
CS 487/587

Adversarial

Machine Learning

Dr. Alex Vakanski

2

CS 487/587, Spring 2024

Lecture 9

Defenses against Poisoning Attacks

3

CS 487/587, Spring 2024

Lecture Outline

• Poisoning defenses

▪ Blind backdoor removal

▪ Offline inspection

▪ Online inspection

▪ Post backdoor removal

• Presentation by Iris Wang

▪ Wang (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural
Networks

• SentiNet – Chou (2020)

4

CS 487/587, Spring 2024

Defenses Against Poisoning Attacks

• Defense strategies against poisoning adversarial attacks were categorized in Gao
et al. (2020) into:

▪ Blind backdoor removal

o The user is not sure whether the data or the model were poisoned

o The user applies defense methods for removing or suppressing backdoors in input samples

o Or, the user cleans the model to reduce the impact of poisoning

▪ Offline inspection

o Defense methods are applied before the model is deployed

o If the user has access to the data, the user removes the poisoned samples

o If the poisoned data is not available, the user cleans the backdoored model

▪ Online inspection

o Defense methods are applied to monitor the performance during run-time

o The user either inspects the incoming inputs to remove poisoned data

o Or, the user evaluates the model to determine abnormal behavior

▪ Post backdoor removal

o If any of the above defenses have identified backdoored sample, these defense methods are
applied to remove the backdoor

Poisoning Defenses

5

CS 487/587, Spring 2024

Blind Backdoor Removal Defenses

• Blind backdoor removal

▪ This defense approach does not differentiate the backdoored model from a clean
model (hence, it blindly applies backdoor removal)

▪ The goal is to remove or suppress the effect of a potential backdoor while achieving
high accuracy on clean inputs

▪ The defense can be performed either offline or online

• Fine-pruning defense

▪ Liu (2018) Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural
Networks

▪ Remove potential backdoor by pruning the neurons in DNN with the smallest
contribution to the classification task

o The main assumption is that different neurons are activated by clean and trigger inputs

▪ Step 1: sort all neurons based on the activation values on clean inputs (e.g., from a test
set) and remove those neurons with the smallest activation values

▪ Step 2: fine-tune the modified model with the pruned neurons

▪ Limitation: reduced accuracy on clean inputs

Blind Backdoor Removal Defenses

https://moyix.net/finepruning.pdf
https://moyix.net/finepruning.pdf

6

CS 487/587, Spring 2024

Blind Backdoor Removal Defenses

• Suppression defense

▪ Sarkar (2020) Backdoor Suppression in Neural Networks using Input Fuzzing and
Majority Voting

▪ The goal is to clean the triggers in poisoned images via fuzzing

▪ Step 1: create many replicas of each image (without knowing if they are clean or
backdoored images) by adding noise

o The noise level is experimentally determined for a dataset

▪ Step 2: train a DNN model using all fuzzied image replicas, and calculate a final
prediction based on majority voting of the predictions on all perturbed replicas of an
input image

▪ The defense achieved a success rate of 90% on backdoored images in MNIST, and 50%
on backdoored images in CIFAR-10

▪ Limitation: reduced accuracy on clean inputs, low success rate on CIFAR-10 images

• Note:

▪ Blind backdoor removal defense does not distinguish a backdoored model from a
clean model, or trigger inputs from clean inputs

▪ It usually reduces the accuracy on clean inputs

Blind Backdoor Removal Defenses

https://ieeexplore.ieee.org/document/8963957
https://ieeexplore.ieee.org/document/8963957

7

CS 487/587, Spring 2024

Offline Inspection Defenses

• Offline inspection defense

▪ The defense is applied before the model is deployed in production

▪ These defense strategy can be based on data inspection or model inspection

• Offline data inspection defense

▪ It is assumed that the poisoned data is available to the defender

• Spectral signature defense

▪ B. Tran (2018) Spectral Signatures in Backdoor Attacks

▪ Remove poisoned data samples based on outlier detection approach

▪ Step 1: train a DNN model to classify the available data that contains both clean and
poisoned samples

▪ Step 2: for each class, calculate SVD on the logit values of the model, and remove all
input samples that are outliers (i.e., have singular values greater than a threshold)

▪ Step 3: retrain the model with the remaining samples

▪ Limitation: may remove clean samples, requires some knowledge to establish the
threshold value for outlier detection

Offline Inspection Defenses

https://arxiv.org/abs/1811.00636

8

CS 487/587, Spring 2024

Offline Inspection Defenses

• Gradient clustering defense, activation clustering defense

▪ Chan (2019) Poison as a Cure: Detecting & Neutralizing Variable-sized Backdoor
Attacks in Deep Neural Networks

▪ Chen (2018) Detecting Backdoor Attacks on Deep Neural Networks by Activation
Clustering

▪ The assumption by this defense approach is that trigger inputs will produce either
large gradients at the trigger location, or large logit activation values

▪ Step 1: apply a clustering algorithm (e.g., k-mean clustering) to separate clean inputs
from trigger inputs, based on the gradient or activation values

▪ Step 2: remove or relabel the trigger inputs, and retrain the model

Offline Inspection Defenses

https://arxiv.org/abs/1911.08040
https://arxiv.org/abs/1911.08040
https://arxiv.org/abs/1811.03728
https://arxiv.org/abs/1811.03728

9

CS 487/587, Spring 2024

Offline Inspection Defenses

• Offline model inspection defense

▪ The defender has access to the backdoored model

▪ This defense approach does not assume that poisoned data is available to the defender

o Therefore, the assumptions are more realistic

• Neural cleanse

▪ Wang et al. (2019) Neural Cleanse: Identifying and Mitigating Backdoor Attacks in
Neural Networks

▪ The defense iterates though all labels to determine if any label requires much smaller
perturbation to be applied to the inputs to achieve misclassification

o An optimization algorithms is applied to reverse engineer the trigger

o The reverse-engineered trigger is used to retrain the model, and remove the backdoor

▪ Limitations: high computational costs for models with large number of classes, the
reverse-engineered trigger is not always consistent with the original trigger

▪ This defense method is explained in more details in this lecture

Offline Inspection Defenses

https://people.cs.uchicago.edu/~ravenben/publications/pdf/backdoor-sp19.pdf
https://people.cs.uchicago.edu/~ravenben/publications/pdf/backdoor-sp19.pdf

10

CS 487/587, Spring 2024

NeuronInspect

• NeuronInspect

▪ Huang (2019) NeuronInspect: Detecting
Backdoors in Neural Networks via Output
Explanations

▪ Applies interpretability approaches to create
heatmaps for the target class and non-target
classes

o The heatmaps for the target class differ
significantly for clean and trigger inputs

o In the figure, the target class is 20 (third row),
and the trigger is noticeable in the heatmaps

▪ Outlier detection is then applied on the
produced heatmaps as a defense strategy

Offline Inspection Defenses

• Note:

▪ Offline model inspection requires high computational resources and time

▪ Most offline defense methods cannot deal with large-sized triggers

https://arxiv.org/abs/1911.07399
https://arxiv.org/abs/1911.07399
https://arxiv.org/abs/1911.07399

11

CS 487/587, Spring 2024

NeuronInspect

• NeuronInspect (cont’d)

▪ Explanation heatmaps for the Speed Limit 30 sign image, for all 43 classes of traffic signs

o The heatmap for label 20 is an outlier, in comparison to heatmaps for all other labels

Offline Inspection Defenses

12

CS 487/587, Spring 2024

Online Inspection Defenses

• Online inspection defense

▪ This defense is applied to monitor the behavior of input data or a model during run-
time

• Online data inspection defense

▪ Most defense methods apply some form of anomaly detection to check if the inputs
contain a trigger

• STRIP defense

▪ Gao (2019) STRIP: A Defense against Trojan Attacks on Deep Neural Networks

▪ Step 1: apply random noise to create many replicas of an input image

▪ Step 2: use the entropy of the replicas for anomaly detection

o Replicas of trigger images have high entropy (the predicted class is more uniform), whereas
clean images have low entropy (the predicted class is more random)

• SentiNet defense

▪ It is presented later in this lecture

▪ It applies explainability approach to discover regions that may contain a trigger, and
uses these regions to monitor incoming inputs

Online Inspection Defenses

https://arxiv.org/abs/1902.06531

13

CS 487/587, Spring 2024

Online Inspection Defenses

• Online model inspection defense

▪ Apply anomaly detection to identify abnormal behavior of a backdoored model

• ABS defense

▪ Liu (2019) ABS: Scanning Neural Networks for Back-doors by Artificial Brain
Stimulation

▪ Scan the DNN to identify individual neurons in the model with abnormally high
activation values

o If there is a large change in the neuron activation value for a specific label regardless of the
provided input samples, then the model is potentially poisoned

o Apply outlier detection to identify Trojaned models

▪ Limitation: the target label needs to be activated by only one neuron, instead by a
group of neurons

Online Inspection Defenses

Benign model with benign image Trojaned model with benign image Trojaned model with trigger image

https://www.cs.purdue.edu/homes/taog/docs/CCS19.pdf
https://www.cs.purdue.edu/homes/taog/docs/CCS19.pdf

14

CS 487/587, Spring 2024

Online Inspection Defenses

• NIC defense

▪ Ma (2019) NIC: Detecting Adversarial Samples with Neural Network Invariant
Checking

▪ Inspect the distribution of the activations by different layers of DNN to detect
abnormal behavior

o Determine if the flow of the activations is abnormal for some labels

▪ This approach requires to learn the distributions of the activations in an offline step

• Note:

▪ Online inspection approaches typically require some preparations to be performed
offline (e.g., determining a threshold to distinguish clean from trigger inputs)

▪ Also, these approaches can result in latency and can be less suitable for real-time
applications (e.g., self-driving vehicles)

Online Inspection Defenses

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-4_Ma_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-4_Ma_paper.pdf

15

CS 487/587, Spring 2024

Post Backdoor Removal Defenses

• Post backdoor removal defense

▪ Includes techniques to remove the backdoor, after it is identified by the previous
defense approaches

• If the defender has access to poisoned data, they can remove trigger inputs, and
retrain the model using only clean inputs

• Another approach is to change the labels of the poisoned inputs with triggers to
the correct labels, and then retrain the model

▪ For this defense approach, it is required to reverse-engineer the trigger

Post Backdoor Removal Defenses

Lecture 9
Defense against Poisoning Attacks

Iris Wang
March 26, 2024

17 / 20

Overview

• Main Claim
▪ The author proposed a technique to detect the backdoor attack and they

validated 3 methods to mitigate the backdoor attack.

• Limitations in Existing Work
▪ Fine-pruning: Defending against backdooring attacks on deep neural networks

▪ Neural trojans

▪ Targeted backdoor attacks on deep learning systems using data poisoning

▪ they only evaluated defenses against backdoor attacks. Neither of the two paper

offer dictions of the backdoor. Both of them assume the model has already

known it is to be infected.

▪ removes back- doors by pruning redundant neurons less useful for normal

classification, but this approach reduces the performance on Traffic Sign

Recognition dataset

▪ high complexity and high computation cost.

18 / 20

Presentation Outline

• Detection Backdoor
▪ The intuition behind backdoor detection

▪ Observation 1

▪ Observation 2

• Identify Backdoor
▪ Math derivation

▪ Reverse engineer

▪ Detection Process

• Mitigate Backdoor
▪ Filter

▪ Pruning the neurons

▪ Unlearning

• Experiment Result
▪ Detection result

▪ Identification result

▪ Mitigate result

19 / 20

Defense against Poisoning Attack

Intuition behind Backdoor Detection
Detection Identify Mitigate Experiment

• Classification problem is essentially creating partition in a multi-dimensional
space, each dimension capturing some features. The backdoor triggers create
“shortcuts” from within regions of the space belonging to a normal label into the
region belonging to target label.

20 / 20

Defense against Poisoning Attack

Observation 1
Detection Identify Mitigate Experiment

• For a fully trained trigger, to misclassify any arbitrary input into the targeted
label, the needed perturbation is bounded at trained trigger.

▪ 𝐿 represent the set of the output label in the DNN model. Consider a label 𝑙𝑖 ∈ 𝐿 and a
target label 𝑙𝑡 ∈ 𝐿, 𝑖 ≠ 𝑡. If there exists a trigger 𝑇𝑡. Then the minimum perturbation
needed to transform all inputs of 𝑙𝑖 (whose true label is 𝑙𝑖) to be classified as 𝑙𝑡is
bounded by the size of the trigger: 𝛿𝑖→𝑡 ≤ |𝑇𝑡|.

▪ For any arbitrary input, the formula can be written as 𝛿∀→𝑡 ≤ |𝑇𝑡|. The formula means
to misclassify any arbitrary input into target label 𝑡, the needed perturbation is
bounded at |𝑇𝑡|.

21 / 20

Defense against Poisoning Attack

Observation 2
Detection Identify Mitigate Experiment

• If there exists a backdoor trigger 𝐓𝐭, the boundary perturbation size |𝑇𝑡| is much
smaller than the perturbation needed in the clean model. The idea can be written
as

𝛿∀→𝑡 ≤ |𝑇𝑡| ≪ 𝑚𝑖𝑛𝛿∀→𝑡
𝑖,𝑖 ≠𝑡

▪ 𝑚𝑖𝑛𝛿∀→𝑡
𝑖,𝑖 ≠𝑡

 represent in a clean model, the minimum needed perturbation for any

arbitrary input ∀ with label 𝑖 to be misclassified as target label 𝑡.

22 / 20

Defense against Poisoning Attack

Math Derivation
Detection Identify Mitigate Experiment

• The author used reverse engineering to identify the trigger
▪ Reverse engineering(also known as backwards engineering)is a process or method

through which one attempts to understand how a previously made device, process,
system, or piece of software accomplishes a task with very little insight into exactly
how it does so

• The author firstly gave the definition of trigger:

𝐴 𝑥, 𝑚, ∆ = 𝑥′

▪ 𝑥 is the original image;

▪ ∆ is the trigger pattern; which is a 3D matrix of pixel color intensities with the same
dimension of the input image (height, width, and color channel) . That means we can
add colorful trigger into the original image;

▪ 𝑚 is s a 2D matrix called the mask, deciding how much the trigger can overwrite the
original image. Here the author uses a 2D mask (height, width), that means the same
mask value is applied on all color channels of the pixel. Values in the mask range from
0 to 1.

▪ 𝐴 𝑥, 𝑚, ∆ = 𝑥′ means we uses function 𝐴 ∙ and its inputs 𝑥, 𝑚, ∆ to generate the
adversarial image x′.

23 / 20

Defense against Poisoning Attack

Math Derivation
Detection Identify Mitigate Experiment

• To generate a specific adversarial image, the author uses the following formula

𝑥𝑖,𝑗,𝑐
′ = 1 − 𝑚𝑖,𝑗 ∗ 𝑥𝑖,𝑗,𝑐 + 𝑚𝑖,𝑗 ∗ ∆𝑖,𝑗,𝑐

▪ Here 𝑖 represents height index; 𝑗 represents width index; 𝑐 represents channel index; 𝑥𝑖,𝑗,𝑐

represent the intensity of the pixel at heigh 𝑖, width 𝑗 and channel 𝑐 .

▪ Because 𝑚𝑖,𝑗 in range [0,1], when 𝑚𝑖,𝑗 = 0 , the formula can be simplified as 𝑥𝑖,𝑗,𝑐
′ = 𝑥𝑖,𝑗,𝑐 ,

that means the adversarial image is exactly the same as original image, we didn’t add any

perturbation onto it;

▪ when 𝑚𝑖,𝑗 = 1, the formula can be simplified as 𝑥𝑖,𝑗,𝑐
′ =∗ ∆𝑖,𝑗,𝑐 , that means the adversarial

image is totally perturbation.

▪ Any other value between 0 and 1 means we add some perturbation into the original image.

24 / 20

Defense against Poisoning Attack

Math Derivation
Detection Identify Mitigate Experiment

• The optimization has two objectives

𝑚𝑖𝑛
𝑚,∆

 ℒ(𝑦𝑡 , 𝑓 𝐴 𝑥, 𝑚, ∆ + 𝜆 ∗ |𝑚|

▪ ℒ(𝑦𝑡 , 𝑓 𝐴 𝑥, 𝑚, ∆ is the regular cross entropy loss function, the first part is trying to
minimize the loss between the adversarial image and the target label;

▪ the second part is trying to minimize the size of trigger. 𝜆 here is a controlling
parameter.

▪ 𝜆 can be adjusted during the optimization process to make sure the attack success rate
is greater than 99%.

▪ The author uses Adam optimizer.

25 / 20

Defense against Poisoning Attack

Detection Steps
Detection Identify Mitigate Experiment

• In an infected model, it requires much smaller modifications to cause
misclassification into the target label than into clean labels. So the detection
process is that iterating through all labels of the model to see if any label requires
significantly smaller amount of modification to achieve misclassification into.

• The author uses Anomaly Index as measuring metrices in trigger identification.

• Detection steps:

▪ Step 1: For a given label, the author assumes it to be a potential target label of a targeted

backdoor attack, and then use reverse engineering trigger optimization to find the “minimal”

trigger required to misclassify all samples from other labels into this target label.

▪ Step 2: repeat Step 1 for each output label in the model. For a model with 𝑁 = |𝐿|, this

produces N potential “triggers”.

▪ Step 3: After calculating N potential triggers, the author measures how many pixels each

trigger has modified and run an outlier detection algorithm to find out if any trigger is

significantly smaller than other triggers. A significant smaller trigger is the real trigger, the

corresponding label with this trigger is the target label.

26 / 20

Defense against Poisoning Attack

Outlier Detection
Detection Identify Mitigate Experiment

• Based on the author’s derivation, if there exists outlier among the potential
trigger, the model is highly to be infected; if there does not exist outlier among
the potential trigger, the model is highly to be clean.

• The author uses Median Absolute Deviation (MAD) to detect outlier:

▪ For example, if there are 9 potential triggers for model F.

▪ The 9 potential trigger is is (1, 2, 2, 3, 5, 6, 9).

o The median value is 3.

▪ The absolute deviations about 3 are (2, 1, 1, 0, 2, 3, 6).

▪ sorted absolute deviations sequence ascendingly into (0,1,1,2,2,3,6).

o So the median absolute deviation for this data is 2.

▪ Anomaly Index of a data point = absolute deviation of the data point / MAD.

▪ Anomaly Index of the above example sequence is (0/2, 1/2, 1/2, 2/2, 2/2, 3/2, 6/2),
simplified as (0, 0.5, 0.5, 1, 1.5, 3)

27 / 20

Defense against Poisoning Attack

Outlier Detection
Detection Identify Mitigate Experiment

• The author uses Median Absolute Deviation (MAD) to detect outlier:

▪ Based on Median Absolute Deviation algorithm, assuming the underlying distribution
to be a normal distribution, a constant estimator (1.4826) should be applied to
normalize the anomaly index. Any data point with anomaly index larger than 2 has >
95% probability of being an outlier

o Apply this rule to the above example, the results is (0*1.4826, 0.5*1.4826, 0.5*1.4826, 1*1.4826,
1.5*1.4826, 3*1.4826).

o can be simplified as (0, 0.7413, 0.7413, 1.4826, 2.2239, 4.4478).

o The last two number, i.e. (6,9) has 95% probability to be outliers.

▪ So the model F is probably infected.

28 / 20

Defense against Poisoning Attack

Filter Adversarial Inputs
Detection Identify Mitigate Experiment

• The author used reverse engineering to understand which neurons are activated
by triggers and build a proactive filter to detect and filter out the adversarial
input that activate all the backdoor-related neurons.

• To find the back-door related neurons

▪ The author measured the difference of neuron activation between clean image and
adversarial image at the target layer.
o neuron activation refers to the computation of a neuron's output based on its inputs, weighted sum, and

activation function.

▪ Empirically, the author found that the top 1% of neurons are sufficient to enable the
backdoor, neuron activations are much higher in adversarial images than clean
images, ranging from 3x to 7x.

3.5
6.3
7.3
3.5
3.7
5.7

29 / 20

Defense against Poisoning Attack

Filter Adversarial Inputs
Detection Identify Mitigate Experiment

• The author built the filter based on neuron activation profile for reversed trigger.
This is measured as the average neuron activations of the top 1% of neurons in
the second to last layer. The filter defines a threshold, if some input’s neuron
activation higher than the threshold, it should be adversarial inputs.
▪ E.g. if the threshold is 2x, adversarial input in all dataset can be filter out; if the threshold is 4x,

adversarial input GTSRB, YouTube Face and Trojan Watermark can be filtered out;

• The author used FP and FN as measuring metrics in proactive filter.

3.5
6.3
7.3
3.5
3.7
5.7

30 / 20

Defense against Poisoning Attack

Neuron Pruning
Detection Identify Mitigate Experiment

• The intuition is to identify backdoor related components in DNN, e.g., neurons
and set the output of these neurons as 0 during inference.

• To minimize impact on classification accuracy of clean inputs, the author stop
pruning when the pruned model is no longer responsive to the reversed trigger.

• Pruning is less effective in Trojan models because of dissimilarity in neuron activations
between reversed trigger and original trigger.

• The performance depends on choosing the right layer to prune neurons,

31 / 20

Defense against Poisoning Attack

Unlearning
Detection Identify Mitigate Experiment

• Instead of training the model on original trigger, train the model on reversed
trigger with correct label.

• The author compare unlearning versus two variants:

▪ applying the original trigger instead of the reverse- engineered trigger for the 20%

▪ compare against unlearning using only clean training data

32 / 20

Defense against Poisoning Attack

Detection Result
Detection Identify Mitigate Experiment

• The result shows the anomaly index for all 6 infected, and their matching
original (clean) models. All infected models have anomaly index larger than 3,
indicating > 99.7% probability of being an infected model. (left figure)

• Compare L1 norm of clean label and infected label, the infected label is always
below the median and much smaller than the smallest of the clean labels(right)

33 / 20

Defense against Poisoning Attack

Filtering Result
Detection Identify Mitigate Experiment

• The author calculate false positive rate (FPR) and false negative rate (FNR) when
setting different thresholds for average neuron activation

▪ For BadNets(the left four groups), achieved low FNR and FPR. FNR < 1.63% at an FPR
of 5%. (the leftmost group)

▪ For trajon attack(the right two groups) FNR is much higher. obtain a reasonable 4.3%
and 28.5% FNR at an FPR of 5%.(the rightmost two groups)

34 / 20

Defense against Poisoning Attack

Neuron Pruning Result
Detection Identify Mitigate Experiment

• For BadNets, Pruning 30% of neurons reduces attack success rate to nearly
0%(shown as red line in left figure).

• For Trojan models, pruning 30% neurons, attack success rate using reverse
engineered trigger drops to 10.1%, but success using the original trigger remains
high, at 87.3%(shown as red line in left figure).

35 / 20

Defense against Poisoning Attack

Unlearning Result
Detection Identify Mitigate Experiment

• The author to reduce attack success rate to < 6.70%(shown in purple underscore),
without significantly sacrificing classification accuracy

▪ The largest reduction of classification accuracy is in GTSRB, which is only 3.6%
(shown in red underscore).

▪ For trojan Attack, there is an increase in classification accuracy after patching (shown
in green underscore)

36 / 20

Reference

• 1. https://en.wikipedia.org/wiki/Reverse_engineering

• 2. https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-
outliers/

https://en.wikipedia.org/wiki/Reverse_engineering

37

CS 487/587, Spring 2024

SentiNet

• SentiNet

▪ Chou (2020) - SentiNet: Detecting Localized Universal Attacks Against Deep Learning
Systems

• SentiNet defense is effective with poisoning attacks that are:

▪ Localized: the trigger is constrained to a small portion of an image

▪ Sample-agnostic (universal): the same trigger is applied to all images

• Approach:

▪ First, apply explainability approaches to discover regions in input images that may
contain a backdoor trigger

▪ Second, extract those regions and patched them on many clean images with correct
ground-truth labels

o If the patched images are misclassified, the extracted patch contains a backdoor trigger

• This defense is effective against data poisoning and trojaned networks

SentiNet

https://trouge.net/papers/SentiNet_DLS2020.pdf
https://trouge.net/papers/SentiNet_DLS2020.pdf

38

CS 487/587, Spring 2024

SentiNet

• Phase 1: Adversarial object localization

▪ The goal is to localize the region that might contain the trigger

▪ Step 1: Class proposal

o Identify all possible classes by a model 𝑓𝑚 for an input image via segmentation

o Segment the objects in an image, and for each object return a prediction

o This set of predictions will exclude the actual prediction by the model

▪ Step 2: Mask generation

o Use Grad-CAM to identify regions in the image the have the greatest influence for each
predicted class C (for all objects from Step 1)

o Grad-CAM is an approach for explainable Machine Learning that outputs a heatmap of the
most important regions in an image for a class C

SentiNet

39

CS 487/587, Spring 2024

SentiNet

• The heatmap of Grad-CAM for a poisoned image may cover both the malicious
trigger and benign portions of the image

• To improve the mask M, the authors subtracted the heatmap obtained by Grad-
CAM for clean images (middle sub-figure below)

▪ This resulted in masks that contain the trigger mostly, and less of benign regions

SentiNet

40

CS 487/587, Spring 2024

SentiNet

• Phase 2: Adversarial attack detection

▪ Step 1: Test set generation

o Overlay the mask region M with the malicious trigger on a set of benign images

o Evaluate the model on this set of mutated images

o If the accuracy of the model is low, the suspected mask region M is a malicious trigger

▪ Step 2: Boundary analysis

o Create a second set where the content of the mask region M is replaced with Gaussian noise
(referred to as inert pattern)

o It is expected that the inert pattern will not impact significantly the decision by the model

o Analyze the decision boundary between images with inert pattern and suspected region

SentiNet

41

CS 487/587, Spring 2024

SentiNet

• Decision boundary analysis

▪ Red triangles are poisoned samples, blue circles are clean samples

▪ Horizontal axis: average confidence of the model, vertical axis: number of fooled
images (images misclassified by the model)

o One possible approach to separate the samples is to apply a threshold value

o The authors implemented a binary classifier to approximate the decision boundary based on
the available set of clean samples

SentiNet

42

CS 487/587, Spring 2024

SentiNet

• Evaluation of SentiNet on Trojaned network attack (face detection), backdoor
attack (traffic sign recognition), and adversarial patch attack (ImageNet image
classification)

▪ Bottom row: decision boundaries (solid lines) and thresholds (dashed lines)

▪ SentiNet achieved high success rate for all three attacks, between 85% and 99%

SentiNet

Trigger Image Trigger Image Trigger Image

	Slide 1: CS 487/587 Adversarial Machine Learning
	Slide 2: Lecture 9
	Slide 3: Lecture Outline
	Slide 4: Defenses Against Poisoning Attacks
	Slide 5: Blind Backdoor Removal Defenses
	Slide 6: Blind Backdoor Removal Defenses
	Slide 7: Offline Inspection Defenses
	Slide 8: Offline Inspection Defenses
	Slide 9: Offline Inspection Defenses
	Slide 10: NeuronInspect
	Slide 11: NeuronInspect
	Slide 12: Online Inspection Defenses
	Slide 13: Online Inspection Defenses
	Slide 14: Online Inspection Defenses
	Slide 15: Post Backdoor Removal Defenses
	Slide 16: Lecture 9 Defense against Poisoning Attacks
	Slide 17: Overview
	Slide 18: Presentation Outline
	Slide 19: Intuition behind Backdoor Detection
	Slide 20: Observation 1
	Slide 21: Observation 2
	Slide 22: Math Derivation
	Slide 23: Math Derivation
	Slide 24: Math Derivation
	Slide 25: Detection Steps
	Slide 26: Outlier Detection
	Slide 27: Outlier Detection
	Slide 28: Filter Adversarial Inputs
	Slide 29: Filter Adversarial Inputs
	Slide 30: Neuron Pruning
	Slide 31: Unlearning
	Slide 32: Detection Result
	Slide 33: Filtering Result
	Slide 34: Neuron Pruning Result
	Slide 35: Unlearning Result
	Slide 36: Reference
	Slide 37: SentiNet
	Slide 38: SentiNet
	Slide 39: SentiNet
	Slide 40: SentiNet
	Slide 41: SentiNet
	Slide 42: SentiNet

