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Introduction to MoE

• Mixture of Experts (MoE) is a technique that combines multiple specialized 
models to handle complex tasks

▪ Instead of a single large model, MoE uses an ensemble of "expert" models focused on 
learning different aspects of a task

▪ MoEs are inspired by human teams, where experts collaborate on different aspects of 
a problem

Mixture of Experts

Figure from: https://www.tensorops.ai/post/what-is-mixture-of-experts-llm

https://www.tensorops.ai/post/what-is-mixture-of-experts-llm
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Introduction to MoE

• MoE employ the fact that that an ensemble of weaker ML models specializing in 
specific tasks can produce more accurate results, similar to traditional ML 
ensemble methods

▪ E.g., Random Forests, Gradient Boosting methods, Bagging ensembles

• Differently from ensemble methods, MoE introduce a new concept of dynamic 
routing of the input to be processed by different experts

Mixture of Experts



5

CS 487/587, Spring 2024

MoE Architecture

• An MoE system consists of two key components 

▪ Expert models, which can be neural nets or network layers, trained on different parts 
of the inputs (tokens)

▪ Gating network, which acts as a router and decides which expert(s) should process an 
input

Mixture of Experts
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MoE Working Principles

• The gating network analyzes the inputs, and routes each input to relevant 
expert(s)

▪ In some MoE architectures, each token is sent to more than one expert (e.g., to 2 
experts in Mixtral) 

▪ The experts' outputs are afterward combined through techniques like additive or 
multiplicative aggregation of the outputs

• During inference, for each input token only the chosen experts are activated, 
allowing efficient use of computational resources

Mixture of Experts
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MoE with Transformers

• In Transformers, sparse MoE layers are used instead of dense feed-forward 
network (FFN) layers 

▪ I.e., standard FFN layers are replaced with switching FFN layers 

▪ Each MoE layer has a certain number of experts (e.g., 4), where each expert is an FFN, 
and each processes specific tokens

▪ For example, in the figure, the router sends the token “More” to the second expert 
(FFN 2), and the token "Parameters” is sent to the first expert (FFN 1)

Mixture of Experts

Figure from the Switch Transformers paper: https://arxiv.org/abs/2101.03961

https://arxiv.org/abs/2101.03961
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Sparse Blocks

• In dense models (e.g., networks with fully-connected layers) all the parameters of 
the model are used for processing all inputs (e.g., tokens)

• In sparse models, the individual inputs are run only through some parts of the 
model

Mixture of Experts
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Sparse Blocks

• Sparsity uses the idea of conditional computation, where parts of the network 
are active on a per-token basis

▪ Therefore, sparsity allows to scale the size of the model without increasing the 
computation

• In Large Language Models, the size of the models (number of parameters) is 
directly proportional to the performance: largest models are the best performing

▪ Sparsity allows to train very large models with lower computational cost

▪ Also, sparsity allows to make inference with a trained sparse model much faster, in 
comparison to dense models

Mixture of Experts
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Routing

• Efficiently routing the tokens is one of the challenges for MoE

▪ In recent MoE, the gating network (router) is composed of learned parameters and is 
trained at the same time as the rest of the network

▪ I.e., the gating network is typically a simple neural network with a softmax function, 
which learns which expert to send each input to

Mixture of Experts

Figure from the Switch Transformers paper: https://arxiv.org/abs/2101.03961

https://arxiv.org/abs/2101.03961
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Routing

• In some cases, the gating network may converge to mostly activate the same few 
experts

▪ When all tokens are sent to just 2 or 3 experts, that makes the training inefficient

▪ I.e., the load is not properly balanced across all experts

• To mitigate the issue of load balancing, an auxiliary loss can be introduced 
during model training to encourage giving all experts equal importance

▪ The auxiliary loss ensures that all experts receive a roughly equal number of training 
examples

• In some models (e.g., Mixtral), each token is sent to the top-2 experts to improve 
load balancing

• There is significant research effort dedicated on efficient load balancing in MoE

Mixture of Experts
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Advantages of MoE

• The key advantages of MoE include faster pretraining thanks to sparse layers, and 
efficient inference by activating only required experts

▪ MoE LLMs are pretrained much faster than dense models with the same number of 
parameters

o Model capacity can be defined as the level of complexity that a model is capable of 
understanding or expressing

o The size of a model is one of the most important factors for enhanced model capacity, and 
given a fixed computing budget, training a larger model for fewer steps is preferred than 
training a smaller model for more steps

o E.g., Switch Transformers based on MoE achieved a 4x pretraining speed-up over the 
corresponding dense models

▪ Faster inference is very important for end-users 

o Although an MoE might have many parameters, only some of them are used during 
inference, that results in much faster inference compared to a dense model with the same 
number of parameters

▪ Faster pretraining and inference lead to potential savings in computational cost versus 
dense models

•  Similarly, MoE generate higher quality outputs by combining specialized experts 

Mixture of Experts
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Challenges of MoE

• MoE have high GPU memory requirements since all experts needs to be loaded into 
the memory for both training and inference

▪ E.g., loading all experts in Mixtral requires to load 49B parameters in the GPU VRAM 
memory, which creates challenges for users with low memory GPUs or a single low-
end GPU

• Finetuning MoE is more challenging than dense models, because sparse layers are 
more prone to overfitting

▪ Recent works have shown promising results and introduced strategies for finetuning 
MoE 

• MoE require to carefully balance tradeoffs between training costs and inference 
efficiency

▪ While offering faster inference, MoE require careful management of VRAM and 
computing resources

Mixture of Experts
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GPT-4's MoE

• Based on leaked information about Open AI’s GPT-4 language model, it is 
implemented using an MoE architecture

• It combines 8 expert models, each with 220B parameters

▪ This amounts to about 1.7T parameters, but the actual number of parameters can be 
somewhere between 1.2T and 1.7T parameters

• MoE allows GPT-4 to achieve superior quality while optimizing computational 
efficiency during inference

▪ MoE also allows to distribute the model across multiple GPUs while routing inputs 
dynamically

Mixture of Experts
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Mixtral: Open Source MoE

• Mixtral is an open-source MoE model with 47B parameters 

• It uses 8 expert Mistral-7B models  

▪ But Mixtral uses only about 12.9B parameters per input token through sparse routing

• This allows Mixtral to outperform much larger models

▪ It matches the quality of GPT-3.5 (175B parameters)

▪ It is 6X faster than LLaMa-70B parameter

Mixture of Experts
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Mixtral: Open Source MoE

• Mixtral outperforms or matches LlaMA 70B on many benchmarks

Mixture of Experts
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Mixtral: Open Source MoE

• It is important to note that although Mixtral uses 8 experts each having the form 
of a Mistral-7B model, it does not mean that each expert is a separate full 
network with 7B parameters, as shown in the figure below

▪ This design would yield a model with 8x7B = 56B parameters

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
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Mixtral: Open Source MoE

• The actual design of Mixtral is depicted in the figure below, where only the FFN 
layers are replaced with a sparse MoE block with 8 experts, and the remaining 
layers (including self-attention and normalization layers) are shared by all 
tokens

▪ Therefore, the entire Mixtral model has about 47B parameters, and not 8x7B = 56B 
parameters, due to the shared layers

▪ Each token is routed to two experts and processed by only 12.9B parameters (and not 
2x7B = 14B parameters)

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
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What Does an Expert Learn

• A recent work studied the experts in Mixtral on the MMLU benchmark 

▪ MMLU includes multiple-choice questions on 57 topics, such as abstract algebra, 
world religions, professional law, anatomy, astronomy, business ethics, etc.

▪ Left figure: in layer 32, for abstract algebra questions, the model makes use of experts 
3 and 8 much more than the other experts

▪ Right figure, in the area of professional law, in layer 32 the model mostly activates 
expert 4 while muting experts 3 and 8

▪ However, since the tokens are routed through 32 transformer blocks, there are so 
many expert combinations, and it is difficult to analyze precisely what each expert is 
learning 

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
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Future Potential of MoE

• MoE offer the potential for building scalable, efficient AI models across domains 
and applications

• Current open-source MoE LLMs include:

▪ Switch Transformers (Google), family of models from 8 to 2048 experts, the largest 
model has 1.6T parameters

▪ NLLB MoE (Meta), an MoE variant of the NLLB translation model

▪ OpenMoE, a community effort that has released Llama-based MoEs

▪ Mixtral 8x7B (Mistral), 8 experts, 47B parameters

Mixture of Experts
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State Space Models

• State Space Models are a new types of architectures for LLMs 

▪ This type of architectures don’t use the attention mechanism

▪ They have potential to address some of the limitations of Transformer Networks, 
stemming from the attention mechanism

• The concept of State Space Models have been extensively used in control systems 
and system identification for many decades

• Mamba is a recent LLM that uses State Space Model architecture

▪ It demonstrates the potential to replace Transformer LLMs

State Space Models
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Transformers

• Transformers process textual inputs as sequences of tokens, and derive 
representations from previous tokens in text

• Attention scores are calculated between all token pairs, based on the relevance of 
one token for the meaning of another token in a specific context

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Transformers

• Transformer architecture allows parallelization, which speeds up training 
tremendously

▪ It is possible to distribute the training data in each batch across multiple GPUs

▪ Multi-head attention modules can be processed in parallel

▪ The tensors can also be split into smaller sub-tensors and processed in parallel

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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The Problem with Transformers

• Despite efficient training, Transformer architecture encounters a bottleneck 
during inference

• It requires to recalculate the attention scores for the entire sequence, making 
inference slow and computationally expensive for long sequences

▪ A sequence of length L requires L2 computations (to calculate the attention matrix of 
size L  × L)

▪ I.e., there is a quadratic computational cost increase with increasing the length of the 
context for generating text

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Pros and Cons of Transformers

• Pros

▪ Effective at modeling complex dependencies: every token explicitly attends to all other 
previous tokens, via attention mechanism

▪ Highly parallel training: the core operations are matrix multiplications which can be 
parallelized across many GPUs

• Cons

▪ Quadratic scaling with context length: since every input attends to all prior inputs, the 
total amount of computation accelerates as the number of tokens increases

▪ Autoregressive inference is expensive: the attention scores needs to be recalculated for 
every new token

State Space Models
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RNNs Overview

• Recurrent Neural Networks (RNNs) have a looping mechanism (recurrence) that 
allows to pass information from a previous step to the next

▪ At each step, the network takes the input at time step t and a hidden state of the 
previous time step t-1, to generate the next hidden state and predict the output

▪ E.g., to calculate the output yt+1, RNN needs only the input xt+1 and the corresponding 
hidden state 

o RNNs do not need access to all previous inputs for calculating yt+1 

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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RNNs Overview

• RNNs can do inference fast, since they scale linearly with the sequence length

▪ When generating the output, the RNN only needs to consider the previous hidden 
state and current input

o It does not need to recalculate all previous hidden states, as in Transformer

▪ Each hidden state is an aggregation (compressed view) of all previous hidden states

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


28

CS 487/587, Spring 2024

The Problem with RNNs

• RNNs suffer from forgetting information over time 

▪ The last hidden state to produce the name “Maarten” may not contain information 
about the word “Hello” 

• Training cannot be done in parallel since RNNs need to go through each step at a 
time sequentially

▪ GPUs have enormous throughput for parallel computation, but are otherwise very 
slow for sequential computation

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Pros and Cons of RNNs

• Pros

▪ Efficient autoregressive inference: since the hidden state encapsulates all prior inputs, 
the model only needs to consider a small set of new information for each subsequent 
input

▪ No limits to context length at inference: there is nothing in the formulation of RNNs 
that constrains the model to a maximal sequence length

• Cons

▪ Ineffective modeling of complex sequential dependencies: all prior context must be 
compressed into a hidden state having a fixed amount of bits

▪ Slow training: training requires sequential backpropagation through time, making 
poor utilization of GPUs

State Space Models
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Transformers vs RNNs

• The problems with RNNs and Transformers are completely opposite 

▪ Potential solution are State Space Models architectures, which allow fast inference 
similarly to RNNs, but can also use kernels and be parallelized during training 
similarly to Transformers

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models

• State Space represents a system's possible states using the minimum number of 
variables

▪ For instance, to navigate through a maze, the state space is the map (space) of all 
possible locations (states)

▪ The “state space representation” is a simplified description of this map, consisting of 
the current state, possible future states, and the changes required to get to the next 
state (going right or left)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models

• SSM equations describe state representations and predict future states and 
outputs based on inputs

▪ SSM maps input sequences x(t) to latent state representations h(t) and derive predicted 
output sequences y(t)

▪ By solving these equations, SSM can predict the system states from observed data

o E.g., the location of an object moving in 3D space can be predicted from its state at time t 
through the two equations

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models

• Components of SSM equations:

▪ t represents time

▪ x(t) is input to the model, h(t) is latent (hidden) state, and y(t) is output of the model

▪ The matrices are: A – state matrix, B – input matrix, C – output matrix, and D – 
feedforward matrix

o The matrices comprise the parameters of the SSM, and determine how the state h(t) evolves 
over the sequence of inputs x(t)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models

• The differential equation ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡) describes how the state ℎ(𝑡) 
changes (through matrix A) based on how the input 𝑥(𝑡) influences the state 
(through matrix B)

• The output equation 𝑦(𝑡) = 𝐶ℎ(𝑡) + 𝐷𝑥(𝑡) describes how the state ℎ(𝑡) is 
translated to the output 𝑦(𝑡) =(through matrix C) and how the input 
𝑥(𝑡) influences the output (through matrix D)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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State Space Models

• We can visualize the equations of SSM as in the figure below

▪ Since the operation through matrix D is similar to a skip-connection, often the focus is 
only on matrices A, B, and C as the core of SSM

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Discrete State Space Models 

• Because LLMs work with sequence inputs rather than continuous inputs, a 
discretized version of SSM is used in LLM architectures

• For instance, we can approximate a continuous signal with a discrete signal by 
sampling from it at discrete time moments 0, 1, 2, 3, 4, etc.

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Discrete State Space Models 

• Similarly, we can discretize continuous SSM by approximating the vectors and 
matrices with discrete forms, as shown below

▪ In the discrete SSM equations, the matrices ҧ𝐴 and ത𝐵 represent discretized parameters 
of the model

▪ The discrete vectors x, h, and y have the subscript k for representing discretized 
timesteps, instead of the dependence of time t used to represent continuous vectors

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Recurrent Representation

• Discretized SSM allows for problem formulation in discrete timesteps, forming 
recurrence similar to RNNs

▪ I.e., at each timestep, we calculate how the current input ( ത𝐵 𝑥𝑘) influences the previous 
state ( ҧ𝐴 ℎ𝑘−1), and then calculate the predicted output (C ℎ𝑘)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Recurrent Representation

• Therefore, the representation of discrete SSM can be depicted with a graph of an 
RNN

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Convolutional Representation

• Another representation that we can use for discrete SSM is that of convolutions

▪ For instance, the figure shows convolutional filters (kernels) in Convolutional NNs 
applied for generating features for image classification

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Convolutional Representation

• For sequences of text which are 1-dimenisional, we can consider applying a 1-
dimensional convolutional filter (kernel)

▪ The 1-d kernel slides over the input sequence of tokens and it is used to calculate the 
output token over each position of the input sequence

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Convolutional Representation

• The kernel can be derived from the SSM formulation as the product 𝐶𝐴𝑖𝐵 

• In practice, we can use the SSM kernel to slide over each set of input tokens and 
calculate the output, similar to applying 1-d convolution

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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The Three Representations of SSM

• The representations of SSM as recurrent and convolutional systems have 
different sets of advantages and disadvantages

▪ Interestingly, the different representations of SSM allow to have efficient inference 
with the recurrent SSM and parallelizable training with the convolutional SSM

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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The Three Representations

• With these different representations of SSM:

▪ During training the model uses the convolutional representation over the entire 
sequences of tokens for parallelized training

▪  During inference the model uses the recurrent representation to make next token 
predictions for each new token at a time

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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S4 Architecture

• Despite the promises of SSM for text modeling, there are challenges for handling 
long sequences and capturing long-range dependencies

• Structured State Space for Sequences architecture (a.k.a. S4) proposed a novel 
solution for handling dependencies in long sequences

▪ S4 parameterizes the matrix A as a diagonal matrix, initialized with approximations of 
the HiPPO (High-order Polynomial Project Operators) matrix

o Imposing a HiPPO-based structure on the matrix A (hence the name “structured” in S4) enables 
to memorize previous tokens, by tracking the coefficients of a Legendre polynomial 

o By using a HiPPO matrix structure, S4 architecture allows for handling long sequences and 
storing memory efficiently

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Mamba

• Mamba builds upon the S4 architecture, and introduced two important 
modifications to S4

1. Selective scan SSM parameters, which allows the model to filter irrelevant 
information

2. Efficient hardware implementation, that allows for efficient GPU storage of 
intermediate results

• Importantly, Mamba demonstrated strong empirical results

• Mamba architecture is also referred to as a Selective Scan SSM (or S6) since it 
extends the S4 model for computations of the SSM matrices with the selective 
scan algorithm

State Space Models
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Mamba -Departure from LTI

• Departure from Linear Time Invariance (LTI) in S4

▪ Matrices A, B, and C in S4 are time-invariant, meaning that they are the same for every 
token (i.e., across all time steps in a sequence)

o These matrices are fixed, regardless of the input

o As a result, the model treats all tokens equally, and it cannot perform content-aware reasoning

▪ Conversely, content-aware reasoning is easy for Transformers, because the attention 
scores are dynamically calculated based on the input sequence

• Mamba introduces selective scan algorithm to dynamically calculate matrices A, 
B, and C as time-varying matrices that change for every input token

▪ This allows to selectively choose what information to keep in the hidden state, and 
what information to ignore

▪ The matrices learn which input tokens are the most important at each step, hence the 
name selective scan

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Mamba – Hardware-aware Resource Management

• Another novelty that Mamba introduces is hardware-aware parallelism and 
optimized memory usage by controlling the data transfer between the highly-
efficient SRAM memory and less-efficient DRAM memory in GPUs

▪ Copying information between SRAM and DRAM is often a bottleneck in GPUs

▪ The hardware-aware component focuses on how to store the latent state h in the 
SRAM memory as the most efficient part of memory

▪ The A, B, and C matrices are kept in the DRAM memory, so that the cost of moving 
data doesn't induce a large computational bottleneck

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Mamba Architecture

• Mamba implements Selective SSM as a 
block, where multiple Mamba blocks can 
be stack to create a large model

▪ The block applies linear (dense) layers to 
input embedding vectors, followed by 
convolution, Selective scan layer, and linear 
layer

▪ SiLU (Sigmoid Linear Unit) activation are 
used, which for input x output 𝑥𝜎(𝑥), where 
𝜎 𝑥  is sigmoid function

▪ The output is projected though RMS Norm 
and Linear layer with Softmax

o RMS Norm is Root Mean Square layer 
normalization layer

o The RMS Norm layer replaces Layer 
Normalization layers used in Transformers

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
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Mamba Results

• The figure below shows a comparison of generated tokens with Mamba and 
corresponding Transformers

▪ Mamba offers significant speed up at inference, and it achieves 4-5x higher inference 
throughput than a Transformer of similar size

▪ Inference was performed with Mamba on one million token sequences

State Space Models
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Mamba Results

• The graph below shows the perplexity of different LLMs as a function of the 
required computation (FLOPs) for model training  

▪ Recall that lower perplexity is preferred

▪ The size of the models is changed from 125M to 1.3B parameters

▪ Mamba uses less computational resources, in comparison to other LLMs architectures, 
including the original Transformer and Transformer++ (based on PaLM and LLaMA)

State Space Models

125M parameters

1.3B parameters
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Mamba Results

• Mamba outperformed models of similar size on language, audio, and genomics 
data

▪ It is the first non-Transformer architecture that achieved performance at the level of 
Transformers architectures

• One limitation of this study is that Mamba was implemented with 3B and 6.9B 
parameters

▪ Large Mamba models with size that correspond to GPT-4, Claude, Gemini were not 
implemented

▪ It is not clear if the performance by Mamba architecture can match the Transformers at 
the size of 100+ billion parameters

• Another open question is regarding the properties of Mamba models regarding 
finetuning, quantization, instruction tuning, RLHF, etc.

State Space Models
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