
CS 487/587

Adversarial

Machine Learning

Dr. Alex Vakanski

2

CS 487/587, Spring 2024

Lecture

Mixture of Experts, State Space Models

3

CS 487/587, Spring 2024

Introduction to MoE

• Mixture of Experts (MoE) is a technique that combines multiple specialized
models to handle complex tasks

▪ Instead of a single large model, MoE uses an ensemble of "expert" models focused on
learning different aspects of a task

▪ MoEs are inspired by human teams, where experts collaborate on different aspects of
a problem

Mixture of Experts

Figure from: https://www.tensorops.ai/post/what-is-mixture-of-experts-llm

https://www.tensorops.ai/post/what-is-mixture-of-experts-llm

4

CS 487/587, Spring 2024

Introduction to MoE

• MoE employ the fact that that an ensemble of weaker ML models specializing in
specific tasks can produce more accurate results, similar to traditional ML
ensemble methods

▪ E.g., Random Forests, Gradient Boosting methods, Bagging ensembles

• Differently from ensemble methods, MoE introduce a new concept of dynamic
routing of the input to be processed by different experts

Mixture of Experts

5

CS 487/587, Spring 2024

MoE Architecture

• An MoE system consists of two key components

▪ Expert models, which can be neural nets or network layers, trained on different parts
of the inputs (tokens)

▪ Gating network, which acts as a router and decides which expert(s) should process an
input

Mixture of Experts

6

CS 487/587, Spring 2024

MoE Working Principles

• The gating network analyzes the inputs, and routes each input to relevant
expert(s)

▪ In some MoE architectures, each token is sent to more than one expert (e.g., to 2
experts in Mixtral)

▪ The experts' outputs are afterward combined through techniques like additive or
multiplicative aggregation of the outputs

• During inference, for each input token only the chosen experts are activated,
allowing efficient use of computational resources

Mixture of Experts

7

CS 487/587, Spring 2024

MoE with Transformers

• In Transformers, sparse MoE layers are used instead of dense feed-forward
network (FFN) layers

▪ I.e., standard FFN layers are replaced with switching FFN layers

▪ Each MoE layer has a certain number of experts (e.g., 4), where each expert is an FFN,
and each processes specific tokens

▪ For example, in the figure, the router sends the token “More” to the second expert
(FFN 2), and the token "Parameters” is sent to the first expert (FFN 1)

Mixture of Experts

Figure from the Switch Transformers paper: https://arxiv.org/abs/2101.03961

https://arxiv.org/abs/2101.03961

8

CS 487/587, Spring 2024

Sparse Blocks

• In dense models (e.g., networks with fully-connected layers) all the parameters of
the model are used for processing all inputs (e.g., tokens)

• In sparse models, the individual inputs are run only through some parts of the
model

Mixture of Experts

9

CS 487/587, Spring 2024

Sparse Blocks

• Sparsity uses the idea of conditional computation, where parts of the network
are active on a per-token basis

▪ Therefore, sparsity allows to scale the size of the model without increasing the
computation

• In Large Language Models, the size of the models (number of parameters) is
directly proportional to the performance: largest models are the best performing

▪ Sparsity allows to train very large models with lower computational cost

▪ Also, sparsity allows to make inference with a trained sparse model much faster, in
comparison to dense models

Mixture of Experts

10

CS 487/587, Spring 2024

Routing

• Efficiently routing the tokens is one of the challenges for MoE

▪ In recent MoE, the gating network (router) is composed of learned parameters and is
trained at the same time as the rest of the network

▪ I.e., the gating network is typically a simple neural network with a softmax function,
which learns which expert to send each input to

Mixture of Experts

Figure from the Switch Transformers paper: https://arxiv.org/abs/2101.03961

https://arxiv.org/abs/2101.03961

11

CS 487/587, Spring 2024

Routing

• In some cases, the gating network may converge to mostly activate the same few
experts

▪ When all tokens are sent to just 2 or 3 experts, that makes the training inefficient

▪ I.e., the load is not properly balanced across all experts

• To mitigate the issue of load balancing, an auxiliary loss can be introduced
during model training to encourage giving all experts equal importance

▪ The auxiliary loss ensures that all experts receive a roughly equal number of training
examples

• In some models (e.g., Mixtral), each token is sent to the top-2 experts to improve
load balancing

• There is significant research effort dedicated on efficient load balancing in MoE

Mixture of Experts

12

CS 487/587, Spring 2024

Advantages of MoE

• The key advantages of MoE include faster pretraining thanks to sparse layers, and
efficient inference by activating only required experts

▪ MoE LLMs are pretrained much faster than dense models with the same number of
parameters

o Model capacity can be defined as the level of complexity that a model is capable of
understanding or expressing

o The size of a model is one of the most important factors for enhanced model capacity, and
given a fixed computing budget, training a larger model for fewer steps is preferred than
training a smaller model for more steps

o E.g., Switch Transformers based on MoE achieved a 4x pretraining speed-up over the
corresponding dense models

▪ Faster inference is very important for end-users

o Although an MoE might have many parameters, only some of them are used during
inference, that results in much faster inference compared to a dense model with the same
number of parameters

▪ Faster pretraining and inference lead to potential savings in computational cost versus
dense models

• Similarly, MoE generate higher quality outputs by combining specialized experts

Mixture of Experts

13

CS 487/587, Spring 2024

Challenges of MoE

• MoE have high GPU memory requirements since all experts needs to be loaded into
the memory for both training and inference

▪ E.g., loading all experts in Mixtral requires to load 49B parameters in the GPU VRAM
memory, which creates challenges for users with low memory GPUs or a single low-
end GPU

• Finetuning MoE is more challenging than dense models, because sparse layers are
more prone to overfitting

▪ Recent works have shown promising results and introduced strategies for finetuning
MoE

• MoE require to carefully balance tradeoffs between training costs and inference
efficiency

▪ While offering faster inference, MoE require careful management of VRAM and
computing resources

Mixture of Experts

14

CS 487/587, Spring 2024

GPT-4's MoE

• Based on leaked information about Open AI’s GPT-4 language model, it is
implemented using an MoE architecture

• It combines 8 expert models, each with 220B parameters

▪ This amounts to about 1.7T parameters, but the actual number of parameters can be
somewhere between 1.2T and 1.7T parameters

• MoE allows GPT-4 to achieve superior quality while optimizing computational
efficiency during inference

▪ MoE also allows to distribute the model across multiple GPUs while routing inputs
dynamically

Mixture of Experts

15

CS 487/587, Spring 2024

Mixtral: Open Source MoE

• Mixtral is an open-source MoE model with 47B parameters

• It uses 8 expert Mistral-7B models

▪ But Mixtral uses only about 12.9B parameters per input token through sparse routing

• This allows Mixtral to outperform much larger models

▪ It matches the quality of GPT-3.5 (175B parameters)

▪ It is 6X faster than LLaMa-70B parameter

Mixture of Experts

16

CS 487/587, Spring 2024

Mixtral: Open Source MoE

• Mixtral outperforms or matches LlaMA 70B on many benchmarks

Mixture of Experts

17

CS 487/587, Spring 2024

Mixtral: Open Source MoE

• It is important to note that although Mixtral uses 8 experts each having the form
of a Mistral-7B model, it does not mean that each expert is a separate full
network with 7B parameters, as shown in the figure below

▪ This design would yield a model with 8x7B = 56B parameters

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

18

CS 487/587, Spring 2024

Mixtral: Open Source MoE

• The actual design of Mixtral is depicted in the figure below, where only the FFN
layers are replaced with a sparse MoE block with 8 experts, and the remaining
layers (including self-attention and normalization layers) are shared by all
tokens

▪ Therefore, the entire Mixtral model has about 47B parameters, and not 8x7B = 56B
parameters, due to the shared layers

▪ Each token is routed to two experts and processed by only 12.9B parameters (and not
2x7B = 14B parameters)

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

19

CS 487/587, Spring 2024

What Does an Expert Learn

• A recent work studied the experts in Mixtral on the MMLU benchmark

▪ MMLU includes multiple-choice questions on 57 topics, such as abstract algebra,
world religions, professional law, anatomy, astronomy, business ethics, etc.

▪ Left figure: in layer 32, for abstract algebra questions, the model makes use of experts
3 and 8 much more than the other experts

▪ Right figure, in the area of professional law, in layer 32 the model mostly activates
expert 4 while muting experts 3 and 8

▪ However, since the tokens are routed through 32 transformer blocks, there are so
many expert combinations, and it is difficult to analyze precisely what each expert is
learning

Mixture of Experts

Figure from: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

20

CS 487/587, Spring 2024

Future Potential of MoE

• MoE offer the potential for building scalable, efficient AI models across domains
and applications

• Current open-source MoE LLMs include:

▪ Switch Transformers (Google), family of models from 8 to 2048 experts, the largest
model has 1.6T parameters

▪ NLLB MoE (Meta), an MoE variant of the NLLB translation model

▪ OpenMoE, a community effort that has released Llama-based MoEs

▪ Mixtral 8x7B (Mistral), 8 experts, 47B parameters

Mixture of Experts

21

CS 487/587, Spring 2024

State Space Models

• State Space Models are a new types of architectures for LLMs

▪ This type of architectures don’t use the attention mechanism

▪ They have potential to address some of the limitations of Transformer Networks,
stemming from the attention mechanism

• The concept of State Space Models have been extensively used in control systems
and system identification for many decades

• Mamba is a recent LLM that uses State Space Model architecture

▪ It demonstrates the potential to replace Transformer LLMs

State Space Models

22

CS 487/587, Spring 2024

Transformers

• Transformers process textual inputs as sequences of tokens, and derive
representations from previous tokens in text

• Attention scores are calculated between all token pairs, based on the relevance of
one token for the meaning of another token in a specific context

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

23

CS 487/587, Spring 2024

Transformers

• Transformer architecture allows parallelization, which speeds up training
tremendously

▪ It is possible to distribute the training data in each batch across multiple GPUs

▪ Multi-head attention modules can be processed in parallel

▪ The tensors can also be split into smaller sub-tensors and processed in parallel

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

24

CS 487/587, Spring 2024

The Problem with Transformers

• Despite efficient training, Transformer architecture encounters a bottleneck
during inference

• It requires to recalculate the attention scores for the entire sequence, making
inference slow and computationally expensive for long sequences

▪ A sequence of length L requires L2 computations (to calculate the attention matrix of
size L × L)

▪ I.e., there is a quadratic computational cost increase with increasing the length of the
context for generating text

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

25

CS 487/587, Spring 2024

Pros and Cons of Transformers

• Pros

▪ Effective at modeling complex dependencies: every token explicitly attends to all other
previous tokens, via attention mechanism

▪ Highly parallel training: the core operations are matrix multiplications which can be
parallelized across many GPUs

• Cons

▪ Quadratic scaling with context length: since every input attends to all prior inputs, the
total amount of computation accelerates as the number of tokens increases

▪ Autoregressive inference is expensive: the attention scores needs to be recalculated for
every new token

State Space Models

26

CS 487/587, Spring 2024

RNNs Overview

• Recurrent Neural Networks (RNNs) have a looping mechanism (recurrence) that
allows to pass information from a previous step to the next

▪ At each step, the network takes the input at time step t and a hidden state of the
previous time step t-1, to generate the next hidden state and predict the output

▪ E.g., to calculate the output yt+1, RNN needs only the input xt+1 and the corresponding
hidden state

o RNNs do not need access to all previous inputs for calculating yt+1

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

27

CS 487/587, Spring 2024

RNNs Overview

• RNNs can do inference fast, since they scale linearly with the sequence length

▪ When generating the output, the RNN only needs to consider the previous hidden
state and current input

o It does not need to recalculate all previous hidden states, as in Transformer

▪ Each hidden state is an aggregation (compressed view) of all previous hidden states

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

28

CS 487/587, Spring 2024

The Problem with RNNs

• RNNs suffer from forgetting information over time

▪ The last hidden state to produce the name “Maarten” may not contain information
about the word “Hello”

• Training cannot be done in parallel since RNNs need to go through each step at a
time sequentially

▪ GPUs have enormous throughput for parallel computation, but are otherwise very
slow for sequential computation

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

29

CS 487/587, Spring 2024

Pros and Cons of RNNs

• Pros

▪ Efficient autoregressive inference: since the hidden state encapsulates all prior inputs,
the model only needs to consider a small set of new information for each subsequent
input

▪ No limits to context length at inference: there is nothing in the formulation of RNNs
that constrains the model to a maximal sequence length

• Cons

▪ Ineffective modeling of complex sequential dependencies: all prior context must be
compressed into a hidden state having a fixed amount of bits

▪ Slow training: training requires sequential backpropagation through time, making
poor utilization of GPUs

State Space Models

30

CS 487/587, Spring 2024

Transformers vs RNNs

• The problems with RNNs and Transformers are completely opposite

▪ Potential solution are State Space Models architectures, which allow fast inference
similarly to RNNs, but can also use kernels and be parallelized during training
similarly to Transformers

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

31

CS 487/587, Spring 2024

State Space Models

• State Space represents a system's possible states using the minimum number of
variables

▪ For instance, to navigate through a maze, the state space is the map (space) of all
possible locations (states)

▪ The “state space representation” is a simplified description of this map, consisting of
the current state, possible future states, and the changes required to get to the next
state (going right or left)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

32

CS 487/587, Spring 2024

State Space Models

• SSM equations describe state representations and predict future states and
outputs based on inputs

▪ SSM maps input sequences x(t) to latent state representations h(t) and derive predicted
output sequences y(t)

▪ By solving these equations, SSM can predict the system states from observed data

o E.g., the location of an object moving in 3D space can be predicted from its state at time t
through the two equations

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

33

CS 487/587, Spring 2024

State Space Models

• Components of SSM equations:

▪ t represents time

▪ x(t) is input to the model, h(t) is latent (hidden) state, and y(t) is output of the model

▪ The matrices are: A – state matrix, B – input matrix, C – output matrix, and D –
feedforward matrix

o The matrices comprise the parameters of the SSM, and determine how the state h(t) evolves
over the sequence of inputs x(t)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

34

CS 487/587, Spring 2024

State Space Models

• The differential equation ℎ′(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡) describes how the state ℎ(𝑡)
changes (through matrix A) based on how the input 𝑥(𝑡) influences the state
(through matrix B)

• The output equation 𝑦(𝑡) = 𝐶ℎ(𝑡) + 𝐷𝑥(𝑡) describes how the state ℎ(𝑡) is
translated to the output 𝑦(𝑡) =(through matrix C) and how the input
𝑥(𝑡) influences the output (through matrix D)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

35

CS 487/587, Spring 2024

State Space Models

• We can visualize the equations of SSM as in the figure below

▪ Since the operation through matrix D is similar to a skip-connection, often the focus is
only on matrices A, B, and C as the core of SSM

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

36

CS 487/587, Spring 2024

Discrete State Space Models

• Because LLMs work with sequence inputs rather than continuous inputs, a
discretized version of SSM is used in LLM architectures

• For instance, we can approximate a continuous signal with a discrete signal by
sampling from it at discrete time moments 0, 1, 2, 3, 4, etc.

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

37

CS 487/587, Spring 2024

Discrete State Space Models

• Similarly, we can discretize continuous SSM by approximating the vectors and
matrices with discrete forms, as shown below

▪ In the discrete SSM equations, the matrices ҧ𝐴 and ത𝐵 represent discretized parameters
of the model

▪ The discrete vectors x, h, and y have the subscript k for representing discretized
timesteps, instead of the dependence of time t used to represent continuous vectors

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

38

CS 487/587, Spring 2024

Recurrent Representation

• Discretized SSM allows for problem formulation in discrete timesteps, forming
recurrence similar to RNNs

▪ I.e., at each timestep, we calculate how the current input (ത𝐵 𝑥𝑘) influences the previous
state (ҧ𝐴 ℎ𝑘−1), and then calculate the predicted output (C ℎ𝑘)

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

39

CS 487/587, Spring 2024

Recurrent Representation

• Therefore, the representation of discrete SSM can be depicted with a graph of an
RNN

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

40

CS 487/587, Spring 2024

Convolutional Representation

• Another representation that we can use for discrete SSM is that of convolutions

▪ For instance, the figure shows convolutional filters (kernels) in Convolutional NNs
applied for generating features for image classification

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

41

CS 487/587, Spring 2024

Convolutional Representation

• For sequences of text which are 1-dimenisional, we can consider applying a 1-
dimensional convolutional filter (kernel)

▪ The 1-d kernel slides over the input sequence of tokens and it is used to calculate the
output token over each position of the input sequence

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

42

CS 487/587, Spring 2024

Convolutional Representation

• The kernel can be derived from the SSM formulation as the product 𝐶𝐴𝑖𝐵

• In practice, we can use the SSM kernel to slide over each set of input tokens and
calculate the output, similar to applying 1-d convolution

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

43

CS 487/587, Spring 2024

The Three Representations of SSM

• The representations of SSM as recurrent and convolutional systems have
different sets of advantages and disadvantages

▪ Interestingly, the different representations of SSM allow to have efficient inference
with the recurrent SSM and parallelizable training with the convolutional SSM

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

44

CS 487/587, Spring 2024

The Three Representations

• With these different representations of SSM:

▪ During training the model uses the convolutional representation over the entire
sequences of tokens for parallelized training

▪ During inference the model uses the recurrent representation to make next token
predictions for each new token at a time

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

45

CS 487/587, Spring 2024

S4 Architecture

• Despite the promises of SSM for text modeling, there are challenges for handling
long sequences and capturing long-range dependencies

• Structured State Space for Sequences architecture (a.k.a. S4) proposed a novel
solution for handling dependencies in long sequences

▪ S4 parameterizes the matrix A as a diagonal matrix, initialized with approximations of
the HiPPO (High-order Polynomial Project Operators) matrix

o Imposing a HiPPO-based structure on the matrix A (hence the name “structured” in S4) enables
to memorize previous tokens, by tracking the coefficients of a Legendre polynomial

o By using a HiPPO matrix structure, S4 architecture allows for handling long sequences and
storing memory efficiently

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

46

CS 487/587, Spring 2024

Mamba

• Mamba builds upon the S4 architecture, and introduced two important
modifications to S4

1. Selective scan SSM parameters, which allows the model to filter irrelevant
information

2. Efficient hardware implementation, that allows for efficient GPU storage of
intermediate results

• Importantly, Mamba demonstrated strong empirical results

• Mamba architecture is also referred to as a Selective Scan SSM (or S6) since it
extends the S4 model for computations of the SSM matrices with the selective
scan algorithm

State Space Models

47

CS 487/587, Spring 2024

Mamba -Departure from LTI

• Departure from Linear Time Invariance (LTI) in S4

▪ Matrices A, B, and C in S4 are time-invariant, meaning that they are the same for every
token (i.e., across all time steps in a sequence)

o These matrices are fixed, regardless of the input

o As a result, the model treats all tokens equally, and it cannot perform content-aware reasoning

▪ Conversely, content-aware reasoning is easy for Transformers, because the attention
scores are dynamically calculated based on the input sequence

• Mamba introduces selective scan algorithm to dynamically calculate matrices A,
B, and C as time-varying matrices that change for every input token

▪ This allows to selectively choose what information to keep in the hidden state, and
what information to ignore

▪ The matrices learn which input tokens are the most important at each step, hence the
name selective scan

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

48

CS 487/587, Spring 2024

Mamba – Hardware-aware Resource Management

• Another novelty that Mamba introduces is hardware-aware parallelism and
optimized memory usage by controlling the data transfer between the highly-
efficient SRAM memory and less-efficient DRAM memory in GPUs

▪ Copying information between SRAM and DRAM is often a bottleneck in GPUs

▪ The hardware-aware component focuses on how to store the latent state h in the
SRAM memory as the most efficient part of memory

▪ The A, B, and C matrices are kept in the DRAM memory, so that the cost of moving
data doesn't induce a large computational bottleneck

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

49

CS 487/587, Spring 2024

Mamba Architecture

• Mamba implements Selective SSM as a
block, where multiple Mamba blocks can
be stack to create a large model

▪ The block applies linear (dense) layers to
input embedding vectors, followed by
convolution, Selective scan layer, and linear
layer

▪ SiLU (Sigmoid Linear Unit) activation are
used, which for input x output 𝑥𝜎(𝑥), where
𝜎 𝑥 is sigmoid function

▪ The output is projected though RMS Norm
and Linear layer with Softmax

o RMS Norm is Root Mean Square layer
normalization layer

o The RMS Norm layer replaces Layer
Normalization layers used in Transformers

State Space Models

Figure from: https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state

50

CS 487/587, Spring 2024

Mamba Results

• The figure below shows a comparison of generated tokens with Mamba and
corresponding Transformers

▪ Mamba offers significant speed up at inference, and it achieves 4-5x higher inference
throughput than a Transformer of similar size

▪ Inference was performed with Mamba on one million token sequences

State Space Models

51

CS 487/587, Spring 2024

Mamba Results

• The graph below shows the perplexity of different LLMs as a function of the
required computation (FLOPs) for model training

▪ Recall that lower perplexity is preferred

▪ The size of the models is changed from 125M to 1.3B parameters

▪ Mamba uses less computational resources, in comparison to other LLMs architectures,
including the original Transformer and Transformer++ (based on PaLM and LLaMA)

State Space Models

125M parameters

1.3B parameters

52

CS 487/587, Spring 2024

Mamba Results

• Mamba outperformed models of similar size on language, audio, and genomics
data

▪ It is the first non-Transformer architecture that achieved performance at the level of
Transformers architectures

• One limitation of this study is that Mamba was implemented with 3B and 6.9B
parameters

▪ Large Mamba models with size that correspond to GPT-4, Claude, Gemini were not
implemented

▪ It is not clear if the performance by Mamba architecture can match the Transformers at
the size of 100+ billion parameters

• Another open question is regarding the properties of Mamba models regarding
finetuning, quantization, instruction tuning, RLHF, etc.

State Space Models

53

CS 487/587, Spring 2024

References

1. Miguel Carreira Neves, “LLM Mixture of Experts Explained,” available at
https://www.tensorops.ai/post/what-is-mixture-of-experts-llm

2. Omar Sanseviero, et al., “Mixture of Experts Explained,” available at
https://huggingface.co/blog/moe

3. Kyle Kranen and Vinh Nguyen, “Applying Mixture of Experts in LLM
Architectures,” available at https://developer.nvidia.com/blog/applying-
mixture-of-experts-in-llm-architectures/

4. Maarten Grootendorst, “A Visual Guide to Mamba and State Space Models,”
available at https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-
mamba-and-state

5. James Chen, “Mamba No. 5 (A Little Bit of …),” available at
https://jameschen.io/jekyll/update/2024/02/12/mamba.html

6. Nathan Lambert, “State-space LLMs: Do we need Attention?,” available at
https://www.interconnects.ai/p/llms-beyond-attention

https://www.tensorops.ai/post/what-is-mixture-of-experts-llm
https://huggingface.co/blog/moe
https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://jameschen.io/jekyll/update/2024/02/12/mamba.html
https://www.interconnects.ai/p/llms-beyond-attention

	Slide 1: CS 487/587 Adversarial Machine Learning
	Slide 2: Lecture
	Slide 3: Introduction to MoE
	Slide 4: Introduction to MoE
	Slide 5: MoE Architecture
	Slide 6: MoE Working Principles
	Slide 7: MoE with Transformers
	Slide 8: Sparse Blocks
	Slide 9: Sparse Blocks
	Slide 10: Routing
	Slide 11: Routing
	Slide 12: Advantages of MoE
	Slide 13: Challenges of MoE
	Slide 14: GPT-4's MoE
	Slide 15: Mixtral: Open Source MoE
	Slide 16: Mixtral: Open Source MoE
	Slide 17: Mixtral: Open Source MoE
	Slide 18: Mixtral: Open Source MoE
	Slide 19: What Does an Expert Learn
	Slide 20: Future Potential of MoE
	Slide 21: State Space Models
	Slide 22: Transformers
	Slide 23: Transformers
	Slide 24: The Problem with Transformers
	Slide 25: Pros and Cons of Transformers
	Slide 26: RNNs Overview
	Slide 27: RNNs Overview
	Slide 28: The Problem with RNNs
	Slide 29: Pros and Cons of RNNs
	Slide 30: Transformers vs RNNs
	Slide 31: State Space Models
	Slide 32: State Space Models
	Slide 33: State Space Models
	Slide 34: State Space Models
	Slide 35: State Space Models
	Slide 36: Discrete State Space Models
	Slide 37: Discrete State Space Models
	Slide 38: Recurrent Representation
	Slide 39: Recurrent Representation
	Slide 40: Convolutional Representation
	Slide 41: Convolutional Representation
	Slide 42: Convolutional Representation
	Slide 43: The Three Representations of SSM
	Slide 44: The Three Representations
	Slide 45: S4 Architecture
	Slide 46: Mamba
	Slide 47: Mamba -Departure from LTI
	Slide 48: Mamba – Hardware-aware Resource Management
	Slide 49: Mamba Architecture
	Slide 50: Mamba Results
	Slide 51: Mamba Results
	Slide 52: Mamba Results
	Slide 53: References

