded internally by the LLM and 
executed as normal commands, remaining undetected by both users 
and system filters.

• Operational Success: Highlighting the efficiency of this approach, the 
attack manipulates Bing Chat without direct exposure, showcasing the 
potential for discreetly guiding the LLM towards unintended actions.
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Implications:

2/21/2024

• Underlines the necessity for enhanced 

detection techniques that can identify 

hidden and encoded malicious intents.

• Emphasizes the evolving complexity of 

threats posed by sophisticated indirect 

prompt injections in LLM-integrated 

applications.
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Ethical 
Implication
s and 
Research 
Boundaries

2/21/2024

•Ethical Considerations:

•Community Impact: Discusses the significant ethical concerns due to the 

widespread use of LLMs and their integration into daily applications.

•Responsible Disclosure: Details the process of notifying relevant entities such 

as OpenAI and Microsoft about discovered vulnerabilities to mitigate potential 

harm while emphasizing transparency.

•Security Grey Areas:

•Prompt Modulation Challenges: Examines the complexities and grey areas in 

securing LLMs against indirect prompt injections, a new frontier in cybersecurity 

vulnerabilities.

•Defense Mechanisms: Considers the ongoing struggle to develop effective 

safeguards against sophisticated attacks that exploit the malleable nature of 

LLM responses.

•Limitations of Experimental Setup:

•Synthetic Scenarios: Acknowledges the limitations due to the use of synthetic 

applications and local HTML setups, aiming to prevent real-world repercussions 

while understanding the theoretical impact.

•Scope of Testing: Discusses the constraints in replicating real-world scenarios 

accurately, which may affect the generalizability of the findings.
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Exploring 
New Attack 
Avenues

2/21/2024

1. Multi-modal Injections:

• Emerging Concerns: Discuss the complexities and potential risks 

associated with multi-modal models like GPT-4, where injections 

could be hidden within both visual and textual elements.

• Preventative Measures: The necessity for research into detection 

methods capable of identifying subtle manipulations across 

different data types.

2. Encoded Injections:

• Innovative Evasion: Examination of how encoding techniques like 

Base64 can obscure malicious prompts from traditional scanning 

tools.

• Security Evolution: Urges the development of advanced analytical 

tools that can decode and assess the content before it's 

processed by LLMs.

3. Autonomous Agents:

• New Security Paradigms: With the advent of more independent AI 

systems, there's an increased risk of these agents performing 

unintended actions due to hidden injections.

• Regulatory and Ethical Considerations: Calls for a balanced 

approach in designing autonomous systems that are both effective 

and secure.
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Navigating 
the Ethical 
Labyrinth: 
AI in 
Society

2/21/2024

• Impact on Trust:

• Discuss the detrimental effects of indirect prompt injections 

on user trust towards AI technologies and their providers. 

Highlight real-world instances where AI missteps have led to 

public skepticism and fear.

• Propose strategies for rebuilding and maintaining trust, such 

as implementing robust testing phases, transparent AI 

decision-making processes, and user education programs.

• Transparency and Accountability:

• Emphasize the critical need for developers and corporations 

to adopt transparent practices in AI development and 

deployment. This includes disclosing the capabilities and 

limitations of AI systems to users and stakeholders.

• Outline the framework for accountability in cases of AI 

failure or misuse, including ethical guidelines, regulatory 

compliance, and remediation processes.
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Societal 
Impact:

2/21/2024

• Information Integrity:

• Examine the challenges in maintaining the accuracy and 

reliability of AI-generated information. Discuss the 

implications of misinformation and the spread of 

inaccuracies on social discourse and individual decision-

making.

• Present potential solutions such as cross-referencing AI 

outputs with trusted data sources, user feedback loops, and 

the integration of fact-checking mechanisms.

• Privacy and Security:

• Address the complex issues surrounding user privacy and 

data security in the context of AI innovations. Detail how 

indirect prompt injections pose risks to personal data 

integrity and user confidentiality.

• Suggest protective measures such as data anonymization, 

encryption, secure AI model training environments, and 

comprehensive privacy policies that align with global 

standards like GDPR or CCPA.
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Securing 
Tomorrow: 
Concluding 
Insights on 
LLM 
Security

2/21/2024

Evolving LLM Applications:

• Transition to Interconnected Systems: LLMs are evolving from standalone 

entities into complex ecosystems with external API connections and varied input 

sources.

• Security Implications: This evolution introduces new risks, notably allowing 

indirect prompt injections to subvert established security protocols, thus 

influencing user interactions unpredictably.

Innovative Attack Vector Exploration:

• Pioneering Research: Initiated an exploration into the novel threat landscape 

presented by modern LLM applications, applying foundational computer security 

concepts.

• Taxonomy Development: Developed a structured taxonomy to systematically 

categorize and understand the nuances of these emerging vulnerabilities.

Practical Threat Demonstrations:

• Real-World Validations: Executed thorough demonstrations on both fabricated 

and actual systems, including Bing Chat, to validate the theoretical vulnerabilities 

identified.

• Insightful Discoveries: These real-world experiments have underscored significant 

susceptibilities within current LLM deployments, affirming the necessity for 

heightened security awareness and response strategies.
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Concluding 
Insights on 
LLM 
Security

2/21/2024

Comprehensive Security Dialogue:

• Wider Consequences: Delved into the extensive implications of our findings, 

evaluating the potential risks to end users and the future trajectory of AI 

applications.

• Research Significance: Emphasized the critical role of this initial investigation in 

setting the stage for future in-depth security evaluations and the formulation of 

comprehensive defense mechanisms.

Call to Action:

• Collaborative Imperative: Call for a unified effort among the tech community, 

regulatory bodies, and academia to confront these emerging security challenges 

head-on.

• Security Prioritization: Urge the AI sector to embed security as a core component 

in the lifecycle of AI development, from ideation through to deployment and 

ongoing maintenance.

Vision for the Future:

• Aspirational Goals: Envision a future where AI systems are not only innovative but 

also inherently secure, fostering trust and enabling positive user experiences.

• Dedicated Research Advancement: Reiterate the commitment to pushing the 

boundaries of AI security research to safeguard ethical standards and ensure the 

safe utilization of autonomous technologies.
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Jailbreak Attacks on LLMs

• Jailbreak attacks on LLMs

▪ Wei et al. (2023) Jailbroken: How Does LLM Safety Training Fail?

• The paper reviews and evaluates various jailbreak attacks against LLMs

• The authors identified two main failure modes for the jailbreak attacks:

▪ Competing objectives and mismatches generalization

• Evaluation of GPT-4 and Claude against existing and newly designed jailbreak 
attacks indicates that many of the attacks are effective

• Conclusions

▪ LLMs are vulnerable to jailbreak attacks, despite the extensive alignment and safety-
training efforts

▪ Creators of LLMs should put emphasis on developing advanced safety mechanisms

Jailbreak Attacks on LLMs

https://arxiv.org/abs/2307.02483
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Jailbreak Attacks on LLMs

• To mitigate risks of misuse, creators of LLMs implement safety mechanisms to 
ensure safe model behavior

▪ During model training, an alignment phase is implemented (such as RLHF) to ensure 
that the answers by LLMs are aligned with human values, and LLMS refuse to 
provide offensive or harmful responses

▪ After model training, a red teaming phase is implemented to identify additional 
vulnerabilities, weaknesses, or biases, and further improve the safety and robustness

o The term red teaming originates from the military context, where an independent group (the 
red team) act as an adversary and is tasked to identify potential risks or gaps in security and 
operational plans

o In LLMs, red teaming is evaluating the model for undesirable behaviors: the goal is to create 
prompts that would trigger the model to generate text that is likely to cause harm

o This requires creative thinking to force the LLM to respond with inappropriate outputs or to 
reveal learned biases

o The outputs from red teaming are used to retrain the model in order to be less likely to cause 
harm or to reduce undesirable responses

Jailbreak Attacks on LLMs
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Red Teaming for Revealing Biases in LLMs

• These are examples of learned biases by LLMs found by instructing the model to 
respond in code instead of natural language

Jailbreak Attacks on LLMs
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Jailbreak Attacks on LLMs

• Jailbreak attack, in the general meaning of the term, refers to techniques for 
bypassing the security mechanisms of a device or a system

▪ The attack is typically used to gain unauthorized access to the device

o E.g., in cybersecurity, for gaining root access (administrator access) over the operating system 

o To install unauthorized applications, modify system settings, access sensitive data, etc.

• To “jailbreak” an LLM refers to avoiding or bypassing the restrictions placed on 
the model by its creators

• Jailbreaking an LLM can involve:

▪ Altering the behavior of the LLM to generate outputs that the model was not 
originally designed for

o Produce harmful content by LLMs

▪ Removing constraints or limitations imposed on the model by the developers

o Extract personally identifiable information from LLMs

▪ Adding new features or plugins to the LLM, that were not initially provided by the 
creators

Jailbreak Attacks on LLMs
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Failure Mode: Competing Objectives

• LLMs are trained for language modeling, instruction following, and safety

▪ There is a tension between the LLM being helpful (by instruction following) and 
being safe (by not causing harm)

• Competing objectives arise when there is a conflict between the LLM’s 
pretraining/instruction-following objectives and safety goals

▪ Prefix Injection jailbreak attack – start the response with the provided prefix 

o Left: GPT-4 refuses a prompt for harmful behavior; Right: jailbreak attack elicits the behavior

Jailbreak Attacks on LLMs
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Failure Mode: Competing Objectives

• Refusal Suppression jailbreak attack via competing objectives

▪ The user instructs the LLM to not use refusal words in the response

▪ Such instructions make unsafe responses more likely

Jailbreak Attacks on LLMs
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Failure Mode: Competing Objectives

• Style Injection jailbreak attack via competing objectives

▪ Instructing the LLM to respond only with short words

▪ This reduces the likelihood that the LLM will follow the written refusal by its creators

• DAN jailbreak attack via competing objectives

▪ Instruct the LLM to play the character DAN (Do Anything Now), and behave as an 
unethical, immoral, and deceptive chatbot

Jailbreak Attacks on LLMs
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Failure Mode: Mismatched Generalization

• Pretraining LLMs is performed on a very large and diverse datasets

▪ Safety training of LLMs is performed on much smaller datasets

▪ Therefore, LLMs have many capabilities not covered by safety training

• Mismatched generalization is due to greater generalization capability for dialog 
generation and instruction following, but lower safety capability

▪ Base64-encoding jailbreak attack via mismatched generalization

o Left: Claude v1.3 refuses the prompt; Right: jailbreak attack with Base64-encoded inputs (the 
model has seen such inputs in the training data, but hasn’t seen them in the safety training data)

Jailbreak Attacks on LLMs
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Failure Mode: Mismatched Generalization

• Other examples of jailbreak attacks via mismatched generalization 

▪ Obfuscation schemes

o Character-level obfuscation: replace characters with Morse code, or with visually similar 
numbers and symbols

o Word-level obfuscation: replace sensitive words with synonyms, or split sensitive words into 
sub-words

o Prompt-level obfuscation: ask questions in other languages for which safety training hasn’t 
been performed

▪ Distractor instructions

o Include many random requests written in a row

▪ Style injection

o Ask for responses in unusual output formats (e.g., JSON)

▪ Web content generation

o Ask for content from a website that is in the training data, but is not in the safety training data

Jailbreak Attacks on LLMs
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Empirical Evaluation of Jailbreak Attacks

• The authors define restricted behaviors as behavior that a safety-trained LLM is 
trained to avoid or refuse to answer

▪ Such behaviors are harmful and can create misinformation or aid crime

• A jailbreak attack is an attempt to elicit a response to prompt 𝑃 for restricted 
behavior by submitting a modified prompt P’

▪ The users are considered to have black-box access to the model, and they can query 
the model

• To evaluate the success of a jailbreak attack, three classes of outcomes are 
defined

▪ Good Bot – refuses P’

▪ Bad Bot – responds to P’

▪ Unclear – responds on a different topic

Jailbreak Attacks on LLMs
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Empirical Evaluation of Jailbreak Attacks

• Datasets for evaluation

▪ 32 prompts adapted from red teaming at OpenAI and Anthropic (shown below)

▪ 317 prompts auto-generated by GPT-4

Jailbreak Attacks on LLMs
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Empirical Evaluation of Jailbreak Attacks

• Jailbreak attacks for evaluation

▪ 30 jailbreak attacks were evaluated (all attacks are listed in the paper)

▪ Four combination attacks were used, that combine different jailbreak attacks

o Combination 1 - combines prefix injection, refusal suppression, and Base64 attacks

o Combination 2 - combines prefix injection, refusal suppression, Base64, and style injection

o Combination 3 - combines prefix injection, refusal suppression, Base64, style injection, and 
website content generation

o AIM – combines roleplay with prefix injection and style injection

▪ Adaptive attack – simulates an adaptive adversary who can choose the attack based 
on the prompt, i.e., it succeeds if any of the evaluated attacks succeed

• The results are presented in the table on the next page

▪ The combination attacks are the most effective in causing Bad Bot response

▪ Based on adaptive attack, at least one attack was successful for both GPT-4 and Claude

Jailbreak Attacks on LLMs
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Empirical Evaluation of Jailbreak Attacks

• Results for the dataset of 32 prompts 

Jailbreak Attacks on LLMs
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Jailbreak Attacks on LLMs

• Results for the combination attacks on the dataset of 317 prompts 

▪ The attacks are effective on GPT-4 and Claude 

Jailbreak Attacks on LLMs
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Conclusions

• Scaling can increase LLM vulnerabilities

▪ Larger models trained on larger datasets will improve capabilities

o This will result in increased mismatched generalization

o LLM scaling will require to increase the efforts for safety training

• Advanced safety capability is recommended

▪ Safety mechanisms of current LLMs are not as sophisticated as the model training 
mechanisms

▪ Human labelers may struggle to evaluate obfuscated adversarial inputs and outputs

▪ Future LLMs can be used for safety training of other LLMs

Jailbreak Attacks on LLMs
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