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FRONTISPIECE. Capture-recapture studies are frequently conducted on small mammal populations such 

as snowshoe hares Lepus americarlus. (Photograph 
by Leta Burnham.) 
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studies (a removal study is, of course, 
slightly different). A typical field experi- 
lnent is the following: a number of traps 
are positioned in the area to be studied, 
say 144 traps in a 12 x 12 grid, 7 m apart. 
At the beginning of the study (j= 1) a 
saluple size of nl is taken froln the pop- 
ulation, the animals are marked or tagged 
for future identification, and then re- 
turned to the population, usually at the 
same point where they were trapped. Af- 
ter allowing time for the marked an(l un- 
luarkecl animals to mix, a second salllple 
(1 = 2, often the following day) of 112 ani- 
lllals is then taken. The second saluple 
norlually contains both Inarked and un- 
luarked aniluals. The unmarked anilllals 
are luarked and all captured anilnals are 
released back into the population. This 
procedure continues for t periods where 
t ¢ 2. The animals should be Inarked in 
such a way that the capture-recapture 
history of each anilual caught during the 
study is known. In practice, toes are often 
clipped to uniquely identify individual 
animals (Taber and Cowan 1969) or se- 
rially numbered tags are solnetilnes used 
on larger animals. 

Such capture studies are classified by 
2 schelnes that are directly related to 
what class of luodels are appropriate and 
what parameters can be estiluated. The 
first classification addresses the subject of 
closure. Closure usually means the size 
of the population is constant over the pe- 
riod of investigation, i.e., no recruitlnent 
(birth or ilumigration) or losses (death or 
emigration). This is a strong assuluption 
and, of course, never completely true in 
a natural biological population. For great- 
er generality, we define closure to lnean 
there are no unknown changes to the ini- 
tial population. In practice, this lneans 
known losses (trap death, or deliberate 
removals) do not violate our definition of 
closure. If the study is properly designed, 
closure can be lnet at least approximate- 
ly. Open or nonclosed populations ex- 
plicitly allow for one or luore types of re- 
cruitlnent or losses to operate during the 
course of the experiment (Jolly 1965, Se- 
ber 1965, Robson 1969, Pollock 1975). 

INTRODUCTION 

The estimation of animal abundance is 
an important problem in both the theo- 
retical and applied biological sciences. 
Serious work to develop estimation meth- 
ods began during the 1950s, with a 
few attempts before that time. The liter- 
ature on estimation lnethods has in- 
creased tremendously during the past 25 
years (Corlnack 1968, Seber 1973). 

However, in large part, the problem re- 
mains unsolved. Past efforts toward com- 
prehensive and systeluatic estimation of 
density (D) or population size (N) have 
been inadequate, in general. While more 
than 200 papers have been published on 
the subject, one is generally left without 
a unified approach to the estimation of 
abundance of an animal population. 

This situation is unfortunate because a 
number of pressing research problems 
require such information. In addition, a 
wide array of environlnental assessment 
studies and biological inventory pro- 
grams require the estiluation of animal 
abundance. These needs have been fur- 
ther eluphasized by the requirement for 
the preparation of Environmental Impact 
Statements iluposed by the National En- 
vironmental Protection Act in 1970. 

This publication treats inference pro- 
cedures for certain types of capture data 
on closed animal populations. This in- 
cludes lnultiple capture-recapture stud- 
ies (variously called capture-lmark-re- 
capture, luark-recapture, or tag-recapture 
studies) involving livetrapping tech- 
niques and reluoval studies involving kill 
traps or at least temporary removal of cap- 
tured individuals during the study. Ani- 
mals do not necessarily need to be phys- 
ically trapped; visual sightings of marked 
animals and electrofishing studies also 
produce data suitable for the methods 
described in this monograph. 

To provide a frame of reference for 
what follows, we give an example of a 
capture-recapture experiment to esti- 
luate population size of small animals us- 
ing live traps. The general field experi- 
lnent is similar for all capture-recapture 
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and analysis Inethods we do not cover 
here. We do not treat sequential saIn- 
pling studies (e.g., Samuel 1968), strati- 
fied populations (e.g., Darroch 1961, Ar- 
nason 1973), Bayesian schemes (e.g., 
Gaskell and George 1972), or change in 
ratio estimation (e.g., Paulik and Robson 
1969). The subject of stratifying the data 
after the fact on such variables as sex, 
age, or species is not discussed prilmarily 
because there rarely are enough data for 
such a stratification. The contingency ta- 
ble approach to estimation from multiple 
capture studies is a promising new de- 
velopment (see Fienberg 1972), but cur- 
rently it is relatively unexplored or de- 
veloped; we do not discuss it. Finally, we 
do not treat studies or analysis Inethods 
for which the goal is to compute only an 
index to abundance (e.g., captures per 
100 trap nights); standard statistical tech- 
niques are adequate for those types of 
studies. 

Although our objective is to present 
comprehensive methods of analysis, the 
scientist Inust realize that no amount of 
sophisticated statistical analysis can com- 
pensate for poor study design or field 
technique (such as high trap losses). The 
experimenter can do far more to ensure 
valid estimates by having a properly 
planned and conducted study than he can 
by sophisticated analysis after the exper- 
ilnent. We have therefore included a sec- 
tion on statistical aspects of study design. 
That section includes comments on how 
to deal with anomalies such as trap losses. 

This publication is intended for use by 
biologists. Such a goal is difficult to attain 
due to the generally technical and Inath- 
elnatically complex nature of the subject 
matter. We have developed a compre- 
hensive coluputer program to compute 
estimates and test statistics for the var- 
ious methods covered in subsequent sec- 
tions (program CAPTURE). Biologists 
who wish to analyze data are urged to use 
the computer prograIn rather than to try 
to colupute the various estimates and test 
statistics by hand. Also most of the Inath- 
ematical and statistical details are con- 
tained in appendixes to this monograph. 

Only closed populations will be consid- 
ered in this monograph. 

The second classification depends on 
the type of data collected with 2 possi- 
bilities occurring (Pollock 1974, unpub- 
lished doctoral dissertation, Cornell Uni- 
versity) Ithaca, New York): 
(1) only information on the recovery of 

narked animals is available for each 
sampling occasion, j, j - 1, 2, . . ., t. 

(2) information on both marked and un- 
marked animals is available for each 
sampling occasion, j, j = 1, 2, . . ., t. 

In case ( 1), population size (N) is not 
identifiable, however, other parameters 
can be estimated (Brownie et al. 1978). 
In case (2), N can be estimated using a 
wide variety of approaches depending 
upon what we wish to assume. Only case 
(2) will be dealt with here. 

Objectives 

The objectives of this publication are 
twofold: 
(1) to give a thorough treatment of the 

estimation of population size given 
multiple capture occasions (t > 2) 
assuming 
a. population closure, 
b. there may exist 3 lnajor types of 

variation in capture probabilities; 
(2) to extend and make available a pro- 

cedure for estiluating density (num- 
ber of animals per unit area) from grid 
trapping studies. 

This monograph is specifically orient- 
ed to the commonly done grid trapping 
and removal studies where closure can 
reasonably be assumed. Specifically, we 
do not treat the case of 2 livetrapping oc- 
casions (t = 2). This subject (i.e., the Pe- 
tersen or Lincoln estimators and varia- 
tions thereofl is adequately covered in 
the literature (see Seber 1973). In fact, to 
use the methods presented here for anal- 
ysis of grid trapping data we suggest the 
study have 5 or more trapping occasions. 

There are some types of study designs 
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We hope this publication and the asso- 
ciated computer program will be useful 
within the framework of the assumptions 
considered. 

We undertook the theory development 
and the writing of this report for a variety 
of reasons. Several important advances 
have been Inade but are available only as 
unpublished dissertations (Burnha1n 
1972, unpublished doctoral dissertation, 
Oregon State University, Corvallis, Ore- 
gon; Pollock). New Inethods have empha- 
sized nonpara1netric approaches that are 
robust to the failure of certain assump- 
tions. Further, the use of a sequence of 
statistical luodels seelus appropriate. It is 
unreasonable to expect a single method 
to perform well on studies of various spe- 
cies in different habitats, or the same spe- 
cies at different tilnes. Pollock (unpub- 
lished dissertation) treated 4 models, each 
based on specific assumptions, and sug- 
gested a statistical testing sequence. That 
general strategy, followed in this publi- 
cation, allows models (assumptions) that 
are inadequate to be rejected for a par- 
ticular data set. A method inappropriate 
for field mice Peromyscus spp. Inay work 
well for voles LHicrotus spp- 

There exists a large body of standard 
statistical theory that is directly relevant 
and applicable to the estiluation probleln 
ill capture-recapture and reluoval stud- 
ies. Biologists need not, however, learn 
the theory to be able to use the results of 
these advanced methocls. The methods 
employed here are often beyond the for- 
lual training of luost biologists, although 
they should be able to Inake proper use 
of the results. We stress that we have ex- 
aluined the estimation and inference 
problems in a rigorous statistical fralne- 
work as opposed to various ad hoc pro- 
cedures. 

Another objective of this luonograph is 
to bring to the biologists' and statisti- 
cians' attention the computer prograln 
written to implelnent the complex anal- 
yses described here. AAIithout the aid of 
a computer to do the calculations, devel- 
opmellt of sophisticated analyses is just 
an academic exercise. Our philosophy in 
this matter has been sumlned up by 

Overton and Davis ( 1969:404): "Com- 
puters will soon prove of very great value 
in the routine processing of census and 
survey data. When they become gener- 
ally available it will be desirable to ad- 
vance to even more realistic and colaplex 
solutions to the problems; there will be 
no premiuln on siluplicity so long as the 
users understand the principles and are 
able to comprehend the constraints ancl 
limitations of the models on which the 
coluputer solutions are basecl." 

Assum ptions 

Every estimation lnethod is based on 
a set of assumptions. The general as- 
sumptions for the capture-recapture 
lnethods we present here are listed ancl 
cliscussed below. The assumptiolls lor 
the rellloval experilnent are given in the 
section on removal stuclies. Four assump- 
tions are necessary for the luost restric- 
tive experilnental situations: 
(1) the population is closed 
(2) animals do not lose their marks dur- 

ing the experiment 
(3) all marks are correctly noted and re- 

corded at each trapping occasion j and 
(4) each animal has a constant and equal 

probability of capture on each trap- 
ping occasion. This also implies that 
capture and marking do not affect the 
catchability of the animal. 

Before discussing the alsove we lilUSt 

eluphasize that the focal point of our 
work has beell to relax Assuluption 4. 
That assuluptioll is not Inet in Inost cap- 
ture-recapture studies an(l a large per- 
centage of past efforts have beell directecl 
at relaxing it. Assumptions 1-3 IllUSt lge 
luade for all luodels considered here. We 
briefly discuss the first 3 and then elal- 
orate on the last ill the following sectioll. 
(1) Populatiotl closure. This aSSUIllp- 

tion arises because population estilllation 
Inodels were initially conceptualized as 
extensions of urn models (Feller 1950). 
Such tnodels are basically intended to 
provide a "snapshot" of the population 
size at a given point in space and tilne. 
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catchable, or nearly so, is indistinguish- 
able from one that dies or emigrates. Pol- 
lock (1972, unpublished master's thesis, 
Cornell University, Ithaca, New York) 
discussed a test for mortality in some de- 
tail. The tests for recruitment are more 
difficult. Thus, the biologist is forced to 
consider carefully the design of such 
studies in an effort to assure that the clo- 
sure assumption is met. Finally, we note 
that the tests for closure implicitly as- 
sume equal capture probabilities; there- 
fore, such tests can reject closure when 
in fact closure is true but equal capture 
probability is false. This greatly lessens 
the value and power of such tests. We 
believe closure will have to be assessed 
largely from a biological basis rather than 
from any definitive statistical tests. 

The closure assumption can be relaxed 
in some cases. Seber (1973:70-71) showed 
that natural mortality will not bias some 
estimators if it acts equally on marked 
and unmarked segments of the popula- 
tion. In such cases, the population esti- 
mate then relates to the size of the pop- 
ulation at the beginning of the study. 
However, if recruitment and luortality 
occur during the experiment, the esti- 
mate of N will be too high, on the aver- 
age, for both initial and final population 
size (Robson and Regier 1968). 

(2) Permanency of marks. Loss of luarks 
(tags) violates the closure assumption and 
will result in an overestimate of N. If the 
study is of short duration (to help assure 
the closure assumption), it seems that 
loss of marks will generally be a minor 
problem. Some exceptions, such as radio- 
active isotopes with a very short half-life, 
undoubtedly occur (cf. Seber 1973:93- 
100). 

(3) Reporting and recording marks 
(tags).-This assumption can be easily 
assured by working carefully. Field re- 
ports and keypunched cards should be 
edited and verified. Often, a pilot study 
may be beneficial to train personnel and 
identify any problems with the marking 
lnethod. 

In that context, open and closed models 
become essentially noncompeting, since 
open models are more frequently used 
for purposes of monitoring populations 
over a longer period of time and obtain- 
ing information concerning such proper- 
ties as survival and recruitment rates. If 
estimates of population size at a given 
time are also desired, however, compe- 
tition between the 2 types of models does 
arise. In general, open models require 
more data than closed models due to the 
fact that assumptions are more rigorous 
and more parameters are involved. 
Therefore, feasibility often prohibits the 
use of very general stochastic models for 
estimating population size of open pop- 
ulations (Jolly 1965; Seber 1965; Robson 
1969; Arnason 1972a, 1972b, 1973; Pol- 
lock 1975). If, for example, a 10-day ex- 
periment is considered, 17 basic param- 
eters would have to be estimated using 
Jolly's (1965) model. Hence, data from 
onany population estimation experiments 
are inadequate for obtaining estimates 
with acceptable precision and small bias 
using models for open populations. 
Moreover, unlike the models treated 
here, none of those open population 
models allows for unequal capture prob- 
abilities of individual animals. Let it be 
clear, we believe that well-developed, 
general models for capture data from 
open populations are essential in some 
studies. However, we also believe that 
for many populations of interest, the clo- 
sure assumption can be met approximate- 
ly and the models discussed in this 
monograph will be useful. For example, 
closure might be assumed for an 8-day 
study of cottontails Sylvilagus spp. dur- 
ing a nonbreeding period in a well-de- 
fined (sampled) area. 

A number of tests for closure have been 
derived (Robson and Flick 1965, Robson 
and Regier 1968, Pollock et al. 1974), but 
they generally have little chance of re- 
jecting closure unless the sample is large 
and there is a marked departure from clo- 
sure. In addition, closure tests are often 
confounded with behavioral response to 
capture, e.g., an animal that becomes un- 
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Unequal Capture Probabilities 
The fourth assumption is particularly 

iluportant and, for this reason, we focus 
on it here. It is now widely recognized 
that this assumption is commonly not Inet 
(e.g., Young et al. 1952, Geis 1955a, Hub- 
er 1962, Swinebroad 1964). Edwards and 
Eberhardt (1967), Nixon et al. (1967), and 
Carothers (1973a) provided clear evi- 
dence that accurate population estima- 
tion usually will require models that pro- 
vide for unequal probabilities of capture. 
The effects of unequal capture proba- 
bilities on estimates derived froln models 
that assulne equal catchabilities have 
been studied by computer simulation by 
Burnham and Overton (1969), Manly 
(1970), Gilbert (1973), and Carothers 
(1973b). Estiluators studied were gener- 
ally found to be significantly biased 
when this assumption was violated. 

This luonograph presents a nuluber of 
models and estimators developed to relax 
the critical assumption of equal catch- 
ability. We have drawn heavily froln the 
work of Pollock (unpublished disserta- 
tion, pers. comm.) and Burnham (unpub- 
lished dissertation). Following Pollock 
(unpublished dissertation), we consider 
a sequence of models each allowing for 
different colubinations of up to 3 types of 
unequal capture probabilities: 

(1) capture probabilities vary with time 
or trapping occasion Model Mt, 

(2) capture probabilities vary due to be- 
havioral responses Model Mb, 

(3) capture probabilities vary by individ- 
ual animal Model Mh (h = hetero- 
geneity among animals). 

The assumptions regarding unequal cap- 
ture probabilities are to be explicitly em- 
bodied in probability models that de- 
scribe capture studies. 

We agree with Carothers (1973b:146) 
that equal catchability is an unattainable 
ideal in natural populations (cf. Seber 
1973:81-84). We discuss the 3 simplest 
ways to relax this assumption. 

Model Mt allows capture probabilities 
to vary by time (e.g., each trapping oc- 

casion). This situation may be common 
even though the number of traps might 
be fixed during the course of the study. 
For example, a cold rainy day during the 
study might reduce activity of the ani- 
mals and reduce the probability of cap- 
ture. Also, if different capture methods 
are used on each occasion, this model 
could be appropriate. 

Model Mb allows capture probabilities 
to vary by behavioral response or "cap- 
ture history," and deals with situations in 
which animals becolne trap happy or trap 
shy. Carothers (1973a) referred to this as 
a contagion of catchability. This iluplies 
that an anilnal's behavior tends to be al- 
tered after its initial capture (e.g., per- 
haps the anilnal was frightened or hurt 
during initial capture and marking and 
thereafter it will not likely enter another 
trap). 

Model Mh allows capture probabilities 
to vary by individual animal. This situa- 
tion has been modeled only with great 
difficulty and requires that additional dis- 
tributional assumptions be lnade. Indi- 
vidual heterogeneity of capture may arise 
in many ways. Perhaps accessibility to 
traps (as influenced by individual holne 
ranges), social doluinance, or differences 
in age or sex can cause such an unequal 
probability structure. This is an ilnpor- 
tant type of variation and has been rig- 
orously treated by Burnhaln (unpub- 
lished dissertation), whose nonparametric 
approach is presented in a later section. 

In addition to these 3 simple models, 
we consider all possibile combinations of 
the 3 types of unequal capture probabil- 
itie s ( i . e ., M ode I s M tb, M th, M bh, an d 
Mtbh). We also treat the "null" case in 
which capture probability is constant 
with respect to all factors (Model Mo) 
Model Mo corresponds to the 4 assulnp- 
tions listed earlier. For simplicity, we de- 
note estilnators of population size for a 
specific lnodel using the same subscript 
notation. For example No denotes the es- 
timator derived from Model Mo; Nt de- 
notes the estimator derived from Model 
Mt; Nbh denotes the estimator derived 
froln Model Mbh, and so on. 
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Perspectives 

We wish to emphasize that a specific 
set of assumptions is the basis for a spe- 
cific model. The assumptions and model 
then represent a tentative hypothesis 
when analyzing the results of a particular 
capture experiment conducted to esti- 
mate population size or density. Cormack 
(1968:456) stated, "In all cases every iota 
of information, both biological and statis- 
tical, lnust be gathered to check and 
countercheck the unavoidable assulup- 
tions." Statistical testing within and be- 
tween Inodels (assumptions) is empha- 
sized here. In spite of this, more work in 
this direction is clearly indicated. Our 
approach is to derive models for an array 
of types of unequal probabilities of cap- 
ture. We conducted statistical tests to en- 
able selection of an appropriate model for 
the analysis of a particular data set (cf. 
Pollock unpublished dissertation). Some 
Inodels are very sensitive to small depar- 
tures froln the underlying assumptions; 
therefore, testing between luodels and 
investigating the robustness of each es- 
timator are essential. 

The ilnportance of such testing is re- 
flected in the fact that use of an inade- 
quate model will often lead to a highly 
biased estilnate of population size. This 
is perhaps to be expected, if not obvious. 
More subtle is that estimates of the sam- 
pling variance (a measure of precision) 
are quite dependent on the correct mod- 
el. Bias ofthe estiluator onay be small, but 
the estilllate of variance may be very 
poor, even with large samples. This can 
cause, for instance, associated confidence 
intervals to have very poor properties. 
The iluportance of assuluptions and their 
testing cannot be overeInphasized. Pau- 
lik (1963) noted that an approxiluately 
correct estiInate with low precision is al- 
ways better than a highly precise incor- 
rect estimate. Tests of assuInptions con- 
cerniIlg equal capture probabilities are 
especially iluportant because estimators 
based on given sets of assuluptions are 
usually not robust to departures from 
those assumptions (Seber 1970, Gilbert 
1973). 

We believe rigorous probabilit,v models 
explicitly incorporating various tentative 
assumptions represent the best approach 
toward estimating population size N, or 
density D. The tentative nature of the as- 
suluptions and the general uncertainty 
about biological processes Inake testing 
a key concern. As Seber (1973) pointed 
out, statistical models should be used 
with caution, due to lack of control over 
natural populations. All models depend 
on the validity of various underlying as- 
suluptions that are often difficult to 
evaluate rigorously. 
Finally, we believe that theory and ap- 
plication must be integrated. Either in 
the absence of the other will stifle prog- 
ress. For this reason we have tried to in- 
tegrate the statistical theory with the bi- 
ological application. We havev however, 
tried to separate the luore complex sub- 
jects and include thena as a series of tech- 
nical appendixes. We urge biologists to 
try to consider and understand the ap- 
pendixes, and we ask statisticians to con- 
tinue to be concerned with the biological 
complications and realities before at- 
tempting additional theory developlnent. 
Through an integrated team approach 
we can expect further progress on this 
series o f estimation problems. 

Comments on the Use of 
This Honogra ph 

We cover several topics here, and pre- 
sent matheluatical as well as applied re- 
sults. Topics covered include data anal- 
ysis of short-terln livetrapping and 
constant effort reluoval studies, design of 
such live trapping studies, and simula- 
tion results on inference procedures. Nu- 
merous examples are also given. A vari- 
ety of uses of this luonograph are 
anticipated by: (1) biologists who must 
analyze actual data, (2) biologists (and 
statisticians) faced with designing capture 
studies, (3) persons interested in perfor- 
uance of estiluators presented here, (4) 
statisticians interested in developing 
more advanced models, and (5) educators 
who seek to teach courses on the subject 
of population size estimation. 
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Biologists who have data from closed 
population livetrapping studies will have 
to read quite a bit of this monograph be- 
fore they can understand the methods. 
They do not need to read the appendixes. 
They would have to understand all sec- 
tions through TESTS OF MODEL ASSUMP- 
TIONS, except REMOVAL MODELS. We 
believe this can be done by anyone hav- 
ing had a solid course in college level 
algebra and beginning statistics. In order 
to understand the essence of what we 
present, the reader does not have to fol- 
low all the mathematical descriptions of 
luodels nor discussions of Inodel prop- 
erties. We have included nulnerous ex- 
alnples. In particular, the reader should 
benefit greatly froln the section on Co- 
PREHENSIVE EXAMPLES. 

If the reader intends to do, say, data 
analysis according to these methods, it is 
virtually necessary to use prograln CAP- 
TURE (see COMPREHENSIVE COMPUTER 
ALGORITHM). This prograln is available 
and there is a user's nlanual for it. Per- 
sons with many data sets to be ana- 
lyzed should get the program. Con- 
versely, we do not recommend trying to 
implement this computer program if one 
has only a few (or one) data sets to ana- 
lyze. In this latter case, it is better to have 
the data run for you. The authors are will- 
ing to assist in running such data provid- 
ed the user arranges his own keypunch- 
ing of the data in the necessary format 
(we can supply this format). 

If one's goal is to analyze some reluoval 
data, the relevant sections are those on 
Models Mb, Mbh, and the reluoval models 
(plus the introductory sections). Again, 
the authors would try to help users ana- 
lyze relnoval data; within reasonable lilll- 
its we Inay be able to run the data anal- 
yses or assist in setting theln up. 

Many readers will sometimes be faced 
with designing a capture study. The sec- 
tion OI1 STUDY DESIGN covers sollle fun- 
damental design aspects of livetrapping 
studies for closed populations. If your 
goal is to design a study, read that section 
at a minilnum; to get full advantage of 
this Inonograph in terms of design, you 

will need to read most sections, excep- 
tions being HISTORICAL OVERVIEW, RE- 
MOVAL MODELS, and material following 
the STUDY DESIGN section. 

If you are interested in obtaining in- 
sights into the perforluance of various es- 
timators, you should put special effort 
into studying the numerous silnulation 
results presented here. This would re- 
quire reading alluost all the text and care- 
ful study of Appendix N 

Persons interested in doing further re- 
search along the lines of the models and 
approach of this monograph will have to 
carefully study almost everything here, 
especially the appendixes. 

Finally, this Inonograph and prograln 
CAPTURE have value for teaching and 
learning about population size estilna- 
tion. The simulation feature of CAP- 
TURE can be especially valuable in 
teaching the concepts of salnpling varia- 
tion and properties of estimators. Persons 
interested in performing such simulation 
of the lnethods presented here (either for 
design of studies, evaluation of esti- 
lnators? or teaching purposes) will need 
to iluplelnent the progralll for their own 

use. 

ACKNOWLEDGMENTS 

Dr. K. H. Pollock, Ulliversity of Rea(l- 
ing, provided several ideas and criticislns 
through correspondellce; in addition, we 
have drawn on the results of his doctoral 
prograln. Drs. M. H. Smith and J. B. Gen- 
try, Savannah River Ecology Laboratory, 
contributed to this work through (liscus- 
sion and provided sallaples of their re- 
search to be used for prograln testing. 
Data to be used as exalnples were pro- 
vided by A. D. Carothers, H. N. Cou- 
lolnbe, C. T. Cushwa, W. R. Eclwards, S. 
W. Hoffinan, E. C. Larsen, R. F. Raleigh 
and V. H. Reid. 

We appreciate extensive comments 
nlade by A. N. Arnasonv A. D. Carothers, 
W. R. Clark, S. W. Hoffinan, and R. P. 
Davison on an earlier draft of the manu- 
script. The colulnents by A. N. Arnason 
and G. A. F. Seber on the final version of 



14 WILDLIFE NIONOGRAPHS 

the manuscript are also much appreci- 
ated. 

Dr. R. G. Streeter, U.S. Fish and Wild- 
life Service, provided encouragement 
during the investigations. 

This work was performed under Con- 
tract 14-16-0008-1224 of the Coal Pro- 
gram, Office of Biological Services, U.S. 
Fish and Wildlife Service, to the Utah 
Cooperative Wildlife Research Unit. 
Funds for this work were made available 
to the Fish and Wildlife Service as part 
of the Federal Interagency Energy/En- 
vironment Research and Development 
Program, Office of Research and Devel- 
oponent, U. S . Environmental Protection 
Agency (IAG-EPA-D5-E385). Publica- 
tion costs were paid by the Oil Shale Pro- 
gram, Office of Biological Services, U.S. 
Fish and Wildlife Service, contract 14-16- 
0008-1197. Final debugging of the com- 
puter prograln, and preparation of exam- 
ples were performed under the auspices 
of the U.S. Energy Research and Devel- 
opment Administration. 

FUNDAMENTAL CONCEPTS 

This section presents notation and dis- 
cusses the statistical techniques used in 
this monograph. The subject matter is 
basically technical in nature, but we have 
tried to keep the presentation simple and 
refer the reader to appendixes for more 
coluplex details. We believe it is impor- 
tant for users of the methods described in 
this publication to understand the luate- 
rial presented in this section. 

Data and Parameters 

All the models discussed here assulne 
population closure (except for known re- 
lnovals). Therefore, the parameter we 
wish to estimate is population size N 
which is constant. Nloreover, because the 
salne individual aniluals compose the 
population on each trapping occasion, j = 
1, 2, . . ., t, we can conceive ofthe individ- 
uals as being numbered i = 1, 2, . . ., N. 

The basic capture data are convenient- 
ly expressed in Inatrix forln as 

X1 1 X12 , . . Xlt 
[Xij]= X21 X22 ... X2t 

* . . 

_ XN1 XN2 XNt _ 
where 

1 if the ith animal is caught on the 
xij = jth occasion 

O otherwise. 

The X Inatrix is a simple way to record 
the capture or noncapture of each animal 
in the population on each trapping occa- 
sion. Row i gives the trapping results for 
individual i, while column j gives the re- 
sults of the jth trapping occasion. Note 
that the luatrix X may not be observed in 
its entirety because solne animals may 
never be captured; therefore, those rows 
of X are all zeros. 

A series of specific models for capture 
data can be derived if we define the fol- 
lowing general structural model: 

Pij = the capture probability of the ith 
individual in the population on 
the jth trapping occasion, where i 
= 1, 2, . . ., N, and j = 1, 2, . . ., t. 

For example, if we assume the restric- 
tions Pii = p for all i and j we get Nlodel 
Mo) the simplest possible Inodel. All oth- 
er Inodels we introduce may be thought 
of as generalizations of Nlodel M0. 
Hence, in the following sections, models 
are developed based upon capture prob- 
abilities being time specific, behaviorally 
related, or differing among individual an- 
imals. Therefore, capture probabilities 
are the crucial element of the series of 
models we discuss. 

The above structure and assumptions 
suffice to specify the marginal distribu- 
tion of each individual Xij (i.e., they are 
Bernoulli random variables); however 
they do not specify the joint distribution 
of all Xij. Therefore, we have assumed 
joint independence of the variables in 
order to have a completely specified gen- 
eral lmodel structure. Specifically, we as- 
sume that given the correct model (i.e., 
the correct specification of capture prob- 
abilities Pij), then the elelnents of Xij are 
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2, ...,t.Notethatuj=nj-mjand 
that m1 = 0, 

t 

m. = sum of the mj = E mj. 
J=1 

The statistics Uj, fj, Mj, and mj may also 
be computed directly from the X matrix. 
However, the computation is not as 
straightforward as that of nj and is not giv- 
en here. We denote X<, as the number of 
animals with a specific capture history co. 
For example Xl00ll represents those in- 
dividuals caught on trapping occasions 1, 
4, and 5. The set of all the possible capture 
histories will be symbolized as {X(O}. In 
general, with t capture occasions there are 
2t possible capture histories. 

Two other terms used frequently in this 
monograph are: 
Robustness (of an estimator). A robust 
estimator is one that is not sensitive to the 
breakdown of a particular assumption. A 
specific measure of robustness is difficult 
to define. Therefore, a somewhat subjec- 
tive determination regarding the robust- 
ness of an estimator is made relative to 
the general performance of the estimator. 
Performance is evaluated with respect to 
the essential criteria of bias, precision, 
and confidence interval coverage. For ex- 
ample, the estimator developed under 
Model Mt performs very poorly with re- 
spect to all criteria if individual hetero- 
geneity to capture is present in the pop- 
ulation. We say that this estimator is not 
robust to a particular assumption. In con- 
trast, the jackknife estimator for Model Mh 
appears to be fairly robust for a nuluber 
of specific assumptions. 
Bias (of an estimator). Bias is the differ- 
ence between the expected value of an 
estimator and the true parameter being 
estimated, e.g., B = E(N) - N. Percent 
relative bias, 100{[E(N)- N]/N} is de- 
noted as RB. Overton and Davis (1969) 
gave a good discussion of these and other 
related terms. 

A final note concerns the differences 
between parameters (true values) and es- 
timates. We are concerned chiefly with 

mutually independent random variables. 
This assumption is not testable unless one 
first knows what the correct model is 
(which we never will for real data). It is 
our opinion this is not a restrictive as- 
sumption and it need not be a source of 
concern. 

Statistics and Notation 

Probability models from which esti- 
mators of population size N may be de- 
veloped are discussed in following sec- 
tions. A few simple statistics are needed 
for these models. They are defined and 
discussed below. 

nj = the number of animals captured 
in the jth sample, j = 1, 2, . . ., t, 
N 

=xiix 
i=l 

n. = the total number of captures dur- 
t 

ing the study = E nj, 
j=l 

u; = the number of new (unmarked) 
animals captured in the jth sam- 
ple, j = 1, 2, . . ., t, 

fj = the captures frequencies = the 
number of individuals captured 
exactly j times in t days of trap- 
ping, j = 1, 2, . . ., t. fO will be used 
for the number of individuals 
never captured (obviously, fO is 
not observable). 

Mt+l = the number of distinct individuals 
caught during the experiment (re- 
call that t is fixed for a given 
experiment), 

t t 

=fj = Euj, 
j=l j=l 

Mj = the number of marked animals 
in the population at the time of 
the jth sample, j = 2, 3, . . ., t. (Note 
that M1--°) 

M. = sum of the Mj [does not include 
t 

Mt+l] = E Mj, 
j=l 

mj = the number of marked animals 
captured in the jth sample, j= 
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making estimates of the parameters N and 
D, population size and density, respec- 
tively. We denote our sample estimators 
ofthese parameters as N and D. Biologists 
are referred to Kendall and Buckland 
(1971) for definitions of standard statisti- 
cal terms. 

Parameter Estimation 

The data from capture-recapture or re- 
moval studies are samples. This imposes 
the need for a probabilistic treatment of 
the data to derive correct estimation and 
inference procedures. The models we 
consider here are termed stochastic 
models. Unlike the models for open pop- 
ulations, the only stochastic component 
for models under population closure re- 
lates to the sampling process: i.e., the cap- 
ture probabilities. Model formulation in 
this context begins with a set of explicit 
assumptions. A probability model for the 
sampling distribution of the X matrix (the 
basic data) is derived to quantitatively 
express the assumptions. A probability 
function is a form of mathematical rep- 
resentation of the observed data under a 
specific set of assumptions. It provides a 
basis for quantitatively and explicitly in- 
corporating the specific assumptions 
about capture probabilities and for de- 
veloping the point and interval estiInators 
by rigorous statistical estimation tech- 
niques. 

Most parameter estimators in this pub- 
lication were derived using the method 
of lnaximum likelihood (ML). Several 
models and their corresponding esti- 
lnators were taken from existing literature 
(e.g., Zippin 1956, Darroch 1958), often 
with some modification. Other models 
and estimators were derived during the 
course of this study. 

Estimators found by the ML method are 
optimal, at least for large samples. (For a 
discussion of optimality, refer to Appen- 
dix A). This is a generally accepted tenet 
of statistical estimation theory (Mood et 
al. 1974). In general, ML estimators of 
unknown parameters (e.g., N) are found 
by application of results from siInple cal- 

culus, using the likelihood function de- 
rived from the probability model. In some 
cases, the estimator may take a simple, 
easy to use form. For example, the ML 
estimator of N for Model Mt for 2 sample 
occasions (t = 2) is the Petersen estimator 

Nt = nl n2 

m2 

where nl, n2, and m2 have already been 
defined. 
However, in capture-recapture models 
we rarely find that the exact ML estima- 
tors exist as a simple formula as above. To 
illustrate this, consider the model devel- 
oped by Darroch (1958) when 4 sampling 
occasions are considered (t= 4) and the 
capture probabilities are assumed to vary 
only by time (i.e., P1, P2, p3, and p+). 
The approximate ML estimator of N for 
this model (see Darroch 1958) is the 
unique solution of the equation 

(1_ Ms )= (1_ nt)(l_n2) 

( N ) ( N ) 

In general, for Model Mt the ML esti- 
mator is the solution of the equation 

( N ) [I ( N ) 

For t greater than 2, this equation cannot 
be solved algebraically for N. In other 
words, it is not possible to arrange the 
symbols algebraically in such a way that 
only N appears on one side ofthe equation 
and all other terms appear on the other 
side. The equation can be solved, but only 
on a case by case basis using a numerical 
procedure. We say the equation does not 
have a simple, "closed form" solution. 
Complex probability models often do not 
have simple estimators and tests of as- 
sumptions; nonetheless, complex models 
appear necessary to describe luany cap- 
ture-recapture studies adequately. 

Our work has shown that several of the 
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approximations of N suggested for this 
model in the past are fairly poor. Fur- 
thermore, some of the iterative solutions 
given (e.g., Darroch 1958) produce only 
approximate ML estimates. We have ob- 
tained exact ML estimators for all the 
models in this publication (except Models 
Mh, Mtb, Mth, and Mbth) by employing nu- 
merical procedures on a digital computer 
(in fact no estimators can be derived for 
the latter 3 models). We have found the 
uaxilnum of the likelihood function in 
such a way as to obtain exact integer val- 
ued ML estimators of N. The disadvan- 
tage here, of course, is that we cannot 
show simple closed form estimators. This 
subject is discussed further in Appendix 
A. 

We find that the estimator of N under 
each model involves only simple statistics 
coluputed from the X luatrix. Individual 
captures are not employed only various 
sums (linear combinations) derived from 
the X matrix. Those sums are statistics 
such as nj, n., u;, and Mt+,. For any model 
we consider, there exists a set of simple 
statistics, called minimal sufficient statis- 
tics (MSS). Estimators should be based on 
only MSS. The use of the ML method 
results in estimators that are always func- 
tions of the MSS. This is a desired prop- 
erty because it can be shown that the MSS 
contains all the inforluation available 
froln the experilnent for estiluating the 
paralneter(s) of interest (in our case N). 
An estimator based on statistics other than 
MSS is not using all available inforlnation 
and is, therefore, not optimal. Solne sta- 
tistical tests of assumptions will depend 
on information other than MSS. 

The number of parameters that can be 
identified (estimated) is less than or equal 
to the number of elements in the M S S 
(regardless of the estimation lnethod 
used). The subject of"identifiability" of 
parameters is important in the material 
that follows and, therefore, we place some 
emphasis on MSS. For example, under 
Model Mox the MSS is n. and Mt+l, where- 
as under Model Mh, the MSS is fj, j = 1, 
2, . . ., t. We make frequent use of the 
MSS in the following sections. 

Interval Estimation 

One of the several advantages of the 
probability model/ML approach is that 
estimates of salupling variance and co- 
variances can be computed as part of the 
ML method. These measures of precision 
are essential in making inferences froln 
the sample results of the experiment. The 
variance and covariance estimators are 
derived from "large sample'' theory and 
usually are of unknown value as measures 
of precision in ''smaller'' samples. We 
have performed a large nuluber of Monte 
Carlo silnulation experiments (Appendix- 
es M and N) to examine the sluall sample 
properties of such variance estimators and 
the confidence intervals that depend on 
theln. Interval estimation is an old subject 
in the statistical literature, and we refer 
the interested reader to the text by Mood 
et al. (1974) for details. Seber (1973) also 
gave nulnerous examples. 

Typically, the ML estimator of N is not 
norlually distributed unless large saluples 
are taken. Because confidence intervals 
commonly used depend upon an assump- 
tion of norluality, we explored alternative 
interval estimation techniques (Appendix 
O). The alternative procedures were not 
totally satisfactory and we will use the 
standard procedure as follows to construct 
an approximate 95 percent confidence in- 
terval on N: 

N + 1.96jVar(N). 

This procedure has its limitations but, all 
things considered, appears to be best at 
present. 

HISTORICAL OVERVIEW 

Although the basic concept of obtain- 
ing inforluation about an animal popula- 
tion by Inarking some of its melnbers may 
be traced as far back as the 17th century 
(Chapman 1948) and to Petersen's (1896) 
expression of the fundamental principle, 
one may argue that the practical begin- 
nings of the literature concerning the 
Inarking method can be associated with 
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assumptions, 
such as random 

sampling, 

Lincoln's (1930) use of band returns to 

estimate the size of the North American 
waterfowl population. In the nearly 50 

years since Lincoln's (1930) initial work, 

a voluminous literature has resulted from 

efforts directed toward deriving and re- 

fining techniques based on the capture- 
recapture method. In the past decade, 2 

notable attempts to summarize the exist- 

ing literature have been made. The first 

is by Cormack (1968) who provided a sur- 

vey of mathematical models proposed for 

use in capture-recapture experiments. 
The second is an extensive text by Seber 

( 1973) that attempted to bring together all 

the proposed techniques for estimating 
population abundance and related pa- 

rameters. Included as a subset of those 

techniques are those concerned with the 

capture-recapture method. In the pre- 

sentation of those techniques, a substan- 

tial a1nount of mathematical detail is 

provided, as are numerical examples. 
Furthermore, assumptions that must be 

met to ensure validity of a particular tech- 

nique are presented; methods for testing 

the validity of some of the assumptions 
are given. 
Because of the existence and quality of 

the cited works, no attempt is made here 

to present specific methods associated 
with the theory of capture-recapture and 

related experiments. Rather, we present 

a review that follows the chronological 
development of conceptual approaches 
in the literature. 
The initial state of the art is well char- 

acterized by Lincoln's (1930:2) statement 

of the solution to his population estima- 

tion problem: "Given a fairly accurate 

statement showing the number of wild 

ducks killed in North America in any one 

season, then the total number of ducks 

present on the continent for that season 

luay be estimated by a percentage com- 

putation, based upon the relation that the 

total number of banded ducks killed dur- 

ing their first season as band carriers 

bears to the total number banded." As 

one might expect, no mention is made of 

the statistical properties such an esti- 

mator might possess or of the underlying 

that influence the validity of the method. 

Such considerations were at least hinted 

at, however, in Schnabel's (1938) paper 

that extended the method to the situation 
in which members of the population 
were marked and released back into the 

population on more than 1 occasion. 
Mention is made of the percentage rela- 

tive bias of the estimators in an experi- 

ment in which the population size is 

known, and the reader is cautioned that 

"none of the solutions can be expected to 

provide more than an estimate ofthe gen- 

eral order of magnitude of the total pop- 

ulation" (Schnabel 1938:352). Presum- 

ably, some caution is generated by the 

fact that "assumptions of random sam- 

pling and constant population are only 

rough approximations to the actual situ- 

ation" (Schnabel 1938:352). More consid- 

eration was given to the uses of the cap- 

ture-recapture technique in a sequence 
of papers by Jackson (1933, 1937, 1939, 

1940), who was concerned not only with 

estimating population size but also with 

birth-immigration and death-emigration 
parameters. Contained in the considera- 
tion of those parameters is the concept 

that the population is not "closed," i.e., 

population size is not constant through- 
out the sampling period. Those lnethods 
were then being applied mainly to fish 

and insect populations and not to terres- 

trial wildlife populations, although some 

exceptions did exist (e.g., Green and Ev- 

ans 1940). Scepticism as to the worth of 

the method with respect to wildlife pop- 

ulations was expressed by Dice 

(1941:402), who stated that "the applica- 

tion of the proportional snethod of cal- 

culating luammalian populations may 

often require as much effort as the cozn- 

plete trapping or counting of the whole 

sample population." Nonetheless, effort 

continued in development of the theory. 
Schumacher and Eschmeyer (1943) pro- 

vided an alternative solution to that of 

Schnabel (1938) by the use of regression 
techniques. Evidently, their work was 

spurred by the desire to develop an es- 

timator that would be more robust to de- 
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partures froln the underlying assump- 
tions of the Schnabel method. Moreover, 
unlike Schnabel, they provided an esti- 
uator for the standard error of the esti- 
uate. Siluilar regression techniques were 
also investigated by Hayne (1949a) and 
DeLury (1958). 

A significant change in both the quality 
and quantity of work in the field of cap- 
ture-recapture theory occurred with the 
appearance of several important papers 
of the early 1950s. Those papers sig- 
naled the beginning of a more rigorous 
Inathematical treatment of the theory in 
terms of both estimation and testing of 
assumptions. Bailey (1951), for example, 
proposed a binomial Inodel for the single 
mark-release situation. He used the ML 
theory to develop an estimator of the pre- 
cision of the population size estimator, 
the latter estimator being the salne as 
Lincoln's (1930). Chapman (1952) con- 
sidered a hypergeometric model for the 
multiple capture-recapture experiment 
and derived an approximate expression 
for the resulting ML estimator. He also 
gave a test for determining whether the 
probability of capture is independent of 
tagging. Alternative sampling schemes 
were proposed by such authors as Chap- 
uan (1952, 1954) and Goodman (1953). 
Such schemes were designed to avoid 
undesirable statistical properties associ- 
ated with the direct sampling method 
that considers the total number of ani- 
mals caught on each occasion as a fixed 
paralneter. For instance, Chapman (1952) 
pointed out that an estimator of popula- 
tion size obtained via inverse sampling 
(i.e., considering the number of marked 
aniluals caught on each occasion as fixed) 
is unbiased, whereas the estimator asso- 
ciated with direct sampling is biased. In 
addition, removal data, similar to the type 
of data used in marking experiments, was 
used in alternative methods proposed by 
Moran (1951) and DeLury (1951). Also at 
that time, progress was made in the the- 
ory of estimation in open populations 
through a sequence of papers by Leslie 
and Chitty (1951), Leslie (1952), and Les- 
lie et al. (1953). Those authors used ML 

theory for estimating such paralneters as 
death rate and population size, and de- 
voted much effort to the examination of 
assumptions. 

The appearance of such mathematical 
treatments generated Inost of the ilupor- 
tant imlnediately succeeding work on the 
developlnent of the theory. As an exam- 
ple, one can consider the work of Zippin 
(1956), who provided a more complete 
statistical treatment of the removal meth- 
od first suggested by Moran (1951). An 
ilnportant example is the work of Darroch 
(1958), who was responsible for the cor- 
rect derivation of the probability model 
for the multiple capture-recapture exper- 
iment first treated by Schnabel (1938). 
Moreover, Darroch presented expres- 
sions for the asymptotic bias and approx- 
imate variance for his approxiluate ML 
estimator and a method for constructing 
confidence intervals . Darroch's ( 1958, 
1959) work on the closed model, the birth 
only and death only models stands as a 
cornerstone in the development of the 
theory. 

Given the methods available, it was 
now possible for researchers to direct ef- 
fort toward the development of statistical 
tests of assumptions underlying the 
Inethods of estimation. One of the most 
generally invoked assumptions of pro- 
posed estimation techniques was (and 
still is) that all anilnals in the population, 
regardless of capture history and other 
individual characteristics, are equally at 
risk to capture on each trapping occasion. 
Leslie (1958) devised a test directed to- 
ward that hypothesis, which was later ex- 
tended by Carothers (1971). Corluack 
(1966) Inade the iluportant point that fail- 
ure of the above assumption Inay be 
caused either by each animal in the pop- 
ulation possessing an "innate catchabil- 
ity" which varies among individuals over 
the population, or by an individual's 
probability of capture being affected by 
its capture history, or both. Cormack 
(1966) provided a test for the former as- 
suming the latter is false. Seber (1962, 
1965) and Robson and Youngs (1971) con- 
sidered the problem of testing whether 
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marking an animal affects its probability of capture on subsequent trapping occa- sions, and Manly (1971) provided a meth- od for estimating the effect of marking on survival of the animal. During that peri- od Seber (1965) and Jolly (1965) inde- 
pendently developed what is now known as the Jolly-Seber method of estimating open population parameters from multi- ple capture-recapture experiments. That 
lmodel, aspects of which were later gen- 
eralized by Robson (1969) and Pollock (1975), allows the population to be ex- 
periencing death, recruitment, immigra- tion, anc b permanent emigration. Arnason 
and Baniuk (1977) provided a compre- 
hensive computer algorithm to compute 
estimates for various models for open 
populations. Existence of such open pop- ulation models points out the need for tests for closure of the population under 
study. Unfortunately, good tests of that 
assuluption are still not available. 

The importance of developing and us- ing valid tests of model assumptions was 
further emphasized hy results appearing 
simultaneously in the literature concern- ing the operating characteristics of exist- ing estimation techniques. Edwards and 
Eberhardt's (1967) study on a confined rabbit population of known size revealed 
large biases in both the Schnabel (1938) and Schumacher-Eschmeyer ( 1943) 
methods of estimation. The authors con- 
jectured that those biases were due to 
'<individual animals having different or 
changing probabilities of capture.'7 A 
silnulation study by Braaten (1969) indi- cated serious bias in the estimators de- rived from DeLury's (1947) catch-effort 
model if the assumption of "constant 
catchability' is violated. A similar lack of 
robustness to unequal capture probabili- ties among animals was exhibited by es- 
timators examined in a computer simu- lation study by Burnham and Overton (1969), who generated "populations" us- ing the family of beta distributions. lMore 
recently, Carothers ( 1973b) sampled a 
population of known size, the members of which were the taxicabs of the city of 
Edinburgh. The assumption of popula- 

tiorz closure was reasonable, and non- 
homogeneous individual capture proba- 
bilities were caused by the sampling 
schemes used. Various '4Schnabel type?' 
estimators7 that assume equal capture 
probabilities, were reported as having 
substantial bias. In addition, 2 regression type estimators proposed by Tanaka and 
Kanamori (1967) and Marten (1970), each of which assumed a certain form of un- equal capture probabilities, failed to re- duce significantly the magnitude of the bias of the "Schnabel" estiluators. 

The appearance in 1965 of the Jolly- 
Seber method of estimating parameters 
of open populations did not preclude the 
developtnent of additional estimation 
techniques in the literature, in spite of the fact that Corluack (1968:487) be- 
lieved the method to be "an extremely 
powerful general forInulation" ofthe cap- 
ture-recapture experiment. Although the method is general in the sense that it al- lows for such processes as recruitment and mortality, it is restricted by the as- 
sumption that all animals have the same 
probability of capture on a given trapping 
occasion. In many experimental situa- tions, the assumptions of population clo- sure and unequal capture probabilities 
constitute a more realistic set of assump- tions than the set required for the Jolly- 
Seber model. Hence, parameter es- 
timators derived from luodels based on 
different sets of assumptions than the Jol- 
ly-Seber rnodels continued to be devel- oped by researchers such as Tanaka and 
Kanamori (1967), Eberhardt (1969a), and Marten (197()). The jackknife technique for bias reduction proposed by Quen- 
ouille (1949, 1956) was used by Burnham 
(unpublished dissertation) to derive an 
estimator for the situation in which each onember of the population has an <'in- nate'> probability of capture that varies 
among individuals. That effort represents a unique attempt to develop a robust es- 
timator of population size that is non- 
parametric7 i.e.7 one that does not need to 
assume aow capture probabilities are dis- tributed over the population. Such non- 
parametric approaches are appealing 
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Unfortunately, it has been shown that 
Inisinformation results if, for a given ex- 
periment, assumptions are not valid or 
statistical estimators are not appropriate 
or both. Thus, it should be obvious that 
a rigorous approach to paralneter esti- 
mation in capture-recapture experilnents 
will include a statistical testing algorithln 
that allows the data to aid in selection of 
the "best" set of assumptions for the ex- 
perilnent. Although solne tests of specific 
assumptions have been introduced, uni- 
fied approaches to the problem have not, 
for the most part, received attention in 
the literature (an exception is the work of 
Pollock, unpublished dissertation). The 
concept of a unified approach is the basis 
for the development of this Inonograph. 
We believe an approach based on such a 
concept is a step in the direction of iln- 
proved analyses of data from capture-re- 
capture experilnents. Furtherlmore, we 
hope that future research will be directed 
to that salne objective. 

MODEL MO: CAPrURE 
PROBABILITIES ARE CONSTANT 

Structt4re and Use of the Model 

Assumptions and Parameters 

The simplest of all Inodels under con- 
sideration results froln the assulnption 
that all members of the population are 
equally at risk to capture on every trap- 
ping occasion. Moreover, the occasions 
themselves do not affect capture proba- 
bilities. We thus have a Inodel in which 
there is no heterogeneity of capture prob- 
ability, no behavioral response to cap- 
ture, and no variation in the experilnental 
situation over time. This model is desig- 
nated Model Mov and involves only 2 pa- 
rameters: N, the population size, and p, 
the probability that an animal is captured 
on any given trapping occasion. 

Statistical Treatlnent 

The probability distribution of the set 
of possible capture histories {X(O} is given 
by (cf. Darroch 1958): 

because they are robust to specific 
assumptions regarding the experiment 
and tend not to suffer from breakdown of 
specific assumptions used to parameter- 
ize the model. Pollock (unpublished dis- 
sertation) also considered estimation of 
population size under the assumption of 
heterogeneity of capture probabilities, 
but with the added complication that an 
animal's probability of capture may be 
altered by its capture history. However, 
no specific estimation procedure for that 
lnodel had been proposed in the litera- 
ture until the appearance of the general- 
ized reluoval method described in this 
nonograph. 

This overview would not be complete 
without luaking some observations con- 
cerning methods of density estimation in 
capture-recapture experilnents. The no- 
tion that the effective area of trapping is 
greater than the actual area of the trap- 
ping grid (i.e., the so-called edge effect) 
has long been recognized. Dice (1938, 
1941) corrected for the effect by adding 
to the grid area a strip of one-half the 
holne range of the animal, and that re- 
uains the Inost common practice at pre- 
sent. Other authors (Stickel 1954, Mohr 
and Stumpf 1966, Smith et al. 1975) have 
used recapture radii to correct for edge 
effect bias. Assessment lines have also 
been used to estimate density (Kaufman 
et al. 1971, Smith et al. 1971). More re- 
cently, Burnham and Cushwa (pers. 
comm.) have forlualized MacLulich's 
(1951) technique for estimating density 
that involves using concentric trap grids 
to allow silnultaneous estimation of den- 
sity and edge width. 

An underlying theme of this historical 
overview is that any capture-recapture 
experiment requires that the researcher 
make specific assumptions concerning 
the many factors that affect the results of 
the experiment. The assuluptions that are 
chosen determine which statistical esti- 
mation procedures should produce the 
best results available from the data. Many 
estimation procedures have been pro- 
posed because several different assump- 
tions can often be Inade for a given factor. 
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for Model Mo are given in Table N.1.b of 
Appendix N. 

Confidence Intervals 

Achieved confidence coefficients of the 
confidence interval procedure simulated 
were consistently at or above the 0.90 
level and hence were close to the 
claimed 0.95 coverage. However, the 
width of an average interval is so large 
for small values of p that not much infor- 
luation concerning true population size 
is provided. For instance, for N = 400, t = 
5, and p= 0.05 (Trial 3) expected width 
[= 2 1.96 AveVVar(N)] is 628.2; and for 
N = 400, t= 5, p = 0.10 (Trial 2) this val- 
ue is 217.7. However, with p= 0.30 
(Trial 1) expected width drops to an av- 
erage of 46.9, indicating that the model 
provides useful information concerning 
N when p is reasonably large. The num- 
ber of replications for these 3 examples 
were 500, 200, and 200, respectively. 
One should keep in mind that extremely 
wide confidence intervals tend to reveal 
poor experimental conditions, i.e., low 
values of p, and thus can be of use in 
providing the experimenter with infor- 
mation concerning the success or failure 
of the experiment. See Table N.1.b of 
Appendix N for further details of the sim- 
ulation results. 

Robustness 
Because Model Mo is built from the as- 

suluption that no factors that affect cap- 
ture probabilities are present in the ex- 
periment, it is not surprising that 
simulation results reveal that the esti- 
mator derived from this model is not ro- 
bust to any type of variability in the cap- 
ture probabilities. In particular2 if capture 
probabilities vary by animal No exhibits 
significant negative bias. This property 
has been documented in the literature 
(Robson and Regier 1964, Gilbert 1973, 
Carothers 1973b). Common sense and 
some reflection on the nature of the ex- 
periment should tell us not only that be- 
havioral response will cause bias in the 

P[{Xco}]= N! 
[tI Xc,,! ] (N - Mt+l) ! 
* pn- ( 1 - p)tN-n- 

where n. = E nj = total number of cap- 
=1 tures in the experi- 

ment, and 
Mt+1 = number of different animals 

captured in the experiment. 

An algorithm for producing ML esti- 
mators of N and p is derived in Appendix 
B. (When t= 2, a closed form ML esti- 
mator of N exists and is given by No = (n1 
+ n2)2/4m2, where m2 is the number of re- 
captures in the second sample.) These 
estimators are necessarily functions of 
the minimal sufficient statistic {n., Mt+1}. 
Thus, all the information relevant for es- 
timation purposes is contained in the 
nuluber of different animals captured and 
the total number of animals captured dur- 
ing the course of the experiment. Appen- 
dix B also gives an estimator for the 
asymptotic variance of No that we used in 
the construction of confidence intervals 
for N. 

Simulation Results 
Bias 

A computer was used to simulate ex- 
periments from populations satisfying 
theassumptionsofModelMo Byvarying 
the population parameters N and p, some 
insight into the small sample bias of N 
was obtained. Results indicate that the 
bias of N is negligible for values of p at 
least as large as 0.10 and t ¢ 5. For small- 
er probabilities of capture, however, pos- 
itive relative biases of 15-20 percent are 
realized. For example, from Appendix N, 
Table N. l.b, for a population of size N = 
400, one simulation consisting of 200 rep- 
lications with p = 0.10 and t = 5 pro- 
duced an average value of No of 406.0 
(Trial 2), while another, based on 500 
replications, produced an average value 
of No of 456.9 with p = 0.05 (Trial 3). 
Complete results of the simulation of No 
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estimator, but will also indicate the di- 
rection of that bias. That is, animals be- 
coming trap shy will cause No to overes- 
timate N, and vice versa when animals 
becolne trap addicted. These assertions 
are supported by the simulation results 
given in Tables N.3.b and N.4.b of Ap- 
pendix N. Results also reveal that the es- 
timator is somewhat robust to changes in 
capture probabilities over time. How- 
ever, Seber (1973) recommended, on the 
basis of Darroch's (1959) work, that the 
estimator associated with Model Mo not 
be used even if the capture probabilities 
are suspected of not varying with time. 
This is good advice if large numbers of 
anilnals are being caught but such a rule 
could result in some loss of efficiency for 
small sample sizes. 

Example 

A capture-recapture experiment that 
satisfies the conditions of Model MO can 
be analogous to an urn experiment, a 
sampling experiment conducted in order 
to estimate the number of marbles in a 
cylinder when all marbles are the same 
size. We may visualize a cylinder con- 
taining N white marbles (individuals), 
each of which has an equal probability 
(p) of being picked from the cylinder on 
any given occasion. On each of t occa- 
sions, the following sampling scheme is 
carried out. A "sampling cylinder," with 
a dialneter that is 100 percent of the di- 
ameter of the cylinder containing the 
luarbles, is inserted into the container 
and a random sample of marbles re- 
moved. The numbers of white (individ- 
uals not previously "captured") and 
black ("recaptures") marbles in the sam- 
ple are recorded. All white marbles are 
painted black and returned to the con- 
tainer along with the black marbles, and 
all the marbles are randomly mixed. The 
nuluber of white and black marbles in the 
saluple is recorded. Using the data from 
these t samples, the estimation procedure 
associated with Model Mo provides the 
appropriate estimator of N, the number 
of marbles in the cylinder. Notice that all 

NUS3ER OF TRAPP I NG OCCAS I OIQS WAS 5 
NUSER OF ANIMALS CAPTO. MXT+I ) ( US w 

TOTAL R OF CAPTS, N., WAS 2M 

ESTIMATED PABILITY OF CAPTWE, P-T - .4672 

POPULATIOtl ESTIMATE IS IOZ WITH STANA E 2.389 

APPROXIMATE 95 PE:RCENT CONFIDE:NCE INTERVAL 97 TO 107 

FIG. 1. Example of population estimatioll with con- 
stant probability of capture under Model Mo with 
simulated data based on N= 100, t= 5, alld 

p = 0.5. 

the assumptions of Model Mo are fulfilled 
for this cylinder Inodel. That is, the pop- 
ulation is closed because marbles may 
not enter or leave the container, and 
every individual has the same probability 
of capture on every trapping occasion be- 
cause (1) all Inarbles are the same size 
and thus are not"heterogeneous," (2) 
white and black marbles have the same 
capture probability and thus there is no 
"behavioral response to capture," and (3) 
the salne ''salnpling cylinder" is used in 
the same Inanner on all t occasions and 
thus there is no "time variation." 

The fact that an analogy can be drawn 
between a capture-recapture experiment 
modeled by Model Mo and the simple 
urn experiment illustrates the point that 
it is not reasonable to expect that many 
capture-recapture studies can be ade- 
quately represented by Model Mo 
Therefore, to present an example of the 
estimation procedure of Model Mo we 
simulated capture-recapture salupling 
for 5 occasions on a population of 100 in- 
dividuals, each of which had a 0.5 prob- 
ability of capture. As Fig. 1 shows, the 
value of the minimal sufficient statistic 
{n., Mt+1} is {238, 98}. These values, and 
the value of t, are used to produce the 
population estimate of 102. Because N = 
100, this estimate is only 2 percent great- 
er than the true value of N. Note also that 
the lower limit of the large salnple 9S 
percent confidence interval extends be- 
low the number of different marbles 
seen. This undesirable operating char- 
acteristic is revealed throughout the re- 
sults of this study, and is discussed in 
Appendix O. When this happens, the 
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NUSBER OF TRAPP t NG OCCA5 1 ON5 14AS 5 
NUSER Ofo ANIMALS CSTURED, M(T+I 1, B5 106 
TOTAL NUMBER Of CAPTURE5 , N ., WAS 1 49 

ESTIMATED PR%ABILITY y CAPTWE. P-HAT s .1726 

The estimation procedure associated 
with this tnodel produced the results pre- 
sented in Fig. 2. Notice that the calculat- 
ed 95 percent confidence interval is rel- 
atively narrow, probably due to the fact 

RRf:BR 17.9t18 that the estimate of capture probability p 
1 ,\ n 

1S nearly u.z. 
POPUI AT I ON EST I MATE I S 173 W I TH STANOARD ES 

APPROX I MTE 95 PERC:ENT CONF I CENCE l NTERVAL 137 T9 209 

FIG. 2. Example of population estimation with con- 
stant probability of capture under Model Mo with 
meadow vole data from E. Larsen (pers. comm.). 

lower limit should be increased to the 
number of distinct individuals seen. Fi- 
nally, we mention that one would not ex- 
pect the estimator No to be robust to de- 
partures from the assumptions of the urn 
experiment. For instance, if black 
(marked) marbles were larger than white 
(unmarked) ones, and thus had a higher 
probability of selection, we could expect 
No to exhibit significant negative bias. 

Example 

E. Larsen (pers. comm.) used live- 
trapping to estimate the population size 
of meadow voles Microtus ochrogaster 
on a grid near the Flint Hills of Kansas 
in June 1974. A 10 x 10 grid of live traps, 
spaced 40 feet (12.2 m) apart, was laid out 
in a tall-grass prairie that had been un- 
burned and ungrazed for 3 years. On the 
first 2 nights of trapping, traps were 
placed on top of the deep, dense litter 
that uniformly covered the substrate, and 
as a result almost no animals were cap- 
tured. On the third night, holes were dug 
in the litter and the traps were placed in 
the holes. That trapping occasion yielded 
only 12 animals captured, perhaps due to 
the adverse effect that disturbance of the 
environment may have had on the ani- 
mals. On the last S nights of trapping, 
however, relatively large numbers of an- 
imals were captured consistently. Thus 
we have chosen to analyze the data fron] 
only those occasions. When applied to 
those data, the discrimination procedure 
described in the section entitled TESTS 
OF MODEL ASSUMPTIONS chose Model 
Mo as the appropriate model for the data. 

Discussion 

Model Mo represents what might be 
called the "best" of all possible experi- 
mental situations considered here in that 

* * 1 r cs . X a mlnlmum numDer ot nulsance pa- 
rameters is involved (one) if one is con- 
cerned only with estimation of popula- 
tion size N. This lack of nuisance 
parameters results of course from the re- 
strictive assumptions on which the model 
is based. We believe that those assump- 
tions are in most cases unrealistic, and, 
therefore, the estimator based on the 
model is, in general, of limited use. The 
case against the model is strengthened by 
the fact that its associated estimator No 
appears extremely nonrobust to variation 
in capture probabilities caused by behav- 
ioral response or heterogeneity. More- 
over, it appears true in general that little 
is gained by using Model Mo instead of 
Model Mt when only time specific 
changes in probabilities are present. 
Therefore, the greatest utility of Model 
Mo lies in providing a "null" model use- 
ful in testing for sources of variation, and 
in providing a basic model that can be 
generalized in a number of different 
ways. Such generalizations are the sub- 
ject of concern in the following 7 sec- 
tions. 

MODEL Mt: CAPTURE PROBABILITIES 
VARY WITH TIME 

Structure and Use of the Model 
Assumptions and Parameters 

The set of assumptions used as a basis 
for Model Mt is the same set associated 
with the classical multiple capture-re- 
capture experiment. It is assumed that all 
members of the population are equally at 
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risk to capture on the jth trapping occa- 
sion. Thus, all animals have ie same 
probability of capture on any particular 
trapping occasion, but that probability 
can change from one occasion to the next. 
The set of parameters involved in this 
model contains N, the population size, 
and the pj, j = 1, . . ., t, where pj is the 
probability of capture on the jtn occasion. 

Statistical Treatment 
Model Mt has received more statistical 

attention than any other in the literature 
(see Cormack 1968). Schnabel (1938) first 
used the above set of assumptions to de- 
velop a model from which the well- 
known Schnabel estimator was derived. 
Her model, however, assumed that the 
values of the Mj, the number of marked 
animals in the population at time j, are 
known a priori, for j = 1, . . ., t. It re- 
mained for Darroch (1958) to derive the 
correct model for the situation. Using his 
results, we may write the probability dis- 
tribution of the set of possible capture 
histories {X,O} as: 

P[{X}]= N! 

[tl Xfi,! ] (N-Mt+l) ! 

* 11 pJni(1 - pj)N-n3 

j=l 

where 
nJ = number of animals caught on the 

jth occasion, and 
Mt+1 = number of different animals cap- 

tured in the experiment. 
When t = 2, a closed form expression for 
the maximum likelihood estimator of N 
exists and is given by Nt= nln2/ln2, 
where m2 is the number of recaptures in 
the second sample. This is the familiar 
Lincoln Index. Darroch ( 1958) derived 
an expression that may be solved itera- 
tively to give an estimator of population 
size for t > 2. One is led to believe that 
this estimator produces estimates within 
unity of the true ML estimate of N, but 
this is not in fact the case. Details of the 

algorithm necessary to produce the true 
ML estimate for a glven set of data are 
given in Appendix C. The estimate will 
depend only on the value of the minimal 
sufficient statistic for the model, namely 
{n1, n2, . . ., nt, Mt+1}. Note that the model 
involves t + 1 parameters and that the 
dimension of the MSS is also t + 1. This 
assures identifiability of all the parame- 
ters ofthe model. Darroch (1958) also de- 
veloped an estimator of the asyluptotic 
variance of the ML estimator that can be 
used in the construction of a confidence 
interval for N (see Appendix C). 

Simulation Results 

Bias 
If the experimental situation is well 

represented by Model Mt, it is important 
to know what biases luay be expected 
from the estimator of N discussed in the 
preceding section. Computer simulations 
of experiments on populations satisfying 
the assumptions of Model Mt produce the 
same general conclusions concerning the 
bias of Nt as those produced in Model M 
That is, if the probabilities of capture p 
are, on the average, close to 0.1 or larger, 
the bias of Nt is not significant. Again, 
however, if the pj'S become smaller than 
0.1, significant bias results. Some exaln- 
ples are given in Table 1 for experiments 
conducted for 5 and 7 trapping occasions 
(additional results are presented in Table 
N.2.b of Appendix N). In Table 1, as in 
all tables in this publication AveE ] rep- 
resents the average value of the quantity 
in brackets over all silnulated replica- 
tions. R represents the number of repli- 
cations performed and RB represents 
percent relative bias. 

Confidence Intervals 
Confidence intervals were constructed 

from simulated experiments to compare 
achieved confidence coeffiicients to the 
stated value of 0.95. Those achieved 
levels depend on a number of factors of 
which the most important are the accu- 
racy of the variance estimator of Nt? the 



TABLE 1. RESULTS OF COMPUTER SIMULATION STUDIES OF THE BL&S OF Nt (ALSO SEE APPENDIX 
TABLE N.2.b) 

Percent Average of True Model Mt Number Number 
relative bias estimates populat}on Probabilities of capture of reps of occasions 

RB Ave[NJ N pj j = 1, 2, . ., t R t Trial 

22.0 1,015.6 800 0.01, 0.01, 0.02, 0.03, 0.03 200 5 11 
10.7 442.7 400 0.03, 0.04, 0.05, 0.06, 0.07 200 5 5 
2.2 408.6 400 0.10, 0.10 0.10, 0.10, 0.01 200 5 3 

-0.7 198.7 200 0.30, 0.407 0.10, 0.40, 0.30 100 5 11 
-0.4 398.6 400 0.50, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10 100 7 7 
-0.2 399.4 400 0.20, 0.40, 0.30, 0.10, 0.20, 0.30, 0.20 100 7 9 

TABLE 2. SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING Nt (ALSO SEE APPENDIX 
TABLE N.2.b) 

Model M 
Population Probabilities of capture Number Number of 

Averasze size of reps occasions 
[C.I. wiAth] Coverage N Pl P2 P3 P4 P5 R t Trial 

,348.3 0.89 400 0.01 0.01 0.02 0.03 0.03 1,000 5 
40.2 0.94 100 0.05 0.05 0.10 0.15 0.15 1,000 5 12 
31.3 0.88 200 0 40 0.30 0.10 0.30 0.40 100 5 10 
15.1 0.96 400 0.45 0.45 0.50 0.55 0.55 200 5 1 
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degree to which Nt is normally distrib- 
uted, and the accuracy of Nt itself. Re- 
sults indicated that the achieved confi- 
dence level was in most cases at least 
0.90. Those results are encouraging be- 
cause in many of the experimental situ- 
ations investigated the assumptions nec- 
essary for the strict validity of the 
confidence interval used are not met (cf. 
Appendix O for a discussion of the as- 
sumptions). However, the amount and 
the kind of information contained in such 
an interval varies from one situation to 
the next depending on the values of the 
capture probabilities pj, j= 1,2j...,t. If 
those probabilities are on the average as 
large as 0.20 or 0.30, confidence interval 
coverage is good and interval width is 
small. Thus, very useful and reliable in- 
forluation concerning N can be obtained 
under such experimental conditions. As 
the capture probabilites pj decrease, 
however so does the information about 
population size provided by the confi- 
dence interval. That is, interval width 
tends to be so large as to not provide any 
useful information with respect to N. 
This result agrees with Chapman's (1951) 
argument, for the case t = 2> that variance 

estimates tend to be prohibitively large 
when probabilities are small. In cases 
where capture probabilities are ex- 
tremely low, lower confidence interval 
limits are negative, thus providing no in- 
formation about N. As pointed out in the 
discussion of Model Nlo however, such 
experimental results do inform the re- 
searcher that his data have been able to 
tell him essentially nothing about popu- 
lation size. In that respect, therefore, the 
calculated confidence interval is provid- 
ing relevant information, not about pop- 
ulation size but about the failure of the 
experiment itself. 

To illustrate these points, Table 2 has 
been constructed, giving selected simu- 
lation results taken from Table N.2.b of 
Appendix N regarding confidence inter- 
val coverage (the proportion of replica- 
tions R in which the confidence interval 
contained N), and average confidence in- 
terval width (Ave [C.I. width]). 

Robustness 

Because the maximum likelihood esti- 
mator (or approximations thereofl of pop- 
ulation size N has been so frequently 



TABLE 3.-COMPUTER SIMULATION RESULTS ILLUSTRATING THE NONROBUSTNESS OF THE DARROCH 
ESTIMATOR Nt USING DATA GENERATED UNDER OTHER MODELS. DATA MODELS ARE DESCRIBED IN TABLES 

N.3.a AND N.4.a OF APPENDIX N (ALSO SEE APPENDIX TABLES N.3.b AND N.4.b) 

Percent Population Number Number of 
relative bias size of reps occasions 

RB Ave[N,] N R t Data model 

199.3 299.3 100 100 5 Mb, Trial 8 
-28.3 71.8 100 100 5 Mb, Trial 9 
-43.0 228.0 400 100 5 Mh, Trial 1 
-13.2 173.6 200 100 10 Mh,Trial6 
-12.1 87.9 100 100 5 Mh, Trial 12 

t For example, data generated under Model Mb were used to estimate N using estimator N. 
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used in practice over the last 40 years, 
questions of robustness of those esti- 
mators with respect to departures from 
the assumptions of Model Mt are partic- 
ularly relevant. Simulation results indi- 
cate that Nt under Model Mt is nonrobust 
to failure of the assumption that all ani- 
mals, regardless of capture history, are 
equally catchable on the jth trapping oc- 
casion. As previously emphasized, depar- 
tures from that assumption may be due to 
capture probabilities varying with the an- 
imal, or the animal's probability of cap- 
ture being altered after first capture, or 
both. Although both departures may 
create significant bias in Nt, the nature of 
the bias differs. That is, departure from 
equal catchability caused by heteroge- 
neity results in Nt being negatively 
biased, with the magnitude of the bias 
proportional to the amount of heteroge- 
neity present in the population. This ob- 
servation corresponds with the results of 
the study by Edwards and Eberhardt 
(1967) on a rabbit population of known 
size. Bias of Nt that is a manifestation of 
animals exhibiting a behavorial response 
to capture, however, may be either posi- 
tive or negative, according to whether the 
animals become trap shy or trap addicted, 
respectively. This is the same result not- 
ed for the estimator of N associated with 
Model Moe The magnitude of the bias de- 
pends on the degree to which the ani- 
mal's behavior is changed. Table 3 illus- 
trates the bias of Nt when it is used in 
simulated experiments conducted on 
populations satisfying the assumptions of 
Model Mb, in which animals exhibit be- 

OCCAS I ON J. 
AN I MALS CAUGHT N 1 J ) t 

1 2 3 t 5 6 
7 l5 16 29 l9 7 

TOTAL AN I HALS CAPTD 45 

P-HAT(J)s .14 .30 .32 .48 .38 .14 

Pa>ULAT I ON EST I MTE I S 50 W I TH STAA EMW Z . 4 

APPROX I MTE 95 PERCENT CONF I DENCE I NTERVAL 44 TO 56 

H I STOGRAH OF N ( J ) 

FREQUENCY 7 15 16 24 19 7 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
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3 * * * * * v 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

FIG. 3. Example of population estimation with 
time specific changes in probability of capture 
under Model Mt with least chipmunk data fro 

V. Reid (pers. comlll.). 

havioral response to first capture, and 
Model Mh, in which heterogeneity of 
capture probabilities occurs. In Table 3, 
2 examples of Model Mb are considered: 
Trial 8, where animals that have not been 
captured previously have a probability of 
capture of 0.2 on every trapping occasion 
and a probability of capture 0.05 after 
first capture, and Trial 9, where the prob- 
ability of capture for previously captured 
animals changes from 0.2 to 0.5. Three 
examples of Model Mh are considered; 
for example Trial 1, in which 200 animals 
have a 0.05 probability of capture, 100 
animals have a 0.15 probability of cap- 
ture, and 100 animals have a 0.50 proba- 
bility of capture. When the estimator Nt 
was computed from the data generated 
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spect to population size. As Cormack 
(1968) noted, "the higher the proportion of the population marked the more statis- tically precise will be the estimate of 
population size." If the capture probabil- ities are small, the variance estimate of Nt, and hence the confidence interval for N, tends to be quite large, telling the ex- 
perimenter that the estimate of popula- tion size N is unreliable. Because of the 
apparent positive correlation between 
average capture probability and the 
amount of useful information about N 
contained in the experiment, it is wise for the experimenter to calculate the maxi- mum likelihood estimates of the pj, j = 1, 2,. . .,t, from the data at hand. (Formulas 
for these ML estimators are given in Ap- 
pendix C.) Such calculations should pro- vide more feel for both the quantity and 
quality of information contained in the data. 

MODEL \/t b CAPrURE 
PROBABILITIES VARY BY 

BEHAVIORAL RESPONSE TO 
CAPrURE 

Structure and Use of the l\Jodel 
Assumptions and Parameters 

This model deals with the failure ofthe 
assumption that initial capture does not affect the probability of capture on sub- 
sequent occasions. That is, the model al- lows an animal to exhibit a behavioral re- 
sponse to capture and become either "trap addicted" or"trap shy." Overton and Davis (1969) pointed out that "it is well known that so-called trap-happy an- imals are often encountered." Moreover, the existence of trap response has been well documented (Geis 1955a, 1955 un- 
published doctoral dissertation, Michi- 
gan State University, East Lansing, 
Michigan; Tanaka 1956, 1963; Flyger 
1959; Bailey 1968; Pucek 1969). Formal- ly, Model lqb assumes that on any given 
trapping occasion, all unmarked animals have one probability of capture, and all 
marked animals have another probability of capture. It is assumed that there is no 

under this trial of Model Mh, an average 
percent bias of -43.0 resulted (Table 3). 

Example 

In the summer of 1975, V. Reid (pers. 
comm.) laid out a 9 x 11 livetrapping grid with traps spaced 50 feet (15.2 m) apart at a Colorado location in a bottom area dominated by sagebrush and snow- 
berry and peripherally by gambel oak, 
serviceberry, and juniper. Least chip- munk Eutamias minimus were trapped 
for 6 consecutive days (t= 6). The dis- 
crimination procedure described in the 
TESTS OF MODEL ASSUMPTIONS section 
chose Model Mt as the most appropriate lmodel for the data. Although that choice is subject to some suspicion (the good- 
ness of fit test of Model Mt could not be 
performed because of insufficient data), the data were analyzed using the esti- mation procedure associated with Model Mt for purposes of illustration. Results (Fig. 3) indicate that estimates of the pj are large enough for one to expect valid and useful confidence intervals, and such an interval does appear to result. The point estimate of 50 animals also seems to be in line with the observed data, i.e., the fact that u6 was 0 (no new animals 
caught on day 6) leads us to believe that the value of Nt should not be much larger than the number of different animals cap- 
tured. A histogram of the nj values is in- 
cluded to help the researcher to visually 
examine the data. 

Discussion 

Given the simulation results of this 
section, one might conjecture that fre- quent use of the "Schnabel method," i.e., 
Model lut, in practice has been unfortu- 
nate unless tests of the assumptions of 
Model lut have indicated the model may be appropriate. Moreover, if Slodel Mt 
appears to be an adequate representation of the experimental situation, relatively large values (at least 0.2 on the average) of the parameters pj usually are necessary to produce useful information with re- 
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difference between trapping occasions, 
i.e., that capture probabilities do not vary 
with time. An implication of those as- 
sumptions is that all members of the pop- 
ulation have the same probability of cap- 
ture at the beginning of the experiment. 
Note also that the assumption is made 
that an animal's capture probability is al- 
tered only once, after first capture. Ai- 
though one might think it more realistic 
to allow the capture probability to be 
changed more than once (e.g., after both 
first and second capture) this more gen- 
eral assumption turns out to have no ef- 
fect on the estimation of population size 
N. Therefore, for simplicity of presenta- 
tion the assumption is made that all 
Inarked animals, regardless of the num- 
ber of times they might have been cap- 
tured, have the same capture probability. 

The assumptions of Model Mb result in 
3 model parameters: N, population size; 
p, the probability of capture of an un- 
marked animal on any trapping occa- 
sion; and c, the probability that an animal 
is captured on any trapping occasion 
subsequent to the occasion on which it 
was first captured. 

Statistical Treatment 
The probability distribution of the set 

of possible capture histories {Xs,,} from a 
multiple capture-recapture experiment 
on a population satisfying the assump- 
tions of Model Mb may be written as (Pol- 
lock unpublished dissertation): 

P[{X@}] = I| X!(N - Mt+l)! 
co 

pMt+I ( 1 - p)N-M,+l-M- 

* Cm (1 - C)M-m. 

where M. = E Mj = sum (over j) of the 
=1 
number of marked animals 
in the population at the time 
of the jth trapping occasion, 

m. = E mj = total number of 
j=l 

marked animals, caught, 
and 

Mt+1 = number of different animals 
caught during the entire ex- 
periment. 

A MSS for this probability distribution 
is given by {Mt+l, m., M.}. Notice that 
this is a 3-dimensional vector of statis- 
tics, and because the model involves 
3 parameters, each of those parameters 
is identifiable. What is most noteworthy 
concerning the above distribution is the 
fact that the estimation of c is indepen- 
dent of the estimation of the parameters 
N and p. That is, in Model Mb, once 
an animal has been captured, subsequent 
recaptures of the animal provide no in- 
formation with respect to the estimation 
of N and p. The recapture information of 
the experiment is used only in the estima- 
tion ofthe nuisance parameter c, the prob- 
ability of recapture. The reader is referred 
to Appendix D for details of the above ar- 
gument and for the derivation of the maxi- 
mum likelihood estimators of N and p. 
Those estimators are essentially equiva- 
lent to those given by Zippin ( 1956, 1958), 
who provided a basic statistical analysis 
of the removal experiment first proposed 
by Moran (1951). In Zippin's discussion, 
however, animals usually are physically 
removed by killtrapping or electrofish- 
ing, whereas in Model Mh, animals are 
"removed" from the population by being 
marked; in both, estimators and N and p 
depend only upon first captures. 

Since estimation of population size 
under the conditions of Model Mh is 
equivalent to estimation in Zippin's re- 
moval model, the "failure criterion" as- 
sociated with the removal method 
applies. Seber and Whale (1970) showed 
that valid ML estimators for N and p are 
obtained from the data when the cri- 
terion 

t 

E (t + 1 - 2j)(nj - mj) > 0 
j=l 

is satisfied. If that condition, which tests 
whether the population is being suffi- 
ciently "depleted" by the "removal" of 
new animals, is satisfied, a confidence 
interval for N may be constructed using 



TABLE 4. RESULTS OF COMPUTER SIMULATION STUDIES OF THE BIAS OF Nb (ALSO SEE APPENDIX N, 
TABLE N.3.b) 

Percent Average of True Probability Number Number of 
relative bias estimastes population of capture of reps occasions 

RB Ave[Nb] N P R t Trial 

-18.0 82.0 100 0.10 161 5 10 
15.4 461.5 400 0.10 196 5 4 
9.8 109.8 100 0.20 199 5 8 

-0.7 198.6 200 0.25 100 7 6 
-1. 1 197.9 200 0.30 200 5 5 
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the asymptotic variance estimator of Nb 
given by Zippin (Appendix D). 

Simulatiorl Results 

Bias 

Because behavioral response to cap- 
ture is common in practice, an estimator 
of population size that exhibits relatively 
small biases in populations that satisfy 
the assumptions of Model Mb would 
prove useful in practice. Simulation re- 
sults of experiments conducted on such 
populations indicate that Nb, the ML es- 
timator of N, is a good estimator if the 
probability of capture for an unmarked 
animal (p) is at least 0.2. Frequency of 
"failure" of the experiment is substantial 
(20%) with p values 60.1, and when the 
experiment does succeed in these cases, 
Nb tends to be significantly biased. A few 
examples taken from Table N.3.b of Ap- 
pendix N of the simulated bias of Nb are 
given in Table 4 which illustrates that 
biases on the order of 15-20 percent oc- 
cur when p = 0.10, but that such bias 
gradually decreases as probability of first 
capture increases to reasonable levels 
greater than 0.20. Although the first 2 
simulations included in Table 4 have the 
same probability of first capture, the case 
for N = 100 is negatively biased, whereas 
the case for N = 400 is positively biased. 
These seemingly contradictory results 
are caused by the estimator failing more 
often for the N = 100 case. When the es- 
timator is close to failing (i.e., the failure 
criterion is close to zero), the estimates 
tend to be biased high. Because actual 
failure of the method occurs much more 

frequently in cases where N is small, a 
relatively large number of potentially 
large estimates of N are "lost." This phe- 
nomenon therefore effects a significant 
reduction in the value of Ave[N]. 

Confidence Intervals 

Confidence intervals were simulated 
for various populations satisfying the as- 
sumptions of Model Mb (Table 5). A high 
correlation between the values of p and 
adequate performance of confidence in- 
tervals is indicated by Table 5. Evidence 
indicates that high confidence levels and 
small (hence informative) interval widths 
can be expected from experiments in 
which the probability of first capture is at 
least 0.30. On the other hand, in an ex- 
periment with N = 100 and p = 0.10 low- 
er limits of confidence intervals were 
negative in more than 40 percent of those 
simulated experiments that succeeded. 
Such results illustrate the point that, in 
general, confidence intervals constructed 
from experiments with an insufficiently 
large value of p serve only to inform the 
researcher that his data cannot provide 
any real information with respect to pop- 
ulation size. 

Robustness 
If one examines the failure criterion for 

estimation in Model Mb, it becomes clear 
that the number of new animals captured 
(removed) should decrease for each suc- 
cessive trapping occasion. Simulation re- 
sults seem to indicate that steep declines 
in new captures over time produce good 
estimates of and informative confidence 



TABLE 5.-SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING Nb (ALSO SEE APPENDIX N, 
TABLE N.3.b) 

Population Probability Number Number of 
Average size of capture of reps occasions 

[C.I. wiath] Coverage N p R t Trial 

253.9 0.71 100 0.10 161 5 10 
145.0 0.95 20() 0.20 98 5 

51.5 0.90 200 0.30 100 5 5 
78.0 0.92 400 0.30 100 5 1 
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intervals for the parameter N. (This re- 
lates directly to the previous observation 
that larger values of the parameter p pro- 
duce estimators with better properties.) 
One can see that if capture probabilities 
vary from one trapping occasion to the 
next, the vector of''reluovals'' represent- 
ed by (u1,u2,...,ut) lnay be perturbed in 
such a way as to prevent the desired 
monotone decrease in the removals over 
time. This results in Nb exhibiting a large 
bias and confidence intervals for N hav- 
ing large expected width. These obser- 
vations support the conjecture that esti- 
mation of N based on Nlodel Mh will be 
sensitive to significant changes in cap- 
ture probabilities over time. Moreover, if 
capture probability varies among individ- 
uals, independently of the animal's cap- 
ture history, Nb tends to underestimate 
N. The magnitude of the bias depends 
directly on the number of animals in the 
population that are essentially untrappa- 
ble, i.e., those that have small (<0.1) CCin- 
nate" probabilities of capture. This non- 
robustness to heterogeneity of capture 
probability is of the same nature as that 
exhibited by No and Nt. These remarks 
are based on results obtained from sim- 
ulation experiments on populations that 
satisfy the assumptions of Model l4lh (see 
following section for a complete deserip- 
tion of this model). A few examples fol- 
low concerning the bias of Nb in experi- 
ments on Model Mh populations. In a 
population of size 100, with 40 animals 
that have a 0.05 probability of capture, 40 
animals with a 0.10 probability, and 20 
animals with a 0.30 probability (Trial 8), 
an experiment with t= 10 trapping oc- 
casions was simulated resulting in an av- 
erage Nb estimate of 78 for N. In a pop- 

ulation of size 400 with 200 aniluals that 
have a 0.05 probability of capture, 100 
with a 0.15 probability, and 100 with a 
0.50 probability (Trial l), an experilnent 
with t= 5 trapping occasions produced 
an average estimate of 258 animals. 

Example 

E. Larsen (pers. comm.) reported the 
results of a livetrapping experilnent con- 
ducted in the summer of 1976 as part of 
a study on comlnunity succession. A total 
of 55 live traps, spaced 15 In apart and 
covering 0.81 ha, were set out in a field 
in which vegetation was dominated by a 
mixture of sagebrush Artemesia triden- 
tata and rabbitbrush C1irysothamnus 
spp. Trapping was conducted for 10 con- 
secutive nights. Data collected on the 
deer mouse Peromyscus maniculat?4s 
from those 10 occasions (Fig. 4) were ana- 
lyzed by the discrimination procedure 
described in the section entitled TESTS 
OF NIODEL ASSUMPrIONS and it was de- 
termined that lModel Mb would be an ap- 
propriate model for the data (the signifi- 
cance level of a goodness of fit test of 
Model Mb was approximately 0.47). 
Therefore the estimation procedure as- 
sociated with Nlodel Mb was used to pro- 
duce point and interval estimates for N. 
Two aspects of those estimates (Fig. 4) 
are worth noting: animals tend to become 
trap happy since recapture probability (c) 
is more than twice the value of initial 
capture probability (p) and the sluall val- 
ue of p = 0.09 is the major reason why the 
95 percent confidence interval for N is 
wide and the lower limit of the coluputed 
interval extends far below the number of 
animals actually seen (as mentioned be- 
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FIG. 5. Example of population estimation with con- 
stant probability removal estimator under Model 
Mb with deer mouse data from V. Reid (pers. 

comm.). 

Discussion 

Simulation results concerning the per- 
formance of Nb in populations that satisfy 
the assumptions of Model Mb seem en- 
couraging in that the estimator and its as- 
sociated confidence intervals provide 
useful information in the presence of be- 
havioral response to first capture, if the 
probability of first capture is sufficiently 
large (>0.1). (Hence, calculation of the 
ML estimate of p should assist in assess- 
ing the amount of information concerning 
N that is contained in the data). However, 
the estimator of N appears nonrobust to 
other factors that may have an effect on 
an animal's probability of capture. More- 
over, the estimation procedure associated 
with Model Mb is a special case of a more 
general estimation procedure which in- 
volves fewer assumptions than those as- 
sociated with Model Mb. This procedure 
is described in the section on removal 
models. For these reasons, the estimator 
of population size N associated with 
Model Mb is useful only in those in- 
stances where all unmarked animals have 
the same capture probability on all trap- 
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6 FIG. 4. Example of population estimation with 
constant probability removal estimator under Mod- 
el Mb with deer mouse data from E. Larsen 

(pers. comm.). 

fore, the lower limit should be taken as 
69, not 50, in this situation). 

Example 

V. Reid (pers. comm.) reported the re- 
sults of livetrapping deer mice Peromys- 
cus maniculatus in a drainage bottom of 
sagebrush, gambel oak, and serviceberry 
with pinyon pine and juniper on the up- 
lands. The area, in Rio Blanco County, 
Colorado, was trapped for 6 consecutive 
nights in the summer of 1975. Traps were 
arranged in a 9 x 11 grid and spaced 50 
feet (15.2 m) apart. Analysis of the re- 
sulting data by the model selection pro- 
cedure indicated that Model Mb would 
be appropriate for use in estimating N 
(e.g., the significance level of a goodness 
of fit test of Model Mb was approximately 
0.43). The data and the results of using 
Nb to produce point and interval esti- 
mates for N are given in Fig. 5. Note that 
the mice tend to become trap happy, as 
in the previous example. In that study, 
however, the estimate of first capture 
probability is p = 0.34, a fact that largely 
accounts for the narrow width of the 95 
percent confidence interval. Again, the 
lower limit of the confidence interval 
could be taken as 38, the number of dif- 
ferent animals captured. 
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MODEL Mh: CAPrURE PROBABILITIES 
VARY BY INDIVIDUAL ANIMAL 

Structure and Use of the Model 
Assumptions and Parameters 

The assertion that each member of the 
population has its own probability of cap- 
ture independent of all other members of 
the population is the basis of Model Mh. 
The assumptions are made that there is 
no difference between trapping occa- 
sions and no behavioral response to cap- 
ture, but that there is heterogeneity 
among the capture probabilities of indi- 
viduals. Cormack (1968) stated that a test 
for the assumption of"heterogeneity of 
individuals" is impossible unless an in- 
dependent experiment is conducted on 
a population of known size that is "rep- 
resentative" of the population of interest. 
Because of that apparent difficulty (and 
others), models similar to Model Mh have 
been largely ignored, although the as- 
sumptions behind the model fit more ex- 
perimental situations than do most of 
those commonly used. As Eberhardt 
(1969a) pointed out, "various sets of data 
indicate . . . that the equal-probability-of- 
capture assumption is not fulfilled." 

Conceptually, Model Mh involves N + 
1 parameters: the population size N and 
the set of capture probabilities {Pi}, i = 
1,2,...,N, where Pi is the probability of 
capture of the ith anin1al on any trapping 
occasion. This luore general forlnulation 
of Model Mh does not allow estimation of 
population size N because of the pres- 
ence of too large a number of nuisance 
parameters. Therefore, for most of the 
developlnent in this chapter, it is luore 
useful to think of {Pi} as a random sample 
of size N froln some probability distri- 
bution F(p) defined on the interval [0,1]. 

Unfortunately, there is no colupletely 
satisfactory estimator when Model Mh is 
true. Therefore, one should design the 
study to luinimize heterogeneity. In fact, 
it is worth repeating that it is very im- 
portant to design any capture study care- 
fully with the goal of having as few fac- 
tors as possible affecting capture 
probabilities (see STUDY DESIGN). 

Statistical Treatment 
Recall that the random variable X 

takes on the value 1 when the ith animal 
is caught on the jth trapping occasion and 
is zero otherwise. If it is assumed that 
{Pi} results from a random sample from 
F(p) then the probability distribution for 
the set of variables {Xij} reveals that a 
sufficient statistic for Model Mh is given 
by the capture frequencies {fl,f2,...,ft}, 
where fj = the number of animals caught 
exactly j times in the experiment. Hence, 
all the information for estimating N is con- 
tained in the frequency of capture sta- 
tistics. Estimators based on frequency 
of capture statistics have been proposed 
(Craig 1953, Tanton 1965, Eberhardt 
1969a), but are the result of essentially 
ad hoc approaches. If the particular 
family of distributions of which F(p) is a 
member is specified, a luaxilnuln likeli- 
hood estimator for N may be derived. 
For example, Burnham (unpublished 
dissertation) assumed that {Pi} results 
from a rando1n sample froln a 2-parame- 
ter beta distribution and investigated 
the properties of the resulting ML esti- 
mator of N. Theoretical and simulation 
results indicated that this estimator has 
quite unsatisfactory operating charac- 
teristics, and this inspired Burnham to 
develop a nonparametric estimation pro- 
cedure that would not require specifi- 
cation of F(p). Such an estimator was 
developed using an extension of the jack- 
knife lnethod of bias reduction first pro- 
posed by Quenouille (1949, 1956). The 
resulting form of the estimator Nh 
can be written as 

Nh = E ajfj. 

i=l 

Each set of constants al,a2,...,at, gener- 
ated by using a different "order" of the 
jackknife procedure, corresponds to a dif- 
ferent "jackknife" estimator. Burnham 
(unpublished dissertation) suggested a 
sequence of statistical tests designed to 
choose the best one of the estimators for 
any given data set. For a more detailed 
presentation of that estimation proce- 
dure, consult Appendix E which also pre- 



TABLE 6. RESULTS OF COMPUTER SIMULATION STUDIES OF THE BIAS OF Nh (ALSO SEE APPENDIX, 
TABLE N.4.b) 

Percent Average of True Number Number of 
relative bias estimaXtes population Probabilities of capture of reps occasions 

RB Ave[Nhl N pi i = 1, 2, . . ., N R t Trial 

-17.2 331.1 400 Pi = 0 05, i = 1,200; Pi = 0.15, i = 201,300; 200 5 1 

Pi = O.S0, i = 301,400. 
0.2 100.2 100 Pi = 0.05,i = 1,40; Pi= O.lO,i = 41,80; 200 10 8 

Pi = 0.30, i = 81,100 
15.0 460.1 400 Pi= 0.10, i = 1,100; Pi = 0.20, i = 101,200; 200 5 3 

Pi = 0 25, i = 201,300; Pi = 0.30, i = 301,400. 
4.3 417.1 400 Pi = O.Ol,i = 1,50; Pi = 0.15, i = 51,200; 100 5 4 

Pi = 0-25, i = 201,300; Pi = 0.30, i = 301,400. 
3.7 207.0 200 Pi= 0.05,i = 1,50; Pi= 0.15,i = 51,150; 100 10 6 

Pi = 0-25, i = 151,200. 
11.0 443.9 400 Pi = 020, i = 1,100; Pi = 0.30, i = 101,200; 100 5 5 

Pi = 0.40, i = 201,300; Pi = 0.50, i = 301,400. 
13.4 226.8 200 Pi= 0.15,i = l,S0; Pi = 0.20,i = 51,100; 100 7 7 

Pi = 0-25, i = 101,150; Pi = 0.30, i = 151,200. 

34 WILDLIFE MONOGRAPHS 

formula for a variance estimator range; and (2) even though significant 
bias may sometimes be present in the 
jackknife estimator, the magnitude of 
such bias will, in general, be substantial- 
ly less than the bias that would be asso- 
ciated with any other estimator thus far 
discussed. Evidence of this assertion can 
be seen in Tables N.l.b, N.2.b, and N.3.b 
of Appendix N that present the results of 
using estimators other than Nh on data 
simulated from Model Mh 

Confidence Intervals 

Construction of confidence intervals 
from simulated experimental data gen- 
erated from populations of Model lth 

show a large variance in the achieved 
confidence coefficients (Table 7). Cover- 
age is poor and ranges from an estimated 
O percent (Trials 2, 11 ) to 87 percent 
(Trial 6) (Appendix N, Table N.4.b). Be- 
cause results indicate that the distribu- 
tion of the jackknife estimator is approx- 
imately normal, poor coverage is caused 
either by significant negative bias of the 
variance estimator, a significant bias of 
the estimator Nh, or both. Unless an ex- 
perimenter has data from an adequate 
number of trapping occasions and feels 
that very few, if any, members of the pop- 
ulation under study are untrappable, the 
confidence interval constructed by the 

sents a 
of Nh 

Simulation Res?4lts 

Bias 
Cormack (1968:497) noted that when 

animals exhibit heterogeneous capture 
probabilities "any available estimate of 
population size [is] markedly biased." 
We performed simulation experiments 
with Model Mh populations to determine 
whether, in a given population, "marked 
bias" is associated with Nh. Table 6 lists 
some examples of such results. The com- 
plete details of the simulation are given 
in Tables N.4.a and N.4.b of Appendix N. 
Results of those simulations and of those 
conducted by Burnham (unpublished 
dissertaion) seem to indicate 2 major 
points concerning the bias of the jack- 
knife estimator: ( 1) general statements 
concerning the magnitude and direction 
of the bias are not easily made since the 
estimator exhibits both small and large 
and positive and negative bias, depend- 
ing on the values of N and the set {Pi} 
One may coniecture, however, that if the 
number of trapping occasions is suffi- 
ciently large (say greater than S) and if a 
negligible number of animals is for all 
practical purposes untrappable, then the 
bias of Nh will be within a tolerable 



TABLE 7. SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING THE JACKKNIFE ESTIMATOR 
Nh (ALSO SEE APPENDIX N, TABLE N.4.b) 

Population Number Number of 
Average size Probabilities of capture of reps occasions 

[C.I. widthl Coverage N ps i = 1,2, . . ., N R t Trial 

89.9 0.18 400 ps = 0.05, i = 1,200; Pi = 0.15, i = 201,300; 200 5 1 

Pi = 0.50, i = 301,400. 
104.9 0.40 400 Pi = 0.10, i = 1,100; Pi = 0.20, i = 101,200; 200 5 3 

Pi = 0.25, i = 201,300; Pi = 0.30, i = 301,40(). 

45.4 0.87 200 Pi= 0.05, i = 1,50; Pi = 0.15, i = 51,150; 100 10 6 

Pi = 0.25, i = 151,200. 
45.3 0.68 100 Pi = 0.05,i = 1,40; Pi= 0.10,i = 41,80; 200 5 8 

Pi = 0.30, i = 81,100. 

TABLE 8. COMPUTER SIMULATION RESULTS ILLUSTRATING THE ROBUSTNESS OF THE JACKKNIFE 
ESTIMATOR Nh TO DATA GENERATED UNDER OTHER MODELS (ALSO SEE APPENDIX N, TABLES N.2.b, N.3.b 

AND N.S.b) 

Percent Population Number Number of 
relative bias size of reps occasions 

RB Ave[Nh] N R t Data nodel 
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methods associated with Model Mh 
should be considered unreliable. The 
reader may refer to Table N.4.b of Ap- 
pendix N for complete results concerning 
simulated coverage of these confidence 
intervals. 

Robustness 

The jackknife estimator was construct- 
ed with the objective of having an esti- 
luator that is robust to heterogeneity of 
capture probabilities. The degree to 
which the objective is satisfied has been 
discussed previously. The question re- 
luains: is the jackknife estimator robust 
to other forms of departure from the as- 
sumption of equal catachability? Results 
indicate that of the estimators discussed 
in this monograph the jackknife is the 
Inost robust. This does not mean that it 
is a good estimator no matter what as- 
sumptions apply to the population under 
study. In general, it may be said that the 

jackknife estimator will provide an ade- 
quate estimate of population size in an 
experilnent in which many animals are 
caught a relatively large nuluber of times. 
Some examples of the bias of the jack- 
knife estimator when data are simulated 
from models other than Mh are given in 
Table 8. More information may be ob- 
tained froln Tables N.2.b, N.3.b, and 
N.5.b of Appendix N. In the table, the 
information under the heading Data 
model refers to the population on which 
the simulated experiments were per- 
formed. For details of these populations, 
see Appendix N, Tables N.2.a, N.3.a, and 
N.5.a. 

Example 

Carothers ( 1973a) conducted a cap- 
ture-recapture experilnent on the "pop- 
ulation" of taxicabs in Edinburgh, Scot- 
land. The population, known to be of size 
420 and assulned to be closed, was sam- 

- 12.5 
- 1.3 
- 17.6 
-13.1 

0.7 
19.7 

349.2 
98.7 
82.3 

347.7 
402.9 
478.7 

400 

100 

100 

400 
400 
400 

200 
1,000 

100 

200 
100 

100 

5 

5 
5 
5 
5 
s 

Mt, Trial 31 
Mt, Trial 12 
Mb, Trial 9 
Mb, Trial 4 
Mth, Trial 1 
luth, Trial 2 

' For example, data generated under Model Mt were used to estimate N using the estimator Nh. 
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THE RESULTS OF THE JACKKN[FE COMPUTATIONS 

I Nt I ) SE( I ) .95 CONF. LlMlTS TESt OF N( 1+1 ) VS. N( I ) 
0 283 CHI-SQUARE( I D.F. 
1 4 1 0.8 1 5.58 380. 3 44 1 .3 25.877 
2 466.8 Z5.20 4 17.4 5i6.2 4.225 
3 495.0 36.42 423.7 566.4 t.807 
4 516.9 49.98 418.9 614.9 1.735 
5 540.4 65.29 412.4 668.4 0.000 

AVERAGE P-hAT s . 1062 

THE RESULTS OF THE JACKKNIFE COMPUTATIONS 

I N( I } SE ( I ) .95 CONF . L IMI T5 TEST OF Ns i + 1 ) VS. N( I ) 
0 68 CHI-SOUAREX I O.F, ) 
1 88.8 6. Ia 76.7 lOO.9 1.4]0 
2 93.8 9.40 75.4 1 i2.Z .000 
3 93.8 12.65 69.0 t 18.6 .078 
4 92.8 15.95 62.5 123.1 I 18 
5 92.Z 17.06 58.7 125.6 0.000 

AVERAGE P-HAT = .2778 

INTERPOLATED POPULATiON ESTIMATE IS 47t WITH STANDARD ERROR 26.8266 

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 418 ro 5Z4 

INTERPOLATED POPULATlON ESTIMATE IS 81 WlTH STAZARD ERRZ 5.8Z20 

APPROXIMATE 95 tRCENT CONFIDENCE INTERVAL 75 TO 99 

H I STOGRAM OF F t I ) 

FREQUENCY 25 22 l 3 5 l 2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

EACH * EOUALS 3 PO I NTS 

29 
21 * 
i8 
15 
12 * * 

9 * * 

6 * * 
3 * * * * 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

FIG. 7. Example of population estimation with 
variable probability of capture by animal under 
Model Mh with snowshoe hare data from Burn- 

ham and Cushwa (pers. colnm.). 

HISTOGRAM OF F t I ) 

FREOuENCY 142 81 49 

EACH Y EOVALS 15 POINTS 

135 
xeo 
105 

90 

75 
60 
45 * * 
30 
15 

o 

FIG. 6. Example of population estimation with 
variable probability of capture by animal under 
NIodel Mh with the colnplete set of Scheme A 

taxicab data from Carothers (1973a). 

interval constructed for N does in fact 
contain the true population value of 420. 
These results are as satisfactory as any 
produced by various estimation tech- 
niques used by Carothers. 

Example 

In 1972, Burnham and Cushwa (pers. 
comm.) laid out a livetrapping grid in a 
black spruce forest 30 miles (48.3 kln) 
north of Fairbanks, Alaska. The basic grid 
was 10 x 10, with traps spaced 200 feet 
(61 m) apart. Trapping for snowshoe 
hares Lepus americanus was carried out 
for 9 consecutive days in early winter. 
Traps were not baited for the first 3 days, 
and therefore we have chosen to analyze 
the data from the last 6 days of trapping. 
The model selection procedure designed 
to identify a proper model for estilnating 
N chose Model Mh as the Inost appropri- 
ate model for the data. A goodness of fit 

pled for 10 consecutive days. The sam- 
pling was done by observing taxicabs that 
passed preselected points and recording 
"capture" or "recapture" according to 
whether or not the particular cab had 
been observed previously. In the au- 
thor's sampling scheme "A," a different 
set of sampling points was selected each 
day, and the time of sampling (i.e., morn- 
ing, afternoon, night) was also varied. We 
applied the model selection procedure 
(described in TESTS OF MODEL ASSUMP- 
TIONS) to the data collected from this 
scheme. The procedure indicated that an 
appropriate model for the data would be 
Model Mh. (For example, a goodness of 
fit test of Model Mh has a significance 
level greater than 0.99). Thus, the esti- 
mation procedure associated with Model 
Mh was used to produce point and inter- 
val estimates for N (Fig. 6). Although Nh 
overestimates the true value of N by ap- 
proximately 12 percent, the confidence 
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test of Model Mh had a significance level 
of 0.06. The data, and the estimates pro- 
duced by the estimation procedure of 
Model Mh are given in Fig. 7. The results 
of the entire 9 days of trapping show 74 
different animals caught while the lower 
95 percent confidence limit for N given 
in Fig. 7 is 75. Although this result is sat- 
isfying, we reemphasize that the true 
confidence coefficient of the confidence 
intervals associated with Model Mh is, for 
most populations, much less than the 
stated level of 0.95. 

Discussion 

Theoretically, 2 main complicating fac- 
tors are associated with the existence of 
heterogeneity of individual capture prob- 
abilities. First, a parameter must be in- 
troduced into the model for every indi- 
vidual in the population, and this makes 
straightforward statistical estimation of 
population size impossible. Second, the 
assuluption of heterogeneity can render 
solne individuals nearly"invisible" with 
respect to any estimation procedure 
based on Inarking lnethods because such 
individuals have nearly zero catchability. 
The jackknife estimation procedure is the 
most robust procedure thus far proposed 
for dealing with problelns associated 
with heterogeneity. Moreover, the esti- 
lnator seems robust to other factors that 
may have an effect on capture probabili- 
ties. It should be pointed out, however, 
that in solne cases the bias of the esti- 
mator is not negligible. In general, if the 
jackknife procedure is to be considered 
a good nonparametric and robust tech- 
nique, the trapping must be performed 
on a large number of occasions, and the 
nulnber of recaptures on each occasion 
nust be substantial. 

We relnark that the observations con- 
tained in this section reflect Gilbert's 
(1973:524) opinion that "the presence of 
heterogeneity per se is not as important 
as the particular pattern of heterogeneity 
and whether the heterogeneity is near 

,, zero or one. 

MODEL Mtb: CAPTURE PROBABILITIES 
VARY BY TIME AND BEHAVIORAL 

RESPONSE TO CAPrURE 

Stracture and Use of the Model 
Assumptions and Parameters 

If it is assumed that an animal's prob- 
ability of capture changes after initial 
capture and that temporal changes also 
have an effect on capture probabilities, 
Model Mtb results. This model has been 
conceptualized in the literature (see 
Eberhardt et al. 1963, Seber 1973) but it 
has not received mathematical treatment 
with respect to estimation of population 
parameters. Although many variations of 
the basic Inodel exist (see Appendix F), 
for purposes of this chapter we shall de- 
fine the parameters of Model Mtb as: 
N = population size, 
pj = the probability an unluarked animal 

is captured on the jth trapping occa- 
sion, j = 1,2, . . .,t, 

c; = probability that a marked (previ- 
ously captured) anilnal is captured 
on the jth trapping occasion, j= 
2,3, . . .,t. 

Note that again, as in Model Mh, an ani- 
mal exhibits only 1 behavioral response 
to capture after its initial capture. 

Statistical Treatlnent 

The joint probability distribution of the 
set of possible capture histories {X,,} can 
be written as 

P[{Xco}] = N! II 
[tI X! ](N - Mt+l)! j=l 

* (1 - pj)N Mj+t (Cj)mi(l - Cj)Mj-mi 

where 
u; = nulnber of unmarked aniluals caught 

on the jth occasion, j = 1,2, . . .,t, 
Mj = number of marked animals in the 

population the the time of the jth 

sample, j = 1,2, . . .,t, and 
m.j = number of lnarked animals captured 

on the jth occasion, j = 1,2, . . .,t. 
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A minimal sufficient statistic for this dis- 
tribution is given by {ul, u2,...,ut, m2, 
m3,...,mt} which has dimension 2t- 1. 
Since the model involves 2t parameters, 
not all parameters can be estimated and 
maximum likelihood estimation of N 
proves to be impossible. The structure of 
P[{X,O}] reveals that estimation of the pa- 
rameters N, P1, P2, . . , Pt depends only 
upon the vector of removals {ul,u2,.... 
ut}. Thus, estimation of N in Model Mtb 
would be equivalent to the estimation in 
Zippin's (1956) removal model general- 
ized to allow the probability of removing 
an animal, pj, to be different for every 
trapping occasion. This involves estimat- 
ing t + 1 parameters with t statistics. 
Hence, in order to make N an identifiable 
parameter, one has to make the assump- 
tion that at least 2 of the pj are equal. 
Because there appears to be no biological 
justification for making such an assump- 
tion, only ad hoc estimation procedures 
are available. For example, Tanaka (1951, 
1952) has proposed a regression tech- 
nique that involves plotting yj= mj/n 
versus Mj on a logarithmic scale; how- 
ever, Seber (1973) pointed out there are 
serious problems of interpretation in- 
volved in using this technique. It is true 
that graphical techniques such as this 
lmay possess some utility in that they en- 
courage the researcher to examine the 
data carefully. However, regression 
methods are not contained in the class of 
estimation methods considered in this 
monograph. Therefore, Tanaka's ( 1951, 
1952) method and those similar to it will 
not be considered here. 

Discussion 

In view of the previous discussion, we 
believe that Model lutb iS not useful for 
estimation purposes. However, the mod- 
el does have utility with respect to the 
problem of choosing a "best" estimation 
procedure given the data at hand. For 
details of how the model is used in such 
a testing procedure see the section on 
model selection. 

MODEL Mth: CAPrURE PROBABILITIES 
VARY BY TIME AND INDIVIDUAL ANIMAL 

Structure and Use of the Model 

Assumptions and Parameters 

If, on the jth trapping occasion, the ith 
animal has a capture probability of Pii = 
PiPi that is independent of its capture his- 
tory (i.e., there is no behavioral response 
to capture), then Model Mth is the appro- 
priate probability model for a capture-re- 
capture experiment on such a population. 
Notice that the structure of Pij implies 
that variation in capture probabilities due 
to time is independent of the variation 
caused by individual heterogeneity. In 
effect, this means that the factors respon- 
sible for time variation, e.g., environmen- 
tal conditions, affect all members of the 
population similarly. For purposes of this 
section it shall be assumed that the Pi, i = 
1,2, . . .,N, are a random sample of size N 
from some probability distribution-func- 
tion F(p; 8) that is parameterized by the 
vector o and defined for p in the interval 
[O, 1]. Note that it is necessary that each 
of the parameters, pj, j= 1,2,...,t, be 
subject to the constraint that O > PiPi > 1 
for i = 1,2,...,N. Conceptually, the form 
of the distribution function F(p; @) and 
the parameters @, Pl, P2, . ., Pt are un- 
known elements of the model, as is the 
parameter N. 

Statistical Treatment 

Estimation of population size under 
the assumptions of NIodel NIth has not 
been considered in the literature. If one 
is willing to completely specify the dis- 
tribution F(p; 8), then maximum likeli- 
hood estimation of N becomes possible 
(cf. Appendix G). In general, such an as- 
sumption is not realistic. Furthermore, 
simulation results of Burnham (unpub- 
lished dissertation) indicate that an ML 
estimator resulting froln such as assu1np- 
tion luay have poor operating character- 
istics. 

If no assumptions concerning F(p; @) 
are made, ML estimation of N is not pos- 



TABLE 9. COMPUTER SIMULATION OF THE: BLAS ASSOCIATED WITH THE ESTIMATORS Nh AND Nt FOR 
DATA GENERATED UNDER MODEL Mth (ALSO SEE APPENDIX N, TABLE N.5.b) 

Percent Percent Population Number Number of 
relative bias relative bias size of reps occasions 

RB Ave[Nh] RB Ave[NJ N R t Trial 

0.7 402.9 -24. 1 303.6 400 100 5 1 
19.7 478.7 - 7.S 369.9 400 100 5 2 

- 1 1.5 353.9 -22.8 309.0 400 100 5 3 
- 1 1.8 352.8 -31.8 272.8 400 100 5 4 

8.9 217.7 - 6.1 187.9 200 100 7 5 
- 10.9 178.2 - 17.9 164.2 200 100 5 6 

' The probability of capture for data generated under Model Nlth iS complex; therefore, the specific values are given in Appendix N, 
Table N.5.a. 
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sible. At present, we are not aware of any 
rigorous estimation technique that is ap- 
propriate for estimation in Model Mth 

Simulation Results 

Bias 
To gain some insight into the perfor- 

mance of estimators associated with 
models closely related to Model Mth, we 
simulated capture-recapture experi- 
ments on populations that satisfy the as- 
sumptions of Model Mth and calculated 
the estimators associated with Model Mt 
and Model Mh from the resulting data. 
Examples are given in Table 9. See Ta- 
bles N.S.a and N.5.b of Appendix N for 
a description of the populations used and 
for results of other simulations. A choice 
between the 2 estimators with respect to 
performance is obviously not clearcut. 
The magnitude of the bias of Nh seems in 
general to be less that that of Nt. How- 
ever, direction of bias of Nh is not consis- 
tent, whereas the estimator Nt appears to 
consistently exhibit negative bias. Thus, 
if the data seem to fit Model Mth, com- 
puting both estimates of N should give 
the experimenter some sense of the size 
of the population. However, it should be 
emphasized that the model does not 
seem particularly useful in providing a 
single satisfactory estimate of the value 
of N. 

Confidence Intexvals 
Coverage of confidence intervals con- 

structed both on the basis of the esti- 

mators of Model Mh and Model Mt was 
poor (cf. Table N.5.b, Appendix N). The 
lack of coverage is due, in general, to the 
significant bias present in the estimates. 
Therefore, we recolumend that confi- 
dence intervals constructed froln data 
that apparently fit Model Mth be consid- 
ered only as a very crude indication of 
the possible values of N and not as a valid 
statement of inference. 

Robustness 

A discussion of the robustness of the 
estimator associated with Model Mth is 
somewhat inappropriate because no sin- 
gle estimator is exclusively associated 
with the model. The robustness of Nh and 
Nt has been discussed previously. Those 
discussions indicated that the former es- 
timator is relatively robust and that the 
latter is not. Such assertions seem to be 
supported by the results of this section 
concerning bias. 

Discussion 

Model Mth is one of the most difficult 
models dealt with in this monograph. 
That difficulty is reflected in the fact that 
no estimation procedure can be proposed 
that is specifically suited to all assump- 
tions of the model. Estimators associated 
with 2 previous models have been inves- 
tigated for possible use but neither seems 
completely adequate. Thus, at present, 
satisfactory techniques for constructing 
point and interval estimates of N are not 
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bution function G(p, c; @) that is param- 
eterized by the vector of unknown con- 
stants @. If one assumes that the form of 
the distribution G(p, c; @) is known and 
if the dimension of @ is no larger than 
[t(t + 1)/2] - 1, where t is the number of 
trapping occasions, then theoretically 
maximum likelihood estimation could be 
used to provide an estimator of N. How- 
ever, a "nonparametric" approach is also 
possible. We discuss this approach in the 
context of the assumption that the bivar- 
iate density function G(p, c; @) can be 
factored as G1(p; Ol) G2(c; 492) That is, an 
individual's initial capture probability 
and its probability of recapture are in- 
dependent. With that assumption, Pol- 
lock (unpublished dissertation) showed 
that the probability distribution of the set 
of possible capture histories {X(O} can be 
written as 

PE{X@}] =U1tU2! . . . UtT(N - Mt+l)! 

1 1T2 2 * * * 87TtUt(l - E rj)N-M,+1 

* P*[{X@} I Ul,U2, * * *,Ut], 

where 

uj= number of unmarked animals 
caught at time j, j = 1,2, . . .,t, 

r 
7rj = E[( 1 _ p)j-lp] = J ( 1 _ p)j-lp dG 

o 

j = 1,2,.. .,t, and 
P*[{XCt)}lUlX U2, * * ., Ut] = 

a conditional probability distribu- 
tion that does not depend upon 
the parameter N or the distribu- 
tion Gl(p;@l). 

(Refer to Appendix H for further details). 
Thus, the "removals" {ul,u2,...,ut} are 
the relevant statistics for the purpose of 
estimating N and the parameters 81 in 
Gl(p; 81), and these statistics have a mul- 
tinominal distribution with parameters N 
and T1,X2, . . ., 7Tt (Seber 1973:316 gave 
this model for the special case t = 3). We 

available. Hopefully, further research in- 
volving Model Mth will be forthcoming 
so that the model can be dealt with in a 
more adequate statistical manner. Until 
then, one must be satisfied with obtain- 
ing only very rough estimates of popula- 
tion size when Model Mth is the appro- 
priate representation of the experiment. 

MODEL Mbh: CA7ruRE PROBABILITIES 
VARY BY INDIVIDUAL ANIMAL AND BY 
BEHAVIORAL RESPONSE TO CAPruRE 

Structure and Use of the Model 

Assulnptions and Parameters 
Model Mbh assumes that every member 

of the population has a specific pair of 
capture probabilities: Pi, the probability 
that the ith animal is caught on any trap- 
ping occasion given that it has not been 
previously captured; and ci, the proba- 
bility that the ith animal is recaptured giv- 
en that it has been captured at least once 
previously. Thus, the model allows both 
behavioral response to first capture and 
individual heterogeneity of capture prob- 
abilities. An important and appealing 
characteristic of the model is that it al- 
lows the behavioral response to capture 
to vary with the animal, i.e., all members 
of the population do not exhibit an iden- 
tical response to first capture. 

The most general formulation of the 
model involves 2N + 1 total parameters 
consisting of N (population size), and 2 
capture probabilites for each of the N 
members of the population. Obviously, 
no real experiment will be able to pro- 
vide enough information for the explicit 
estimation of this number of parameters. 
Further assumptions are necessary be- 
fore estimation of population size is pos- 
sible. 

Statistical Treatment 

Pollock (unpublished dissertation) in- 
troduced Model Mbh and assumed that 
the pairs (Pi, ci) are a random sample of 
size N from a bivariate probability distri- 
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can transform the rj by writing rj= 
(1 - p1)(l - P2) (l - Pi-1)Pi, j = 1,. . .,t, 
where pj is the average conditional prob- 
ability of capture on the jth occasion for 
those animals not previously captured. 
The distribution of the t-dimensional 
vector of removals now depends upon 
the t + 1 parameters N, P-1,P-2, - .,P-t, and 
thus all the parameters of the model are 
not identifiable. This is similar to the sit- 
uation that resulted in Model Mtb where 
it was conlcuded that ML estimation of 
N is not possible. If individual probabil- 
ities of first capture vary over the popu- 
lation, however, it is logical to assume 
that P1 > P2 > P3 > * * *) P-t, because the 
individuals with high first capture prob- 
ability will tend to be removed first, the 
animals with slightly lower first capture 
probabilities removed second, and so on. 
Moreover, the assumption that (P1 - P2) > 
(P2 - P3) > * *) (Pt-l - Pt), i.e., the big- 
ger differences in the conditional proba- 
bilities of removal occur in the initial 
stages ofthe experiment, does not seem il- 
logical. These assumptions are the basis 
for the development of an estimation pro- 
cedure appropriate for NIodel Mbh. The es- 
timator Nbh derived under Model l!wlbh iS 

obtained by sequentially testing (through 
goodness of fit tests) for differences 
among the pj. The process begins with 
testing whether or not all the pj are equal. 
If not, we let P1 be different and test 
whether or not P2= P3= *-- = Pt. This 
testing continues until it is concluded 
that the last t- k + 1 capture probabili- 
ties are not significantly different, where- 
as the first k capture probabilities do dif- 
fer. In the case k= 1, we are saying the 
simple Model /Ib (all pj equal) adequate- 
ly fits the removals. For k > 1 we are con- 
cluding Nlodel Mb does not fit the data, 
due to the presence of heterogeneity (or 
tiIne variation in capture probabilities). 
The estimator Nbh is the ML estimator 
under the selected model. 

The above technique, called the gen- 
eralized removal method, is further de- 
scribed in Appendix H. The appendix 
also points out that it is not necessary that 
the factorization G(p, c; 0)= Gl(p; 81) 

62(c; 82) be possible in order to use the 
generalized removal method to estimate 
population size. It is important to realize 
that this method is a generalization of 
Zippin's ( 1956, 1968) reluoval method 
which assumes no variation in first cap- 
ture probabilities. Therefore, the fact that 
the generalized relmoval method has util- 
ity in removal experilnents as well as cap- 
ture-recapture experiments is not surpris- 
ing (cf. REMOVAL MODELS) . 

Finally, we mention that the lnethod 
can "fail" if a mathematical criterion in- 
volving the removals ul,u2,...,ut is not 
satisfied. This failure criterion, siluilar to 
the one involved in Zippin's removal 
method, ensures that a sufficient decline 
in the nuluber of newly captured animals 
is being effected by successive trapping 
occasions. A formula expressing this cri- 
terion is given in Appendix H. 

Simulation Results 

Bias 
Experilnents were silnulated on popu- 

lations behaving according to the as- 
sumptions of Model Mbh. The estiluator 
Nbh was calculated to develop some idea 
ofthe bias involved. Results indicate that 
relative bias ranges froln 3 to 38 percent 
for populations used in the simulations. 
That range is somewhat lmisleading how- 
ever, because for all populations except 
one (in which half the population was 
es sentially untrappable), the range of 
bias was 3 to 15 percent. Some exaluples 
are given in Table 10. The reader is re- 
ferred to Tables N.6.a and N.6.b of Ap- 
pendix N for further results and for de- 
scriptions of the populations. In general, 
it seems there is no serious bias in Nbh if 
relatively few melubers of the population 
are essentially uncatchable (i.e., proba- 
bility of first capture less than 0.05) and 
the number of trapping occasions is ad- 
equate. (Recall that since the estiluation 
technique depends on removals only, 
probabilities of recapture have no effect 
on the perforlmance of N bh ) Considering 
the complicated model structure and the 
assumptions required to produce the 



TABLE 10.-COMPUTER SIMULATION OF THE BIAS 
ASSOCIATED WITH THE ESTIMATOR Nbh FOR DATA 
GENERATED UNDER MODEL Mbh (ALSO SEE AP- 

PENDIX N, TABLE N.6.b) 

Percent Popula- Number Number 
relative tion of of 

bias ^ size reps occasions 
RB Ave[Nbhl N R t Trials' 

-38.4 246.6 400 100 5 1 
- 14.8 340.8 400 100 5 2 
- 5.9 94.1 100 100 5 7 
- 12.3 175.5 200 100 10 5 
- 3.2 193.7 200 100 7 6 
- 4.3 383.0 400 100 5 4 

l The probability of capture for data generated under Model Mbh 
is complex; therefore, the specific values are given in Appendix 
N, Table N.6.a. 

generalized removal estimator, these re- 
sults are encouraging with respect to 
practical use of the estimator. 

Confidence Intervals 

Simulation results are not so encour- 
aging, however, when it comes to placing 
a confidence interval on N. The variance 
estimator associated with Nbh appears ill 
behaved and the distribution of Nbh is 
nonnormal. Those factors resulted in sim- 
ulated confidence coefficients averaging 
approximately 0.50. Further work is nec- 
essary to develop useful confidence in- 
tervals for N when Model M bh seems 
appropriate because normal theory 
confidence intervals apparently are in- 
appropriate for practical use. 

Robustness 

The generalized removal estimator can 
be expected to be robust to Models Mh 
and Mb, since both are special cases of 
Model Mbh. If capture probabilities ex- 
hibit significant variation over time, the 
utility of the method is undoubtedly de- 
creased. That is particularly true if prob- 
abilities tend to increase with time, al- 
though the failure criterion should help 
to provide a safeguard against use of the 
method when it is inappropriate. In gen- 
eral, it is expected that the generalized 
removal method used in the context of a 
capture-recapture experiment will pro- 
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vide reasonable estimates of population 
size if the number of unmarked animals 
captured on each trapping occasion ex- 
hibits a definite decrease over time. Such 
a trend indicates that conditional proba- 
bilities of capture on the jth occasion are 
reasonably large, which is the primary 
requirement for adequate estimation of 
population size. 

Example 

E. Larsen (pers. comm.) provided the 
results of livetrapping Great Basin pocket 
mice Perognatht4s parsus in a desert 
community, Curlew Valley, Utah. The 
area was trapped for 7 consecutive nights 
during June 1977. Traps were arranged 
in a 12 x 12 grid and spaced 15 m apart. 
Analysis of the resulting data by the mod- 
el selection procedure (described in 
TESTS OF MODEL AssuM7rIoNs) indicat- 
ed that either Model Mtbh or Model Mbh 
would be appropriate for use in estimat- 
ing N. The data on first capture and the 
results of using Nbh to produce point and 
interval estimates for N are given in Fig. 
8. Note that the estimator rejects the 
model for k= 1, but accepts k= 2. Also 
of interest is that the estimation method 
fails for k = 3, but estimates for k = 4 and 
k= 5 are produced that appear reason- 
able. The estimated variance of Nbh is 
quite large for k = 2. Possibly time vari- 
ation is quite important and causes this 
imprecision. The probabilities of capture 
decline for k= 2, as they should under 
Model Mbh. A histogram of the Uj values 
is included to help the researcher visu- 
ally examine his data. 

Discussion 

Model Mbh is one of the most realistic 
and useful models for a capture-recap- 
ture experiment considered in this mono- 
graph. Realism results from allowing 
every animal to possess its own proba- 
bility of first capture and from not con- 
straining the members of the population 
so that every individual's behavioral re- 
sponse to first capture is identical. The 
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FIG. 8. Example of population estimation with variable probability removal estimator wInder Model 
Mbh with pocket mouse data from E. Larsen (pers. colllm.). 
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luodel is useful because an estimation 
procedure based on the assumptions of 
the model is available for estimating pop- 
ulation size. Although the operating char- 
acteristics of the estimator are not com- 
pletely satisfactory, the estimator would 
seem superior to any other that might be 
used if, in fact the assumptions of Model 
Mbh are satisfied. Moreover, the method 
is nonparametric in the sense that one 
does not have to specify a probability dis- 
tribution for the pairs (Pi, ci). 

MODEL Mtbh: CAPTURE PROBABILITIES 
VARY BY BEHAVIORAL RESPONSE 

TO CA7ruRE, TIME, AND 
INDIVIDUAL ANIMAL 

Discussion 

For purposes of this monograph Mod- 
el NItbh is useful only conceptualiy. Be- 
cause all 3 factors that may affect capture 
probabilities are assulned to be operating 

in Model Mtbh, every other model consid- 
ered here is of course a special case of 
this model. Thus it may be useful to think 
of Model Mtbh as the most realistic of all 
models that assume population closure. 
Unfortunately, this extreme realism pre- 
cludes the model from having any prac- 
tical use in the estimation of population 
size. If the experimenter is led to believe 
that all the assumptions of Model Mtbh are 
required for the capture-recapture ex- 
periment at hand, none of the models 
considered in this publication are capa- 
ble of producing valid statistical infor- 
mation concerning the population param- 
eters of interest. If such a failure occurs, 
the researcher is forced to reevaluate the 
experimental design to discern how the 
experiment might be conducted to obtain 
useful information. This reevaluation 
may cause the capture-recapture tnethod 
to be discarded in favor of solne other 
completely different technique, e.g., line 
transect methods. Whatever the conclu- 
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sions, such an approach is much pre- 
ferred over one that ignores necessary 
assumptions associated with the appro- 
priate capture-recapture model and pro- 
ceeds to use some simpler but inappro- 
priate model. This latter approach 
requires the researcher to give credence 
to statistically invalid information about 
the population, and therefore violates ba- 
sic tenets of scientific research. 

REMOVAL MODELS 

Introduction 

In a capture-recapture experiment, all 
lnembers of the population captured on 
a given trapping occasion are marked and 
released back into the population. In a 
removal experiment, however, as the 
nalne implies, members of the popula- 
tion are permanently removed and are 
not reintroduced into the population after 
first capture. The removal may be accom- 
plished by killtrapping, electrofishing, 
trawling, or merely livetrapping the ani- 
mals and physically displacing them to 
another area. 

Removal methods have traditionally 
been associated with catch-effort exper- 
iments, which have been used often in 
practice (Omand 1951, Ketchen 1953, 
Fischler 1965). Such experiments are 
based on the idea that the size of the pop- 
ulation will be decreased gradually as 
will the catch per unit effort by applying 
a known amount of removal effort on a 
nuluber of occasions. The basic assump- 
tion behind catch-effort techniques is 
that the nuluber of animals removed from 
the population directly depends upon the 
amount of effort expended in removing 
theIn. By using the size of the successive 
decreases and the known efforts that ef- 
fected those decreases, initial population 
size N can be estimated. The experiment 
usually is modeled by assuming that all 
animals have probability of capture pj = 
1- exp(-kej) on the jth trapping occa- 
sion, where k is often called the "Poisson 
catchability coefficient" and ej represents 
the known effort expended on the jth OC- 

casion. Under such conditions and the 

condition that units of effort act inde- 
pendently, a number of estimation tech- 
niques have been proposed. Although 
maximum likelihood estimation of N is 
possible (cf. Seber 1973:297), the best 
known estimation techniques are the 
regression techniques proposed by Les- 
lie and Davis (1939), DeLury (1947), and 
Ricker (1975). All those methods involve 
regressing catch per unit effort against 
some function of the "catchability coef- 
ficient" and the efforts expended, and 
then using least squares analysis to pro- 
vide an estimator of N and its variance. 
Such catch-effort techniques will not 

be considered in our approach to removal 
experimentation for a number of reasons. 
First, and most important, we restrict our 
consideration of removal studies to those 
in which effort is deliberately kept con- 
stant on all occasions. In such studies, the 
concept of effort has no utility. Second, 
because the general approach in this 
monograph has been to void paraInetric 
assumptions concerning capture proba- 
bilities, the assumption that pj= 1- 
exp(-kej) is inappropriate for our pur- 
poses. Third, it is necessary for purposes 
of least squares analysis to make certain 
assumptions that involve the variance 
structure of the observations. Because to 
each postulated variance structure there 
corresponds a formula by which the es- 
timate of N is calculated, such proce- 
dures are to some extent arbitrary in the 
absence of valid tests for determining 
proper variance structure. Finally, Braa- 
ten (1969) investigated the robustness of 
the DeLury ( 1958) estimator to depar- 
tures from soIne of the assumptions and 
found that the estiluator may exhibit sig- 
nificant negative bias. 

Structure and Use of the Generalized 
Removal Model 

If it is assumed that saInpling effort is 
constant over trapping occasions, and 
that all animals in the population have 
the same probability of removal, then the 
removal model and estimation method 
considered by Moran (1951) results. That 
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method was discussed in conjunction 
with estimation in Model Mb. The con- 
text here, however, is different since an- 
imals are not reintroduced into the pop- 
ulation after initial capture. Zippin (1956) 
showed that the joint distribution of 
{u 1,u2, . . . ,ut}, where u; represents the 
number of animals removed on the jth oc- 
casion, can be written as 
P[{ul,u2,...,ut}] = 

N! pM,+, 

[II uj!](N - Mt+l)! 

tl!J - E (t - j + l)uj 
* (1-p) 1=1 

where p is the probability of removal of 
any animal on any trapping occasion. 
Because the parameter space is 2 di- 
mensional (N and p are the only param- 
eters) and the minimal sufficient statistic 

{ t+l,JEj i} 

is 2 dimensional, both parameters are 
identifiable and may be estimated by 
maximum likelihood. Such estimators are 
derived in Appendix D, and are the same 
as those used to estimate N and p in 
Model Mb 

An estimator of population size N 
based on the above model will clearly be 
unsatisfactory if all animals present do 
not have an equal probability of removal 
on a given trapping occasion. In removal 
experilnents, unequal capture probabili- 
ties can be caused by tiIne variation or 
heterogeneity or both. Behavioral varia- 
tion is nonexistent since lnelnbers of the 
population are removed after first cap- 
ture. We maintain that proper planning 
and design of the reluoval experiment 
can be used to control or reduce tilne 
variation (see STUDY DESIGN). Thus, the 
main probleln lies in dealing with het- 
erogeneity of capture (removal) probabil- 
ities. In the following development, it is 
argued that the estimation procedure pre- 
viously proposed for Model Mbh is also 
appropriate for estimation in removal 

models. Such a procedure represents a 
generalization of Moran's (1951) and Zip- 
pin's ( 1956, 1958) constant probability re- 
moval model to the case in which heter- 
ogeneous probability of removal exists. If 
the set of removal probabilities Pi, i= 
1,2, ...,N, is assumed to be a random 
sample of size N from some probability 
distribution G(p; @) parameterized by o 
and defined on [O, 1], then the distri- 
bution of the vector of removals 
{u1,u2,. ..,ut} can be written as 

P[{UI,U2,@@,Ut}] = 

NE 
t { E[p]}U. { E[( 1 - p)p]}u2 

[Iluj!](N- Mt+l)! 
i=l 

* . . {E[(1 _ p)t lp]}Ut {E[(1 _ p)t}N-Mt+, 

where 
rl 

E[( 1 _ p)j-lp] = | ( 1 _ p)j-1p dG (p;o), 
J() 

j= l,...,t, 

E[(1 _ p)t] = 1 - E E[(1 _ p)j-lp]. 
j=l 

This distribution is identical to the dis- 
tribution of the removals {ul,u2,...,ut} 
under the conditions discussed in the 
section on Model Mbh. Thus, it is easily 
argued (cf. Appendix J) that the general- 
ized removal lnethod developed for Mod- 
el Mt,h is also appropriate for estimation 
in removal lnodels in which it is assumed 
that heterogeneity of first capture proba- 
bility exists. Details of this estiluation 
technique are given in Appendix H, 
along with an estiluator of the asylnptotic 
variance of the population estilnator NR 
(the R stands for "removal," but we note 
that NR is luathematically the same as 
Nbh) and a "failure" criterion that Inust 
not hold if parameters are to be validly 
estimated. This criterion ensures that a 
sufficient decline in the population is 
being effected by the successive remov- 
als. 

As explained in the material on esti- 
uation of N in the section on Model Mhh, 
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our procedure is to look at a sequence of 
removal models. These correspond to a 
sequence of assumptions as follows: all 
pj are equal, or P1 7& P2 but P2 = P3 

= = Pt, or P1 7&P2 + p3, but p3 = p4 
= = Pt, and so forth. The most general 
model allows all pj to be different, but 
this most general model does not allow 
estimation of N. We define the specific 
removal model MRk as the model in 
which the last t - k + 1 values of pj are 
the same, and for k > 1, the first P1 to Pk 
are different. 

The estimation procedure is to test the 
goodness of fit of the removal models se- 
quentially from MR1 to MRt_2. Thus, we 
are first testing whether the constant 
probability model fits. If it does, we use 
the corresponding maximum likelihood 
estimator of N. If this simple model is 
rejected by the chi-square test (at the 
20% significance level in program CAP- 
TURE), we then examine the case (mod- 
el MR2) of P1 7& P2, but P2 = P3 = = Pt 
The estimator of N, NR, used in this gen- 
eralized removal approach is taken as the 
ML estimator of N for the selected re- 
moval model. 

Simulation Results 

Bias and Confidence Intervals 
A discussion ofthe bias ofthe estimator 

of N associated with the generalized re- 
moval method and of the usefulness of its 
associated confidence intervals was pre- 
sented in the material on Model Mbh. 
Briefly, the simulation study revealed 
that the bias of the estimator of N was in 
most cases not serious, but that confi- 
dence intervals achieved only 50 percent 
coverage on the average. Although the 
results and discussion of that section 
were presented in the context of a cap- 
ture-recapture experiment, all the mate- 
rial is directly applicable here. Because 
the 2 estimation procedures are identical, 
the relevant data in both cases involve 
only the removal statistics from popula- 
tions with heterogeneous probabilities of 
first capture. Denoting the estimator of N 
as NR is intended to remind the reader 

that this section deals with strict removal 
data. 

Robustness 
In the context of removal experiments, 

the generalized removal method repre- 
sents a significant step forward with re- 
spect to robust estimation of population 
size. It should be emphasized, however, 
that the procedure is designed to be ro- 
bust to failure of the assumption that all 
animals have the same probability of first 
capture, and not to failure of the assulup- 
tion that sampling effort is uniform over 
trapping occasions. There is some indi- 
cation in the simulation results that the 
method performs adequately when there 
is no heterogeneity of capture probability 
but there is nonuniformity in sampling 
rates over time. The method performs 
very poorly, however, when both heter- 
ogeneity and nonuniform sampling rates 
are present. First, the percentage of ex- 
periments which "fail," as determined by 
the failure criterion, can be very high. 
For instance, in the population defined 
by Trial 1 of Model Mth, the experiment 
failed in every one of 100 simulations. 
Secondly, when the experiment does 
succeed, bias is usually significant. Some 
simulated examples are given in Table 11 
which help to substantiate these remarks. 
Complete simulation results are given in 
Table N.6.b of Appendix N. 

Example 

Andrzejewski and Jezierski (1966) re- 
ported the results of a study designed to 
estimate population density of European 
hare Lepus europaeus on experimental 
hunting grounds in Poland. Hares were 
captured and removed by driving them 
into nets surrounding the area. Results of 
the application of the generalized remov- 
al method to the data resulting from the 
4 drives (removal occasions) are given in 
Fig. 9. When k= 1 (i.e., all animals are 
assumed to have the salne probability of 
removal), a poor fit to the data results 
(chi-square goodness of fit value is 13.5 
2 df, and p = 0.0014). For k = 2, how- 



TABLE 1 1 .-COMPUTER SIMULATION RESULTS ILLUSTR TING THE ROBUSTNESS OF THE GENERALIZED 
REMOVAL ESTIMATOR NR USING DATA GENERATED UNDER OTHER MODELS (ALSO SEE APPENDIX N, 

TABLES N.2.b, AND N.5.b) 

Percent Population Number Number of 
relative bias size of reps occasions 

RB Ave[NR] N R t Data model 

- 3.2 387.1 400 100 10 Mt, Trial 6 
- 9.0 364.1 400 100 7 Mt, Trial 7 

2.6 410.3 400 100 7 Mt, Trial 9 
- 0.2 199.7 200 100 5 Mt, Trial 10 
- 1.9 272.6 400 100 5 Mth, Trial 2 

22.3 489.1 400 100 5 Mth, Trial 4 
-10.3 179.4 200 100 7 Mth, Trial 5 

I For example, data generated under Model Mt were used to estimate N, using the generalized removal method NR. 
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FIG. 9. Example of population estimation under the variable probability removal Inodel with clata on 
European hare from Andrzejewski and Jezierski (1966). 

ever, an acceptable fit results (p = 0.2164) NR = 1,039 + 7.66 seems much prefera- 
and, therefore, the point and interval es- ble to the estimate of 1,010 that results 
timates corresponding to Model MR2 are from the (commonly used) regression 
chosen. In particular, the point estimate method used by Andrzejewski and Je- 
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OCCAS I ObJ 
TOTAL CAUGHT 
NElPlLY CAUGHT 

K N-HAT i (N) 

1 204 .00 .2094765 
2 206.77 3.697937 
3 208 . 43 8 . 365668 

CH I -SQ . PROB . 

70 .820 0 . 0000 
I .555 .4596 
1.021 .3124 

EST I MATED P-2AR ( J ), J= 1,, . ., 5 

.8160 .8160 .8160 .8160 .8160 
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.8684 .40 1 0 . 3306 . 3306 . 3306 

3.6979 

215 

POF>ULAT I ON EST I MATE I S 207 W 1 TH STANDARD ERROR 

APPROX I MATE 95 KRCENT COS I DEKE I NTERVAL 199 T0 

HISTOGRAM Of U(J) 

FREQUENCY 1 8 1 11 4 5 3 
________________________________________ 

EACH ' EXALS 19 w I NTS 

190 * 

171 * 

152 * 

133 * 

1 14 * 

95 * 

76 
57 * 

38 * 

19 * * 

________________________________________ 

FIG. 10. Example of population estimation under the variable probability removal model with aquatic 
insect data from R. F. Raleigh (pers. comm.). 

zierski, because the number of hares actu- 
ally removed was 1,018. The estimated cap- 
ture probabilities for Model MR2 are P1 = 
0.6948, and P-2= p3= p4= 0.5916, a re- 
sult that supports the idea that hetero- 
geneity is operating. 

Example 

R. F. Raleigh (pers. comm.) provided 
some results of a removal experiment in- 
volving a species of mayfly Ephemerop- 
tera. Nlayflies were sampled from 10 ran- 
domly placed 0.25-m2 areas in a section 
of the Poudre River streambed near Fort 
Collins, Colorado, with S removal occa- 
sions at each site. A special benthic 
aquatic sampler was used in the study. 
Because these are true removal data, the 

generalized removal estimation proce- 
dure was used to produce point and in- 
terval estimates for N (Fig. 10). As in the 
previous example, there is a poor fit for 
the simple model with constant capture 
probability (k= 1). When k= 2, how- 
ever, a good fit to the data results and an 
estimate NR= 207, corresponding to 
Model MR2 is produced. Note the differ- 
ence between P1 = 0.8754 and p= 
0.4029, indicating that a significant het- 
erogeneity in removal probabilities may 
exist. The computed confidence interval 
is somewhat unsatisfactory because its 
lower limit is less than the number of an- 
imals actually seen, and reminds one that 
in removal and livetrapping experiments, 
conditions necessary for construction of 
normal theory confidence intervals are 

Js 1 2 3 4 5 
M(J)s 0 181 192 196 201 204 
U{J)s 181 1 1 4 5 3 



STATISTICAL INFERENCE FROM CAPTURE DATAtiS et al. 

OCCAS I ON Jw 1 2 3 q 5 6 7 
TOTAL CAU()HT M ( J ) z 0 25 51 66 79 91 1 04 109 
NEWLY CAUGHT U(J)- 25 ^ 15 13 12 13 5 

49 

EST I MATED P-BAR ( J ), J= 1, * . ., 7 K N-HAT SE (N) 

1 138.07 14.67g3 
2 132.46 13.6W 
3 141.63 25.85191 
4 1 30 .96 20 a I W54 1 
5 1 IB.54 10.21073 

POPUI AT I ON EST I HATE I S 

CH I -sa ^ PROB . 

3.a79 
3.623 
2.754 
2 . 688 
2. 1 33 

.5670 

.b594 

.q31 1 

.2608 

. 1Wb2 

. 1 9B0 
I 887 

. 1 765 
1 909 

.2109 

. 1980 . 1980 . 1980 

.221B .2Z18 .2218 

.2229 . 1 829 . 1 829 

.2454 . 1 876 .2339 

. Z779 . 2Z2 1 .2474 

. 1 980 

.2Z18 

. 1 6Z9 
2339 
3675 

.1980 . IgEO 

.2218 .2218 

. 1 8Zg . 1 829 
t 2339 .2339 
.3675 .3675 

138 W I TH STAZARO ERROR 1 b . 6799 

APPROX I MATE 95 PERCENT C I DENCE I NTERVAL l o9 To 167 

HISTOGRAJ1 OF U(J) 

FREaJENCY 25 26 15 13 12 13 5 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

EACH * EWALS 3 PO I NTS 

27 

29 

21 
18 

15 
12 

9 

6 

3 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ 

* 

* 

* * 

* * * 

* + * * * * 

* * * * * § 

* * * * * * * 

* v * * * * * 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

FIG. 1l. Example of population estilnation under the variable probability reluval z1l>del with whitefish 
data ioln Ricker (1958.150). 

not satisfied. In this case, one should trun- 
cate the lower liInit to the actual nuluber 
removed rather than using a lower liluit 
less than Mt+1. 

Example 

Ricker (1958:15()) removed whitefish 
Coregonus clupeafornis frozm Shake- 
speare Island Lake in OntarioS Canada, 
on 7 successive occasions by means of 
gillnetting. NleInbers of whitefish re- 
uoved in the 13- to 14-inch (3.3-3.6 cln) 
length class are shown in Fig. 11, with 
the results of the generalized removal 
snethod. Notice that a good fit to the re- 
movals is achieved for k = 1, so that Zip- 
pins (1956, 1958) constant probability re- 
mova model seems appropriate for 
estimating N. The population estimate of 
NR= 138 is in close agreement with 
Ricker7s estimate of 136 which was ob- 
tained by using DeLury's (1947) regres- 

sion method assuming equal effort. (We 
wish to reemphasize that on theoretical 
grounds the ML estimation procedure is 
superior to the various regression tech- 
niques often used with removal studies.) 
The 95 percent confidence interval esti- 
xuate of [109, 167] is very informative. 
NIoreover7 the true confidence level of 
the interval probably is close to the stated 
level of 0.95, since the estiluatecl proba- 
bility of removal is nearly 0.20. 

Discussion 

Conducting a relnoval experilnent for 
purposes of estimating population size 
may sozuetirlles prove more feasible than 
a capture-recapture approach (refer to 
STUDY DESIGN for further discussion) . In 
such cases, the experilnenter has avail- 
able 2 classes of estiluation proceclures, 
the catch-effort techniques usually asso- 
ciated with Leslie and Davis (1939) and 
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DeLury (1947) or the "removal" tech- 
niques first introduced by Moran (1951) 
refined by Zippin (19567 1958), and gen- 
eralized here. It is felt that catch-effort 
techniques are often not appropriate, 
either because of the assumptions in- 
volved or because the concept of effort 
uay be meaningless in many experimen- 
tal situations. In those frequent situa- 
tions, we believe the generalized remov- 
al method provides the best approach to 
estimating population size. The operat- 
ing characteristics of this method are by 
no means completely satisfactory, in 
view of the results concerning confi- 
dence interval coverage and the failure 
of the experiment in some situations. 
However, the fact that the method fails 
in a given experiment does at least pre- 
vent the use of wildly inaccurate esti- 
mates in practice and helps to inform the 
experimenter that the assumptions of 
the method are not met and the quality 
of the experilnent needs to be upgraded 
or the design altered, or both. Neverthe- 
less, the method is the most general now 
available in the literature that is capable 
of providing useful results and with fur- 
ther research, improvements in the meth- 
od should be forthcozning. 

TESTS OF MODEL ASSUMPTIONS 

In preceding sections, we have recog- 
nized 3 distinct sources of variation in 
capture probabilities, and have given 8 
models corresponding to presence or ab- 
sence of specific types of variability. No 
estimator of population size has been de- 
rived from 3 of those models (Mth) Mtb, 
Mtbh). Consequently, we have introduced 
only 5 estimators that are identified be- 
low, along with the models where they 
should be used. The main purpose of this 
section is to give a strategy for selecting 
one of the estiluation procedures based 
on tests of the various underlying as- 
sumptions. 

Philosophy of the A pproach 

Our philosophy is that one should first 
present the most general model structure 

(i.e., assumptions) possible for the given 
data. Then a series of specific alternative 
models should be developed based on 
specific assumptions that cover the var- 
ious cases of realistic or theoretical inter- 
est. Those alternative models form the 
basis for both testing of assumptions and 
estimating parameters. Under FUNDA- 
MENTAL CONCEPrS, we gave the general 
model framework considered here: pop- 
ulation closure is assumed and captures 
are assumed to be independent events 
with capture probabilities 

PiJ,j= l,...,t,i= 1,...,N. 
Such a luodel structure is useful only as 
a conceptual starting point because none 
of the parameters are estimable. Next, we 
recognized 3 different sources of varia- 
tion acting on these capture probabili- 
ties: (1) variation over tirne, (2) behavior- 
al variation as a result of first capture (trap 
response) and (3) variation over individ- 
uals (heterogeneity). We also recognized 
the various possible combinations of 
these sources of variation. 

An almost infinite variety of very spe- 
cific models could be constructed. We 
examined 8 models likely to be generally 
usefill for estimation or testing purposes. 
Those models can all be expressed in 
terms of the assumptions about variation 
in the capture probabilities. If each of the 
8 luodels introduced had its own unique 
estimation procedure, then selection of 
an estimator would be synonymous with 
selection of a model. Such is not the case 
with only 5 estimators and 8 models. Our 
strategy is to present a testing sequence 
designed to lead to selection of the most 
appropriate model. We define "appropri- 
ate model" as the siluplest model that 
"fits' the data. When that selection gives 
a model such as Mth for which there is no 
theoretically appropriate estimator, we 
recommend (in some instances) using the 
next best fitting model for which an es- 
timator exists. It will occasionally be nec- 
essary to conclude that no estimate of N 
can legitimately be calculated frozn the 
data. 

It is important to recognize that we do 
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not claim this model selection procedure 
results in the "true" model. By true mod- 
el for a capture study we mean that the 
stated model is an exact representation of 
the true capture probability structure for 
that study. Any model is a simplification 
that can realistically represent only the 
more predominant features of the study. 
Also, we must recognize that the luost 
appropriate model will depend upon the 
amount of data we have. With good data 
(large grids5 many occasions) one might 
be able to show, for exampleS that Model 
Mbh was necessary. Yet if the same study 
used a much smaller grid, and fewer 
days it might be impossible to delnon- 
strate heterogeneity from the data them- 
selves and Model Mb might be indicated 
as appropriate. 

The conceptual goal of our luodel se- 
lection procedure is to achieve an ac- 
ceptable trade-offbetween precision and 
bias. If one uses too simple a model the 
estimated population size is likely to be 
severely biased yet have a deceptively 
small sampling variance. If the model is 
comples, but still the wrong one, then 
estimators are again of uncertain bias. If 
a model is chosen that is too general, the 
risk of bias is much reduced, or negligi- 
ble but the sampling variance is larger 
than it needs to be (i.e., we lose preci- 
sion). Of those 2 casesy the safer one in 
our opinion is to choose the more general 
model in hopes of minimizing biases. We 
state this as our conceptual goal because7 
not knowing the true model we can nev- 
er be certain when analyzing real data 
that we have made the best choice of a 
model. 

This model selection procedure is 
based on tests of assumptions of 2 types: 
(1) tests between specific models and (2) 
general goodness of fit tests to specific 
models. Before discussing these tests we 
sutumarize the primary models and as- 
sociated estiluators. 

Summary of L1Wodels and Estimators 
Capture-Recapture Models 

Because these models have been de- 
scribed in detail, only a summary is given 

below, in terms of assumptions and cor- 
responding capture probabilities. 
MODEL Mo Pu-P 

Colument: This is the tnost restrictive 
uodel because capture probabilities 
are assumed to be constant. 

Estimation: We recommend the NIL 
estiluator (see Appendix B); it does 
not exist in closed form except for t - 
2. 

MODEL i\lt Pii--pj5 j = 1> * * * t 
Comment: Capture probabilities vary 

only with time. This is the luodel 
most frequently assumed (often im- 
plicitly) in the literature. 

Estimation: We recommend the ML 
estimator (see Appendix C), it does; 
not exist in closed form, except for 
t- 2 (in which case it is the Lin- 
coln estimator). The Schnabel esti- 
luator, or variations thereof, is often 
used with this model, but is only an 
approximation to the ML estiluator. 

[p for first capture MODEL Mb: Pi -4 
J (C for recapture. 

ComInent: This is the simplest model 
of behavioral (trap) response and it 
has been recognized in the literature 
(Tanaka 1956). 

Estimation: The ML estimator, which 
is recommended (Appendix D)> is a 
special case of the generalized re- 
moval estimator. Zippin's reluoval 
model is equivalent to Model Mb for 
purposes of estimating N but his 
suggested estimator is only a close 
approximation to the true NIL esti- 
mator. 

MODEL Mh: Pii-Pi i - 1, . > N 
Comment: This model allows hetero- 

geneity of capture probabilities over 
animalsS but allows no variation in 
capture probabilities over time. 

Estimation: The jackknife estimator 
(Appendix E) is recommended when 
Mh is the underlying model5 that es- 
timator was derived specifically for 
this model. Note however, that there 



TABLE 12.-MODELS AND SUGGESTED ESTIMATED 
PROCEDURES 

Theoretically 
Model appropriate esffmator 

Mo Null (No) 
Mt Darroch (Nt) 
Mb Zippin (Nb) 
Mh Jackknife (Nh) 
Mtb (none) 
Mth (none) 
Mbh Generalized removal (Nbh) 
Mtbh (none) 
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is no way to derive an optimal esti- 
mator for Model Mh if nothing is 
known about how the capture prob- 
abilities vary. 

epj for any first cap- 
MODEL Mtb: Pii-< ture j-1,. . .,tS 

ci for any recapture 
> j = 2, . . .,t. 

Comment This model allows variation 
in capture probabilities due to both 
time and behavior (trap response). 

Estimation: Population size N is not 
estimable under this model. There- 
fore there is no satisfactory estima- 
tion procedure associated with this 
luodel. 

MODEL Mth: PiJ-p@j j - 1>. . .,tS i - u 
, , > . 

Cotnment: This is useful as a concep- 
tual model of how time and hetero- 
geneity might operate as a simple 
product. No estimator can be derived 
from this model. 

Estimation. Population size N is not 
estimable under this model if 
straightforward methods are used. 
Therefore there is no satisfactory es- 
timation procedure associated with 
this model 

Pi for first capture MODEL Mbh: Pii-v c, for all recaptures 
i= 1S...SN. 

Golument. This model assumes heter- 
ogeneity with trap responseS but no 
time variation as such in the capture 
probabilities. 

Estimation: The generalized removal 
estimator should perform well here 
(Appendix H). However if none of 
the generalized removal models fits 
no estimate can be produced using 
this model. 

M°DEL Mtbh- p- 3 Pii for first captureS * 1 < cij for all recaptures, 
j= l,...,ty 
i- 1>...>N. 

Comment. This is a conceptually use- 
ful model because it represents the 

case in which all 3 sources of varia- 
tion operate. 

Estimation: Population size N is not 
estimable under this model using 
straightforward methods. Therefore, 
there is no satisfactory estimation 
procedure associated with this mod- 
el. 

Relationships Between Models 

Table 12 summarizes some of the 
above information. It is important to un- 
derstand the relationship of the models 
to one another in order to understand 
testing between models. One can only 
truly test one model against another 
when one model is a special case of the 
other. For example Model Mo is a special 
case of each of the 3 models Mt Mb, and 
Mh. But those 3 luodels are not related to 
each other in any simple manner that al- 
lows one to choose or test between them 
with any simple statistical tests. 

The relationships among these models 
is shown in Fig. 12 using an arrow be- 
tween 2 models to indicate that one is a 
special case of the other. For exaInpley 
M) Mt means Model Mo is a special 
case of Model MtS because if Model NIt iS 

restricted by the assumption Pl = Pz 
= = Pt = p Model Mo results. 

The selection of an appropriate cap- 
ture-recapture model is neither simple 
nor straightforward and there is, in fact, no 
optimal or rigorous statistical theory to 
guide this selection. The jumble of ar- 
rows in Fig. 12 is indicative of the dif:fi- 
culty. 
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5 pectpc 1 ests to reryorm 
r Betore we can glve our strategy for 

tnodelS hence estimatorS selectionl it is 
necessary to disouss exactly svhat hypoth- 
esis can be tested concerning variations 
in capture probabilities. Two types of 
tests are made. 
(1) Specific tests of on@ tnodel versus a 

luore general Inodel. For exampleS 
testing Model Mo vs. Model Mt texts 
for time variation in average daily 
capture probabilities; 

(2) General goodness of fit tests of a giv- 
en model to the data. For exampleS 
testing whether Model Mt fits the 
data amounts to testing whether time 
rariation is the only source of varia- 
tion in capture probabilities. 

There is a basic difference in the nature 
of the hypotheses associated with those 
2 different classes of tests. The objective 
of the first class of tests is to establish 
whether or not the more general Inodel 
produces a slgnificantly better fit to the 
data than the Inore restrictive model. On 
the other handS the goodness of fit tests 
of the second class test whether or not the 
data might reasonably have arisen froln 
the specified lnodel. 

Table 13 gives the 7 specific tests we 
have used in the nlodel selection proce- 
dure. The reader should study Table 13 
before proceedirlg. Prograln CAPTURE 
has been used to produce an exaluple of 
the tests. iResults are presented in Fig 143> 
that is basetl on simulated data under 
Model MO with parameters N -lOOS p- 
0.50> and t- 5. The first 3 tests of the 
Inodel selection procedure separately test 
each of the siluple tnodels Mh MhS Mt 

against Model M . These are all chi- 
square tests (see Appendix K for details). 
The significance level of the tests is given 
by the prograIn. For exampleS in Fig. 13 
under the test of Model Ml} vs. Model Mh 
(test 1) we have a chi-square test statistic 
of 5.007 (3 degrees of freedom) and the 
significance level (labeled PROBABILITY 

OF LARGER VALUE) is 0.17127. ThusS that 
test is not significant7 and we have no 

/ \ 
\ 

\K 

Mtbh 

ih Mbh 

X Mh 

M 
FIG. 12. RlM10nSh1PS AINQNg loetS. ff()wS i- 

21e *At O nOe1 iS imml 5pe1a1 

tase nf an>ter In>det 

basis to believe there is any heterogeneity 
of capture pro ta zi ities. 

SiluilarlyS the siluple tests for behav- 
ioral variation (Model Ml) vs. Model MhS 
test 2) and for tizue variatigxn (Model M> 
vs. Moc e > Mty test 3) are not significant in . o r n * * n 
i g t * nloSeS tt!itS gIat . Slglllhtnte 
levels of 0.98056 and ().31935> respective- 
ly. Based on only these results we would 
(correctlyS in this case) conclude the ap- 
propriate model is Model M(J. When a 
Inodel Inore coznplex than M> is the ap- 
propriate one7 additiorlal tests are needed. 

In the second part of the Inodel selec- 
tion procedureS 4 luore tests are pre- 
sented. The first 3 are simple goodness 
of fit tests to lnodels MhS M)> and Mt. The 
seventh is a test for behavioral response 
in the presence of heterogeneitys henee 
this test helps make a choice between Mb 
and Mbh. That last test is included here 
because we lave an estilnator for Model 
lvlbh 

The goodness of fit test of Model Mh 
(test 4) in Fig. 13 results in a chi-square 
value of 4.S56 (4 dfl and has a significance 

Mtb XMt 

\/ 
/\ 

Mt M 

t 
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OCCASION Js 1 2 3 4 5 
AN I MAL5 CAUGHT N { J ) s 55 47 54 60 W8 
TOTAL CAUGHT M ( J ) w 0 55 75 88 96 98 
NERLY CAUGHT U ( J ) w 55 20 1 3 8 2 
FREOUENC I ES F ( J ) - I O 3a 26 20 4 

I . TEST FOR HETEROGENE I TY OF TRAPP I NG PROBA8 I L I T I ES I N POPULAT I ON . 
NULL HYPOTHES IS OF MOOCL n(o ) vs . ALTERNATE HYPOTHES I S OF MODEL M ( H ) 

CHI-SOUARE VALUE w 5.007 DEGREES OF FREEDOM - 3 PROBABILITY OF LARGER VALUE = . 17127 

2. TEST F9R BEHAV19RAL RES AFTER INITIAL CAPTURE. 
NULL HYWTHES I S OF L M ( O ) VS . ALTERNATE HYPOTHES I S OF MODEL M ( 8 ) 

CH I -SaJARE VALUE - . 001 DEGREES OF FREED()M - 1 PROBA2 I L I TY OF LARGER VALUE = . 98056 

3. TEST FOR TIME SPECIFIC VARIATI IN TRWPIK ASILITIE5. 
NtLL HYPOTHESIS OF MOOEL Ml9) VS. ALTERMTE HYWTHESIS OF MODEL M(T) 

CH I -SQUARE YALW - w . 791 DEZEES OF FREENM w 4 PROBAB I L I TY OF LARGER VALUE = . 31935 

4. GOaDJESS 6 FIT TEST 9F MOOEL MIH) 
IULL HYPOTHESIS 9F MOOEL MIH) VS. ALTETE HY THE5IS 9F NOT EL M(H) 

CH I -SQUARE VALX - 4 .59 DEES OF FREE - 4 PROBAB I L I TY OF LARGER VALUE = . 3360 1 

TEST OF MOOEL M ( H ) BY FREKY OF CAPTURE 
(FRE£NCIES LE55 THAN 2T ARE NOT CALCULATED. ) 

ER OF CAPTURES CH I -SWARE D . F . PR%AB I L I TY 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1 5. 000 4 .28730 
2 1.29f3 4 .B6167 
3 I.949 4 .74519 
4 5.500 4 .23973 

5 * GDCX)NESS OF F I T TEST OF MODEL M ( B ) 
NULL HYPOTHESI S OF MODEL M (B) VS . ALTERNATE HYPOTHES IS OF NOT MODEL M(B) 

CHI-SOUARE YALUE - 5^ IS3 DEGREES OF FREEDOM w 6 PROBABILITY OF LARGER VALUE = .5Z053 

5A . CONTR I BUT I ON OF TE5T OF HOMOGENE I TY OF F I RST CAPTURE PROBA8 I L I TY ACROSS T I ME 

CHI-SQUARE VALW w 2.459 X9EES OF FREEDOM - 3 PROBA8JLITY OF LARGER VALUE = .48276 

58 . CATR I WT I ON OF TE5T OF H< I TY OF RECAPTURE PRO8AB I L I T I ES ACROSS T I ME 

CHl-SQUARE VALW s 2.724 DEES OF FREEDOM w 3 PRO8ABILITY OF LARGER VALUE = .43610 

6. (:iOOONESS OF FIT TEST OF MOOEL M(T3 
MJLL HYPOTHES 15 OF L M ( T ) VS . ALTERNATE HY THES I S OF NOT M%EL M ( T ) 

CH I -S(;IUARE VALUE - 59.465 OEZEES w FKE s 54 PROBAB I L I TY OF LARGER VALUE = . Z8338 

7. TEST FOR BEHAVIWAL REE IN WESEKE w HETEENEITY. 
N1L HYPOTHE5 I S OF PlODEL M ( H 1 VS . ALTERNATE HYPOTHES I S OF M:L M ( BH ) 

CHI-SaJARE VALUE - 7.471 DE9EES w FREE - 10 PR%ABILITY OF LARGER VALUE = .68036 

SOEL 5ELECTION CRITERIA. MOOEL S£LECTEO HAS SXI VAL. 

EL HlO) M(H) M(S) Ht - ) M(T) M(TH) M(T8) M(TSH) 
CRITERIA 1.00 .96 .2r; .51 0.00 .44 .33 .64 



TABLE 13.-SPECIFIC TESTS OF ASSUMPTIONS USED IN THE MODEL SELECTION PROCEDURE 

Test Source of variation 
number tested for Null hypothesis Alternative hypothesis Comments 

1. Heterogeneity Model Mo fits Model Mh fits 
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the data the data 
This test examines the capture 
frequencies to see if there is 
evidence of variability among 
individual capture probabilities 
This is a test for gross behavior 
effects on capture probabilities 
This tests for variation in aver- 
age daily capture probabilities. 
Unfortunately the actual test is 
also sensitive to Model Mb 
If Mh is the true model we ex- 
pect this test not to reject. We 
would also expect test 1 to re- 
ject Model M, in favor of Mh 
These tests are a specific form 
of test 4, where for each sig- 
nificantly large capture fre- 
quency an individual test can be 
made for trap response or time 
variation or both 

2. Trap response after 
first capture 

3. Tlme varlatlon ln 
capture probabilities 

4. Trap response and/or 
time variation given 
neterogeneity 

4a. As above 

Model Mn fits 
the data 
Model Mo fits 
the data 

Model Mh fits 
the data 

As above 

Model Mb fits 
the data 
Model Mt fits 
the data 

Model Mh fails to 
fit the data 

As above 

5. Heterogeneity andlor Model Mb fits 
time variation given the data 
trap response 

Model Mb fails to 
fit the data 

First capture prob- 
abilities vary by 
time and/or 
animals 
Recapture prob- 
abilities vary by 
time and/or 
animals 
Model Mt fails to 
fit the data 

Model Mbh fits 
the data 

If Mb is the true model we ex- 
pect this test not to reject. We 
also would expect test 2 to re- 
ject Model Mo in favor of Mb 
This goodness of fit test can be 
partitioned into two specific 
tests, useful in their own right 
(5a, 5b) 
This test is identical to the good- 
ness of fit test for the simple re- 
movel model 

If Mb is true then this null hy- 
pothesis should not be rejected 

If Mt is the model, then we ex- 
pect this test to fail to reJect, 
and we expect Model Mo to be 
rejected in favor of Mt 
This test is useful because if we 
reject Mh in favor of Mbh the 
estimator to use is the gen- 
eralized removal method 

5a. Heterogeneity andlor 
time variation using 
first capture only 

5b. Heterogeneity and/or 
. . .. . 

. :lme varlatlon uslng 
only recaptures 

6. Trap response and/or 
heterogeneity given 
time variation 

7. Trap response given 
heterogeneity 

First capture prob- 
abilities are 
constant 

Recapture prob- 
abilities are all 
constant 

Model Mt fits 
the data 

Model Mh fits 
the data 

FI(;. 13. Example of the model selection procedure tests with simulated data. True model is ^X1,> with 
parameters N = 100, t = 5, and p = 0.5. Appropriate model is M,,. Suggested estimator is Null. 
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level of 0.33601. Thus, in this example 
Model Mh fits the data. This is expected 
because Model Mo is a special case of 
NIodel Mh, and hence the tests should not 
reject. 

When individual capture frequencies 
are large enough (we have used the cri- 
teria fi > 2t) we have computed a good- 
ness of fit test of Model lbvIh based on the 
data for animals captured exactly fi times. 
Theoretically, this can be done for all fre- 
quencies fl, . . .,ft-l that are large enough. 

The goodness of fit test of Model Mb 
(test 5) can also be partitioned into 2 com- 
ponents. Test 5a is actually the goodness 
of fit test to Zippins removal model, i.e., 
it tests whether the probability of first cap- 
ture is constant over time. In Fig. 13, the 
test statistic value is 2.459 with signifi- 
cance level 0.48276. Thus, in this case 
there is no evidence of variation in first 
capture probability over time. The second 
component of the test of Model NIb (test 
5b) examines for time variation in recap- 

1 * . . n 

ture proDa z1 1tles. n t ig. , t ze test sta- 
tistic value is 2.724. The goodness of fit 
test statistic for NIodel Mb is the sum of 
those 2 chi-square values. In Fig. 13 the 
value is 5.183 (6 dfl with significance level 
0.52053. Thus, we conclude Nlodel Mb fits 
the data. Again, we point out that Model 
Mo is a special case of Mb, so the result 
. . . 

1S no surpr1s1ng. 
The final goodness of fit test is for Mod- 

el Mt (test 6). In Fig. 13, the test statistic 
value of 59.465 (54 dfl is not significant 
(P- 0.28338). 

An alternate way of thinking of these 
tests is as follows. The test of Model Mo 
vs. Mh tests whether there is heteroge- 
neity of capture probabilities while the 
goodness of fit test of Model Mh tests 
whether there is any additional source of 
variation in capture probabilities due 
either to behavior or time or both. If we 
rejected Model Mo in favor of Mh and the 
goodness of fit test to Mh indicates alh fits 
the data, we could conclude NIodel Mh 

was appropriate. 
Similarly, the tests of Model Mo vs. Mb 

test for whether there is behavioral vari- 
ation in capture probabilities, while the 

goodness of fit tests to Model Mb exarn- 
ine whether any other source of varia- 

* . . 

tlOn 1S OperatlNg. 

The 7 tests have been siInulated to 
study their size and power, and the re- 
sults are presented in Appendix N. In 
general all the tests have good size prop- 
erties, i.e., they tend not to reject when 
t le nu zypot zesis is true. However, 
most of the tests lack power, i.e., they do 
not always reject when they should. This 
is particularly true for tests of heteroge- 
neity (X1,, vs. Mh and the goodness of fit 
test of Mh)@ 

On the Need for an Objective 
SeZection Procedure 

The above discussion and Fig. 13 il- 
lustrate the general model selection ap- 
proach. Conceptually, we examine the 
results of the 7 tests of assumptions, and 
on the basis of the results choose the ap- 
propriate model. In the example used 
(Fig. 13), the selection was not difficult. 
However, for other models, and for much 
real data we have seen, the judgemental 
selection of an appropriate estimator can 
be very difficult because (1) the tests are 
not independent, in particular if behav- 
ioral variation in capture probabilities is 
present this can strongly affect the test 
for tilne and heterogeneity effects; and 
(2) for real data all 3 sources of variability 
probably are present in varying degrees, 
so all we can hope to do is select the most 
appropriate model (the one that best de- 
scribes the data). With respect to the first 
point, consider what happens if Model 
Mb iS true. For example, assume 7 trap- 
ping occasions with ]\Ib as the true luodel, 
and p = 0.40, c= 0.20. That is, prior to 
being captured animals have a 0.40 cap- 
ture probability7 but due to behavioral 
response (trap avoidance in this case) 
their capture probabilities drop to only 
0.20 after first capture. The expected dai- 
ly capture probability is given by 

E(n.) pj= NJ, j- 1J**X7 

These are constant only if the expected 
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daily captures are constant. But as trap- 
ping progresses the average daily capture 
probability decreases as more and more 
animals "shift" their capture probability 
froln 0.40 to 0.20 as a result of trap re- 
sponse. A formu]a for pj in this case is 

_ (1-(1-pVi-l) C + (1-p)i-lpS 
Pi 1 - (1 - p)i 

j = 2, . . ., t 
(P1-p). For the case above, we have 

J Pi 
1 0.400 
2 O.275 
3 0.237 

cal version of this probleln, one has a 
sample of rneasurements from each 
known populationv and frozn those data a 
uathematical rule is constructed for clas- 
sifying future cases based on their lnea- 
surelnents. In our case, the '<lneasure- 
ments" are the significance levels froln 
the 7 tests. The 4'populations" are the 8 
Inodels. What is unknown is what model 
best fits any capture data at hand. Given 
this conceptualization, we chose to use 
discriminant function analyses to con- 
struct the classification function (see 
Cooley and Lohnes 1962). The objective 
of the discrilminant analysis is to weight 
and linearly coznbine the significance 
levels of the 7 tests in solne fashion so 
that the models are forced to be as statis- 
tically distinct as possible. 

The model classification function was 
derived from simulated data where the 
true luodel is known. The capture prob- 
ability structure of these simulated data 

. n 

Z 1S presentec 1n Wa zi e Z . 1 aese parame- 
ter values were chosen because they are, 
in our opinion, representative of luany 
real capture studies. For each populationt 

: 100 replications were generated, giving 
a total of 1,600 cases. The probability 
levels from each of the 7 tests were then 
used to construct the classification func- 
tion. In addition to the 7 probabilities, 9 
additional variables were constructed by 
taking all possible products between 
probability levels froln tests 1-3 and tests 
4-6> i.e. by taking the 9 pairwise prod- 
ucts of the probabilities fro1n the 3 spe- 
cific tests against Model M, anel the 3 
goodness of fit tests. This provides a 
total of 16 variables that were transformed 
by X = log(P + 0.01). That transforluation 
tends to weight the smaller probability 
levels more heavily than the larger values 
close to 1. The classification rule result- 
ing from that series oftransformations was 
one of many rules examine(l; this par- 
ticular rule was chosen because it had 
the best erformance 

The transformed variables were then 
used to compute a classification function 
using the SPSS discrilminant procedure 
(Nie et al. 1975) . The classification func- 

0.220 
0.211 
0.207 
0.204 

4 

5 
6 
7 

When Model Mb iS true, the test for tilne 
variation in capture probabilities (Model 
Mo vs. Mt) will tend to reject Model Mo 
because the behavioral response does in- 
deed "cause" time variation to be present 
also. 

The same sort of argument shows that 
behavioral response "causes' heteroge- 
neity on any given day. Consequently, 
when Model Mb iS trueS there is a strong 
tendency for all of the simple tests to re- 
ject Model MoS making selection of the 
correct model difficult. 

In the final analysis, selection of a Inod- 
. . . . . os . ew . lnvo ves examlnlng a polnt ln a t-c 1- 

lnensional space and trying to classify it 
into 1 of 8 categories. We have not been 
successful ourselves in providing a set of 
simple rules for this choice and believe 
that field biologists without rigorous sta- 
tistical training might have great difficul- 
ty arriving at a proper choice. 

An Objective Xlodel 
Selection Procedure 

The probleln identified in the previous 
section falls in the realm of multivariate 
statistics, specifically classification of an 
unknown entity into one of several dif- 
ferent known populations. In the classi- 



TABLE 14.-CAPrURE PROBABILITY STRUCTURE FOR THE SIMULATED DATA USED TO GENERATE THE 
CLASSIFICATION FUNCTION. ONE HUNDRED REPLICATIONS OF EACH TYPE WERE GENERATED, GIVING 

A TOTAL SAMPLE SIZE OF 1,600 

Model Probability Structure 

LARGE POPULATION (N = 400, t= 7) 

MO P = 0 30 
Mh Pj = 0.15, i = 1,100; PX = 0.25, i = 101,200; Pj = 0.35, i = 201,300; Pj = 0.45, i = 301,400. 
Mb P = 0.2; C= 0.5. 
Mbh p; = 0.15, Cj = 0.375, i = 1,100; Pj = 0.25, CZ = 0.625, i = 101,300; PX = 0.35, Cj = 0.875, 

i = 301,400. 
Mt Pl = 0.15; P2 = 0.45; p3 = 0.35; p4 = 0.25; p5 = 0.30; P6 = 0.20; p7 = 0.40. 
Mth Pij = Pi-P;; Pi = 0.45, i = 1,100; Pi = 0.55, i = 101,200; Pi = 0.65, i = 201,300; Pi = 0.75, 

i = 301,400; P1 = 0.65; P2 = 0 75; P3 = 0.55; p4 = 0.35; p5 = 0.60; P6 = 0.50; p7 = 0.80. 
Mtb Pi; = P;-C; C = 2.50; P1 = 0 05; P2 = 0.35; p3 = 0.25; p4 = 0.15; p5 = 0.20; P6 = 0.10; p7 = 0.30. 
MtBh Pi; = Pi Pj C; Pi = 0.15, i = 1,100; Pi = 0.25, i = 101,200; Pi = 0.35, i = 201,300; Pi = 0.45, 

i = 301,400; C = 2.50; P1 = 0.65; P2 = 0 75; P3 = 0.55; p4 = 0.45; p5 = 0.60; P6 = 0 50; 
P7 = 0.70. 

SMALL POPULATION (N = 100, t= 5) 

MO P = 0.10. 
Mh Pi = 0.05, 1 = 1,25; Pi= 0.15, i = 26,50; Pi= 0.25, i = 51,75; Pi = 0.35, i = 76,100. 
Mb P = 0.40; C = 0.20. 
Mbh PI = 0.15, Ci = 0.075, i = 1,33; Pi = 0.25, Ci = 0.125, i = 34,66; Pi = 0.35, Ci = 0.175, i = 67,100. 
Mt P1 = 0.15; P2 = 0.45; p3 = 0.35; p4= 0.25; p5 = 0.30. 
Mth Pi; = Pi P;; Pi = 0.35, i = 1,25; Pi = 0.45, i = 26,50; Pi = 0.55, i = 51,75; Pi = 0.65, i = 76,100; 

P1 = 0.65; P2 = 0 75; P3 = 0.55; p4 = 0.35; p5 = 0.60. 
Mtb Pij = P; C; C = 0.5; P1 = 0 35; P2 = 0.25; p3 = 0.15; p4 = 0.20; p5 = 0.30. 
Mtbh Pi; = Pi Pj * C; Pi = 0.15, i = 1,25; Pi = 0.25, i = 26,50; Pi = 0.35, i = 51,75; Pi = 0.45, i = 76,100; 

C = 0.75; P1 = 0.65; P2 = 0 75; P3 - 0.55; p4 = 0.45; p5 = 0.60. 

tion consists of 8 sets of coefficients (1 set centroids for the transformed probability 
for each of the 8 models) that are used to levels. The ith function has the form 
forln linear combinations of the 16 vari- 
ables plus an intercept. The classification Ci - ciO + cil Xl + ci2 X2 
equations are derived from the pooled + + ci16 X16 
within-nodel covariance matrix and the The 136 classification coefficients are 

TABLE 15. CLASSIFICATION FUNCTION COEFFICIENTS USED IN THE MODEL SELECTION PROCEDURE 

COeffiCient M(O) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH) 

C0 -8.09154 - 14.33446 -25.69392 - 17.15981 -31.90722 -23.20432 -26.11839 - 15.07368 
C1 2.44865 1.55835 2.41361 2.09104 4.85352 4.52842 4.58145 1.01685 
C2 0.01513 0.76894 0.34328 -0.30063 4.19868 3.36253 - 1.18146 -0.78482 
C3 5.60627 7.61750 4.45155 2.65005 -3.83028 -4.33794 3.81010 1.97090 
C4 2.31654 2.43157 - 1.90418 1.85727 4.11214 3.84041 0.07484 5.00658 
C5 0.39009 0.24251 2.57294 2.95937 -0.37644 -0.30277 -0.73170 - 1.36695 
C6 1.59847 1.50362 5.40943 0.82379 3.29315 2.76447 4.77294 0.91642 
C7 - 1.07536 -0.75833 - 1.39342 -0.92010 - 1.87794 0.47319 - 1.46921 -0.87191 
C8 -0.95870 -2.99247 -0.29576 0.83512 - 1.39938 - 1.28509 - 1.44532 -2.06608 
C9 -4.23372 -5.76230 - 1.30645 -3.97856 -4.93318 -4.85310 -3.75607 - 7.44977 
C10 0.73672 2.16608 1.71422 -0.11956 1.32575 2.28866 1.74703 2.68257 
C11 -0.90843 -0.51321 0.06944 -2.67855 -2.69316 -2.01668 - 1.73071 1.08225 
C12 1.54069 2.72345 -4.56388 -2.53049 -5.55330 -2.64194 0.53878 2.03048 
C 13 -5.49376 -6.30792 -2.38615 -2.14175 4.38634 -0.03381 -2.06993 -5.17029 
C14 -3.30107 -2.40404 -5.13204 -2.38473 -3.79996 -4.33330 -4.76823 -2.41632 
C15 -0.19891 - 1.42895 -2.26381 -0.48135 0.35309 -2.42112 - 1.92578 -0.09665 
C16 -2.04687 -3.46579 -4.06512 - 1.73548 -4.64956 - 1.59132 -3.89432 - 1.80314 
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TABLE 16. CAPTURE PROBABILITY STRUCTURE USED TO SIMULATE GOOD, MEDIUM, AND POOR DATA TO 
STUDY THE OPERATING CHARACTERISTICS OF THE MODEL SELECTION PROCEDURE. A POPULATION OF 400 

WAS TRAPPED 7 OCCASIONS FOR 200 CASES 

GOOD DATA (Average p 0.35) 

Mo P = 0 35- 
Mh Pi = 0.5, i = 1,100; Pi = 0.4, i = 101,200; Pi = 0.3, i = 201,300; Pi = 0.2, i = 301,400. 
Mb p= 0.5; c = 0.2. 
Mbh Pi = 0.65, ci = 0.10, i = 1,100; Pi = 0.55, ci = 0.15, i = 101,200; Pi = 0.45, ci = 0.10, i = 201,300; 

pj = 0.35, ci = 0.50, i = 301,400. 
Mt P1 = 0 35, P2 = 0.45, p3 = 0.25, p4 = 0.35, p5 = 0 20, P6 = 0 50, p7 = 0.35. 
Mth Pii = Pi-Pi; Pi = 0.9, i = 1,100; Pi = 0.8, i = 101,200; Pi = 0.7, i = 201,300; Pi = 0.6, i = 301,400; 

P1 = 0 5; P2 = 0-6; p3 = 0.4; P4 = 0.5; P5 = 0-35; P6 = 0.65; p7 = 0.5. 
Mtb Pii = pj-C; c = 1.5; P1 = 0-3; P2 = 0.45; p3 = 0-15; p4 = 0.3; p5 = 0-2; P6= 04; P7 = 0-3 
Mtbh Pij = Pi * pj c; Pi = 0.5, i = 1,100; Pi = 0.4, i = 101,200; Pi = 0.3, i = 201,300; Pi = 0.2, i = 301,400; 

c = 1.5; P1 = 0 7; P2 = 0 7; P3 = 0 4; P4 = 0-4; P5 = 0-7; P6 = 0-9; p7 = 0.87. 

MEDIUM DATA (Average p 0.20) 
Mo p= 0.20. 
Mh Pi = 0.3, i = 1,100; Pi = 0.25, i = 101,200; Pi = 0.15, i = 201,300; Pi = 0.10, i = 301,400. 
Mb p = 0.15; c= 0.03. 
Mbh Pi = 0.35, ci = 0.05, i = 1,100; Pi = 0.4, ci = 0.1, i = 101,200; Pi = 0.2, ci = 0.05, i = 201,300; 

Pi = 0-25, ci = 0.2, i = 301,400. 
Mt P1 = 0-02; P2 = 0-35; p3= O.OS; p4 = 0-2; p5 = 0-1; P6= 0-3; p7 = 0-2 
Mth Pij = Pi Pj; Pi = 0.7, i = 1,100; Pi = 0.55, i = 101,200; Pi = 0.45, i = 201,300; Pi = 0.3, i = 301,400; 

P1 = 0-4; P2 = 0.55; p3= 0.25; p4 = 0-4; P5 = 0.3; P6= 0-5; P7 = 0.4. 
Mtb Pij=pj*c; c=0.33; P1=0-30; P2=0.45; p3=0. 15; p4= 0.30; p5= 0-20; P6=0-40; P7= 030- 
Mtbh Pii = Pi-Pi-e; Pi = 0.3, i = 1,100; Pi = 0.25, i = 101,200; Pi = 0.15, i = 201,300; Pi = 0.10, 

i = 301,400; c= 2.00; P1 = 0-50; P2 = 0.65; p3 = 0.35; p4= 0-50; P5= 0-40; P6= 0-70; 
P7 = 0.50. 

POOR DATA (Average p 0.05) 

Mo P = 0-05- 
Mh Pi = 0.09, i = 1,100; Pi = 0.05, i = 101,300; Pi = 0.10, i = 301,400. 
Mb p = 0.075; c= 0.01. 
Mbh Pi = 0.07, ci = 0.03, i = 1,100; Pi = 0.03, ci = 0.08, i = 101,300; Pi = 0.01, ci = 0.09, i = 301,400. 
Mt P1 = 0-05; P2 = 0.01; p3 = 0.09; p4 = 0-05; p5 = 0-07; P6 = 0 03; p7 = 0.05 
Mth Pij = Pi-Pi; Pi = 0-20, i = 1,100; Pi = 0.25; i = 101,200; Pi = 0.05, i = 201,300; Pi = 0.10, 

i = 301,400; P1 = 0-33; P2 = 0.10; p3= 0.10; p4 = 0.333; P5 = 0-50; P6= 0-50; P7 = 0.33- 
Mtb Pii = pj-c; c = 0.10; P1 = 0.10; P2 = 0.15; p3 = 0.05; p4 = 0.10; p5 = 0.19; P6 = 0.01; p7 = 0.10. 
Mtbh Pii = Pi-Pi-c; Pi = 0-20, i = 1,100; Pi = 0.25, i = 101,200; Pi = 0.05, i = 201,300; Pi = 0.10, 

i = 301,400; c= 2.00; P1 = 0.20; P2 = 0.15; p3 = 0.20; p4= 0-05; P5= 0-05; P6= 0.15; 
P7= 0.37. 

STATISTICAL INFERENCE FROM CAPTURE DATA{:)tiS et al. 59 

Model Probability Structure 

given in Table 15. The 8 Ci values are 
then standardized over the interval 0 to 
1 to give the model selection criteria. 
These standardized "model selection cri- 
teria" are printed by program CAPTURE 
right after the 7 tests (cf. Fig. 13). 

Given the classification functions, an 
evaluation of their usefulness must be 
made. Again, data are required where the 
underlying models are known; this is only 
possible with simulated data. Hence, we 
simulated 3 additional data sets: 200 repli- 
cations each of good, medium, and poor 
data for each model. In all cases, we used 

N = 400 and t = 7. The good data had an 
approximate overall average capture 
probability p of 0.35, medium p was ap- 
proximately 0.20, and poor p was approx- 
imately 0.05. The capture probability 
structure of these data is given in Table 
16. 

We analyzed each data set and selected 
a model based on the classification func- 
tion described above. This allows an 
evaluation of the selection procedure, 
i.e., how often a wrong model is chosen, 
and which models tend to be confused. 
These results are given in Tables 17-19 



TABLE 17. PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH GOOD DATA. THE TRUE MODEL 
FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA- 
TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED, 

THE AVE(N), AND THE 95g0 CONFIDENCE INTERVAL COVERAGE 

Data generated from model 
Model All 

selected Mo Mh Mb Mbh M, Mth Mtb Mtbh data 

70.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 9.1 
Mo 399.7 382.2 - - - - - - 399.1 

0.957 0.200 - - - - - - 0.931 

21.5 93.5 0.0 0.0 0.0 0.0 0.0 0.0 14.4 
Mh 414.0 427.4 - - - - - - 424.9 

0.349 0.059 - - - - - - 0.113 

0.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 11.3 
Mb - - 399.7 - - - - - 399.7 

- - 0.922 - - - - - 0.922 

6.5 1.5 0.5 93.0 0.0 0.0 0.0 0.0 12.7 
Mbh 394.2 396.3 399.0 396.6 - - - - 396.4 

0.692 1.00 1.00 0.575 - - - - 0.591 

1.0 0.0 0.0 0.0 82.0 58.5 2.0 0.0 17.9 
Mt 404.0 - - - 399.8 396.3 372.0 - 398.0 

1.00 - - - 0.951 0.829 0.0 - 0.888 

0.0 1.0 0.0 0.0 6.5 39.5 0.5 0.0 5.9 
Mth _ _ _ _ _ _ 

0.0 0.5 9.5 0.0 11.0 2.0 95.0 37.0 19.4 
Mtb - - - - - - _ _ _ 

1.0 1.0 0.0 7.0 0.5 0.0 2.5 63.0 9.4 
M tbh - - - - - - _ _ _ 

Mean population 
estimate 402.5 425.8 399.7 396.6 399.8 396.3 372.0 

Coverage 0.808 0.077 0.923 0.575 0.951 0.829 0.0 
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for the 3 types of data. However, our in- 
terest in these simulated data does not 
stop with the results of the model selec- 
tion. Even more informative is how well 
the estimator performed when the wrong 
model was selected (we know that esti- 
mator performance usually is acceptable 
when the correct model is used). Infor- 
mation on the Ave(N) and confidence in- 
terval coverage is also given in Tables 
17-l9 for all estimators. The tables also 
provide summaries by model selection 
and by data type. 

Those tables again emphasize the im- 
portance of high capture probabilities. 
The estimates and coverage coefficients 
drastically decline in usefulness as the 
capture probabilities decline. In addi- 

tion, the correct model is much less likely 
to be selected for poor data. Note that in 
Table 19 (the poor data case), Model M0 
is selected 34.7 percent of the time 
(whereas it is the true model only 12.5No 
of the time), and that Ave(NO) is 745.5. 

For good data, such a discriluination 
procedure will do quite well in selecting 
the appropriate model. We suggest that 
users knowledgeable in statistics and ex- 
perienced in analysis of capture data may 
sometimes be able to render an improved 
judgement about the approrpriate model 
for real data. However, the field biologist 
should probably accept the model rec- 
ommended by the model selection algo- 
rithm. The primary reason for this is the 
problems with dependence among tests 



TABLE 18. PERFORMANCE OF THE MOI)EL SELECTION PROCEDURE WITH MEDIUM DATA. THE TRUE 
MODEL FROM WHICH THE r)ATA WERE GENERATED IS AT THE TOP AND THE MODEL SELECTED BY THE 
CLASSIFICATION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL 

WAS SELECTED, THE AVE(N),, AND THE 95% CONFIDENCE INTERVAL COVERAGE 

Data generated from model 
Model All 

selected Mo Mh Mb Mbh Me M,h Mtb Mthh data 

68.0 28.0 0.0 0.0 0.0 0.0 Q.0 Q.5 12.1 

MO 400 8 361.1 234.0 388.4 

0.971 0.089 - - - - - 0.000 0.710 

18.5 66.5 0.5 0.0 0.0 0.0 0.0 0.0 10.7 
Mh 484.7 449.7 890.4 - - - - - 459.9 

0.00() 0.399 0.Q00 - Q.31Q 

1.0 0.() 81.0 58.0 Q.() O.Q 0.0 1.5 17 7 
427.0 - 397.2 388.4 - - - 783.0 397.9 
0.50() - 0.951 0.681 - - - 1.00 0.837 

7.5 3.0 9.0 32.0 0.0 0.0 0.0 3.5 6.9 

Mbh 409.3 382.0 471.8 390.1 - - 467.1 410.6 

0.667 0.333 0.949 0.688 - - - 1.000 0.727 

1.0 0.0 0.0 0.0 57.5 67.S 0.0 1.5 15.9 
'l[t 405.0 - - - 400.3 377.9 - 251.3 386.7 

1.000 - - - 0.974 0.593 - 0.000 0.761 

3.0 2.0 O.Q ().() 1().5 25.5 0.() 1 1.5 6.6 
Mth _ _ _ _ _ _ 

Q.0 0.() 8.5 8.5 31.5 6.5 98.0 65.0 27.S 
Mtb _ _ _ _ _ _ 

1.0 0.5 1.(3 1.5 0.5 0.5 2.0 16.5 2.9 
Mtbh - - - - - 

Mears population 
estimate 418.0 422.2 407.4 389.0 400.3 377.9 - 4'tl.9 

Coverage 0.755 0.308 0.945 0.683 0.974 0.593 - 0.714 
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arld the fact that with real data it is highly 
unlikely that any of these 8 luodels will 
be exactly "true.'> 

Estnation in Alternattte Models 

When the luodel selection procedure 
described above has classified a model as 
the best one for a given set of data, 2 
problems luay still arise. First the model 
Inay not have an associated estimation 
procedure for estinlating N. Second, the 
model with the largest selectiorl value 
(always 1.0) luay not really fit the data, 
even though it is the "best" model avail- 
able. In the first case, the investigator 
shollld sean for a large seleetion value 
(say 0.90) corresponding to a Inodel hav- 

ing arl estimator. If such a mode] is founll, 
and if the relevant tests of lmodel as- 
suluptions suggest that the gooclness of 
fit of the model is adequate the corre- 
spondirlg estiluator can be used with 
some confidencXe. We would cautionn 
however, against using models with se- 
lection vallles less tharl 0 75 to produce 
estimates of N especially if there is a 
poor fit of the model to the clata. In the 
second case, none of the Inodels with cor- 
responding estimation proceclures seelus 
to fit the data well; where fit is judged by 
the luodel selection procedure and irl- 
spection of individual tests, then we can 
see no justification for granting statistical 
validity to any calculated poplllation es- 
tiluate. 



TABLE 19. PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH POOR DATA. THE TRUE MODEL 
FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA- 
TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED, 

THE AVE(N), AND THE 95g0 CONFIDENCE INTERVAL COVER GE 

Data generated from model 
Model All 

selected Mo Mh Mb Mbh Mt M h Mtb Mtbh data 

79.0 74.0 39.5 83.0 0.0 1.0 0.0 1.0 34.7 
Mo 417.5 316.3 3,229.7 270.2 - 342.5 - 146.5 745.5 

0.949 0.547 0.557 0.386 - 0.500 - 0.000 0.615 

13.0 18.5 4.5 11.0 1.0 9.0 0.0 5.0 7.8 
Mh 377.7 336.5 612.2 255.6 374.6 347.1 - 210.5 342.8 

0.923 0.514 0.000 0.000 1.000 0.611 - 0.000 0.452 

0.5 1.0 14.0 0.0 0.0 0.0 0.0 0.0 1.9 
Mb 158.0 156.0 272.8 - - - - - 261.6 

0.000 0.000 0.250 - - - - - 0.226 

3.0 4.0 33.0 2.0 0.0 0.0 0.0 0.0 5.3 
Mbh 174.7 172.1 359.5 123.3 _ _ _ _ 317.2 

0.000 0.000 0.924 0.000 - - - - 0.726 

1.0 0.5 0.0 1.5 83.5 24.5 2.0 68.0 22.6 
Mt 366.5 246.0 - 216.7 406.7 325.9 2,983.0 164.5 331.0 

1.000 0.000 - 0.000 0.940 0.653 0.000 0.059 0.550 

1.5 0.5 0.5 1.5 5.0 5.0 0.0 0.5 1.8 
Mth - - - - - _ _ _ _ 

0.5 0.0 4.5 0.0 1.0 0.0 92.5 0.0 12.3 
Mtb - - - - - - _ _ _ 

1.5 1.5 4.0 1.0 9.5 60.5 5.5 25.5 13.6 
Mtbh - - - - - - - _ _ 

Mean population 
estimate 402.7 312.2 1,604.5 264.7 406.3 331.9 2,983.0 167.4 

Coverage 0.912 0.510 0.615 0.328 0.941 0.638 0.000 0.054 

Additional Examples of 
Model Selection was done twlce dally, mornlng and eve- 

ning, for S days. Thus there are 10 trap- 
As part of a population ecology study ping occasions, but we can expect time 

on salt marsh rodents, Coulombe (1965, variation in capture probabilities be- 
unpublished master's thesis, University tween morning and night occasions. The 
of California, Los Angeles, California), entire data set of 173 distinct individuals 
conducted a livetrapping study on an out- captured included young and adult, and 
break of feral house mice L7dUs musculus male and female. Thus, we might also 
in asaltmarshin mid-December 1962, at expect some heterogeneity of capture 
Ballana Creek, Los Angeles County, Cal- probabilities. 
ifornia. A square 10 x 10 grid was used From the model selection procedure 
with traps spaced 3 m apart and trapping (Fig. 14), there is clear evidence of time 
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FIG. 14. Example of the model selection procedure applied to Coulombe's (unpublished thesis) full 
data set. Appropriate model probably is Mth. No estimator results from the model. 
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OCCAS I ON J= 1 2 3 4 5 6 7 8 9 1 0 
AN I MALS CAUGHT N ( J ) = 68 61 62 52 74 41 76 36 76 39 
TOTAL CAUGHT M(J)= 0 68 102 128 140 156 159 171 171 173 173 
NEWLY CAUGHT U I J ) = 68 39 26 12 16 3 12 0 Z 0 
FREQUENC I ES F ( J ) = 2 64 40 31 16 13 5 1 0 1 

I . TEST FOR HETEROGENE I TY OF TRAPP 1 NG PROBAB I L I T I ES I N POPULAT I ON . 
NULL HYPOTHESI5 OF MODEL M(O) VS. ALTERNATE HYPOTHESI5 OF MODEL M(H) 

CH I -SQUARE YALUE = 98. 576 DEGREES OF FREEDOM a 6 PROBAB I L I TY OF LARGER VALUE = 0 . 00000 

2 . TEST FOR BEHAV I ORAL R'ESPON5:E AFTER I N I T I AL CAPTURE, 
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B) 

CHI-SQUARE VALUE = 1.848 DEGRE£S OF FREEDOM s 1 PROBABILITY OF LARGER VALUE = . 17400 

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING MWABILITIES. 
NULL HYPOTHESIS OF MODEL M(O) YS. ALTERNATE HYPOTHESIS OF MODEL Ml T ) 

CHI-SaJARE VALUE 5 62.246 DEGREES OF FREEDOM s 9 PROBABIL I TY OF LARGER VALUE = O .00000 

4 . GOESS OF F I T TEST OF MOOEL M ( H ) 
MJLL HYPOTHESIS OF MOOEL MIH) VS, ALTERNATE HYPOTHESIS Of NOT MODEL M(H) 

CHl -SOUAR.E VALUE = 57.151 D£GREES OF FREEDOM x 9 PROBABIL I TY OF LARGER VALUE = 0. 00000 

TEST OF MbEL HIH) BY FR£WENCY Of CAPTURE 
lFREQUENCIES LESS THAN 2T ARE NOT CALCULATED. ) 

NU1BER OF CAPTURES CH I -SOUAR£ D . F . PROBAB I L I TY 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

2 1W.027 9 .12136 
3 6.857 9 .65199 
4 27.387 9 .00121 

5 . Gi>)ONESS OF F I T TEST OF MODEL M ( B 1 
NULL HYPOTHE5 I S OF MODEL M ( B ) VS . ALTERNATE HYPOTHES I S OF NOT MODEL M ( B ) 

CH I -SQUARE YALUE = 6a . 087 DEGREES OF FREEDOM = 15 PROBAB I L I TY OF LARGER VALUE = 0 . 00000 

5A . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF F I RST CAPTURE PROBAB I L I TY ACROSS T I ME 

CH I -SOUARE YALUE = 2W .780 DEGREES OF FREEDOM = 7 PROBAB I L I TY OF LARGER VALUE = . 00083 

5B . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF RECAPTURE PROBAB I L I T I ES ACROSS T I ME 

CH I -SQUARE VALUE = 93. 307 DEGREE5 OF FREEDOM = 8 PROBAB I L I TY OF LARGER VALUE = . 00000 

6 (£55 OF F I T TEST OF MODEL M ( T 1 
NULL HYPOTHES I S OE MOt)EL M { T ) VS . ALTERNATE HYPOTHES I S OF NOT MODEL M ( T ) 

CH I -SGIUARE VALUE = 162 . 329 DEGREES OF FREEDOM s 125 PROBAB I L I TY OF LARGER VALUE = . 01 386 

7 . TEST FOR BEHAY I ORAL RESPE I N PRESEKE OF HETEROGENE I TY . 
NULL HYPOTHESIS OF MODEL M(HI V5. ALTERNATE HYPOTHESI5 OF MODEL MIBH) 

CHI -S(kJARE VALUE = 31 .939 DEGREES OF FREEDOM z 24 PROBABIL I TY OF LARGER YALUE = . 14153 

MODEL SELECT I OEJ CR I TER I A . KDEL 5ELECTED HAS MAX I MUM VALUE . 

M(X)ICL M1O) MIHI M(B) M(BH) M(T) M(TH) M(TB) M(TBH) 
CRITERIA . J5 .29 .03 .22 .26 1.00 0.00 .66 
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and heterogeneity variation, but little in- 
dication of behavioral variation. Note 
also that none of the simple models (Mh, 
Mb, Mt) fit the data. The model selection 
criteria strongly suggest Model Mth as ap- 
propriate, but there is no estimator asso- 
ciated with this model. To obtain an es- 
timator, we can look for the next most 
likely model, which is Mtbh (selection cri- 
teria= 0.66); however, there is no esti- 
mator for that model either. In fact, to get 
a model allowing estimation we would 
have to use either Mt, Mh, or h. Unfor- 
tunately, the value of the selection cri- 
teria corresponding to those models is too 
low to allow legitimate choice of one of 
the models for estimation purposes. 
Therefore, the investigator must realize 
that none of the models can be used to 
estimate population size with the data in 
the present form. 

One alternative is to simply take the 
total number seen (lVlt+l) as the best es- 
tiluate. Given good data, Mt+1 will be 
nearly equal to N. Also with good data 
one will tend to reject the simpler 
luodels. The real measure, however, of 
good data comes from such things as t, n./ 
Mt+l, the pattern of the new captures (the 
uj's) and the apparent average capture 
probability (average p is 0.3 here using 
N= 173= NIll). In good data, very few 
new animals will be caught by the last 
few occasions; in Coulombe's data, only 2 
new anirna s were caug zt atter t re sev- 
enth occasion. Similarly, the capture fre- 
quency data should show many animals 
caught 2, 3, 4, or more times and there 
should not be a strong spike at fi (cap- 
tured once only). By all these measures, 
Coulorllbe's data suggest that almost all 
the population was caught. Thus, here 
we would suggest takirlg 173 as the esti- 
uated population size. 

Under those circumstances, we would 
also expect the point estimate of N from 

all 5 possible estimators to be in close 
agreement with the value of 173. In fact 
the results for Coulombes full data set 
erCt1 w . 

_ . s T 
Standard 

tstzmator va ue error 
No 176 1.8 
Nt 175 1.6 
Nb 174 1.6 
Nh 175 1.8 
Nbh 173 0.2 

These are all very siluilar arld precise. 
Note that in general it is not appropriate 
to compute all estimates. We recomlnend 
it only when there is strong evidence all 
animals were captured, in which case it 
provides an additional check. 

As a further example, Fig. 15 shows the 
luodel selection results using only the 
morning capture data from Coulombes 
(unpublished thesis) study (i.e.> pretend- 
ing the evening captures never oc- 
curred). Presumably, this would elimi- 
nate most of the time variation, but not 
1 * 1 1 * * * neterogene1ty. l ne selectlon cr1terza ver- 
ify this conjecture. 

Model selection 
crlterla 

0.99 
1.00 
().58 
0.74 
0.00 

0.46 
0.53 
0.80 

Model 
Mo 
Mh 
Mb 

Mbh 

Mt 

Mth 

Mtb 

M tbh 

When the criteria value for 2 or more 
models exceed 0.95, the program does 
not just suggest I, but names the 2 
models that have the highest criteria. 
Thus in this case the choice between 
models Mo and Mh is not clear cut. As a 
standard operating E>rocedure we rec- 

FIG. 15. Example of the model selection procedure applied to Coulombe's (unpublished thesis) 
morning trapping occasions (Occasions 1, 3, 5 7> 9). Appropriate model probably is Mh or M1). 

Suggested estimator is jackknife. 
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OCCAS I ON Jx 1 2 3 4 5 
AN I MALS CAUGHT N { J ) w 68 62 79 76 76 
TOTAL CAUGHT M t J ) a 0 68 103 127 153 160 
NEWLY CACHT U ( J ) w 68 35 24 26 7 
FREQUENC I ES F ( J ) 5 W5 59 36 15 5 

I . TESt FOR HETEROGENE I TY OF TRAPP I NG PRO6AB I L I T I £5 I N POPULAT I ON . 
NULL HYPOTHESIS OF MOOEL M(O) VS. ALtERNATE HYPOtHESIS OF MODEL M(H) 

CHI-SQUARE VALUE s 5.051 DEGREES OF FREEDOM - 3 PROBABILITY Of LARGER VALUE = * 16813 

2. TEST FOR BEHAYIORAL RESPONSE AFTER INITIAL CAPTURE. 
NlJLL HYP9THES I S OF MOOEL M f O ) VS . ALTERNATE HYPOtHES I S OF MODEL M l E ) 

CHI-SOUARE VALUE s 2.271 DEGREES (X FREEDOM - 1 PROBABILITY OF LARGER VALUE = . 13184 

3 . TEST FOR T I ME SPEC IF I C VAR} AT I NQ IN TRAPR I NC MOBAB I L I T I ES . 
NULL HYPOTHES I S OF MOOEL M 1 O ) VS . ALTERNATE HYPOTHES I S OF MODEL M ( T } 

CH I -SUARE VALUE = 3 . 667 DEGRE:ES OF FREEDOM w 4 PRO8AS I L I TY OF LARGER VALUE = . 45295 

4 . ESS OF F I T TEST OF MOXL M ( H } 
NULL HYPOTHE5 15 OF MOOiEL M ( H ) VS . ALrERNAtE HYPOtHES I S OF NOT MODEL M t H ) 

CHI-S(BUARE VALUE s 3.674 DEGREES OF FREEDOM s 4 PROBABILITY OF LARGER VALUE = .45191 

TEST OF MODEL " I H ) BY FREKY OF CAPtURE 
(fREaUENCIES LESS THAN 2T ARE NOT CALCULATED. ) 

NUMBER OF CAPTURES CH I -SQUARE D . f . PROBAB I L S TY 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1 3. 333 4 .50367 
2 4 . 362 4 . 359Z8 
3 3. 074 4 .5455 1 
4 2.667 4 .61506 

5 . GOOONESS w F I T TEST y MODEL M ( B ) 
NULL HYPOTHES I S OF MODEL M ( B ) VS . AL TERNATE HYPOTHES I S OF NOT MODEL M 1 B ) 

CHI-SQUARE VALUE = 10.240 DEGREES OF FREEDOM = 6 PRO8ABILITY OF LARGER VALUE = . 1 1492 

5A . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF F I R5t CAPTURE PROBAd I L I TY ACROSS T I ME 

CH I -SQUARE VALUE = 7 . 735 DEGREES OF FREEDOM = 3 PROBAB I L I TY OF LARGER VALUE = . 05183 

5B . CONTR I BUT I ON OF TEST OF HOMOGENE 1 tY OF RECAPTURE PR0RA8 I L I T I ES ACROSS T l ME 

CHI -SQUARE VALUE = 2.505 DEGREES OF FREEDOM = 3 PROBAB I L I TY OF LARGER VALUE = .47440 

6. NESS OF f I T TEST OF MODEL M ( T 1 
WLL HYPOTHES I S w MODEL M ( T ) YS . ALTERNATE HYPOtHES I S OF NOT MODEL M ( r ) 

CH I -SOUAkE YALUE = 115.230 DEGREES OF FREEDOM = 1 0 1 PRO8AB I L I TY OF LARGER VALUE = .15766 

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY. 
NULL HYPOTHESIS OF MO()EL M(H) VS. ALtERNATE HYPOTHESIS OF MODEL M(BH) 

CH I -SWARE VALUE = 16. 497 DEGREES y FREEDOM w 1 0 PR0BAB I L I TY 0f LARGER VALUE = . 08626 

MOOEL SELECTlaQ CRITERIA. MOXL SELECTEB HAS MAXIMUM VALUE. 

MODEL Mf01 MlHl M(B) M(BH1 M(T) M(TH) M(TB) M(T8H) 
CRITERIA .539 1*00 .58 .74 0.00 .46 .53 .BO 
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test statistic value (z-value) is -0.403, 
and the significance level of the test is 

w n X n rW r n r rn t 

.oot>. aus, tor cou om e s c ata, c Fo- 
sure is not rejected. 

If individual capture frequencies are 
10 or more, program CAPTURE also 
computes and prints a partitioned version 
of the closure test for those frequencies. 
For example, from Fig. 16, for animals 
caught twice the test value is -0.660 and 
is not significant. These partitioned test 
cases are of interest, but we emphasize 
the overall test is the one to use for the 
final judgement on closure. 

Failure of closure means that during 
the study animals are either entering or 
leaving the population at risk of capture, 

r n . . 1 r or 30t . a1S COU C . S)e causee, tor exam- 
ple, by death, emigration, or the trap grid 
itself attracting animals from surrounding 
areas (especially likely in removal trap- 
ping). In any of those cases, the animals 
that enter or leave have zero capture 
probabilities during the time they are not 
part of the trapped population. The cor- 
responding probability model has simi- 
larities to our behavioral Models Mb Mbh, 
Mtb and Mtbh. Indeed, as previously stat- 
ed, behavioral responses are extrernely 
difficult to untangle from true failures of 
closure. Our simulation results have 
shown the closure test rejects strongly 
when Model Mb is true, and is not a truly 
unbiased test whenever there is strong 
behavioral variation in capture probabil- 
ities. sowever, t ae test c Woes not seem to 
be affected by heterogeneity or random 
time variations. We have not used other 
tests from the literature (e.g., Pollock et 
al. 1974) because, to our knowledge, 
those tests all are implicitly developed 
under the assumption that Model Mo is 
t ae true modei under t ae c osure as- 
sumption Because we feel Model MO 
probably is never acceptable, those tests 
will be even more untrustworthy than 
our current closure test. 

The biologist is advised to look care- 
fully at the closure test. If the test statistic 
is not significant, this tends to support the 
validity of the closure assuluption. If that 
test rejects closure, before accepting that 
result, it is necessary to look at the other 

OVERALL TEST RESVL TS - - 
Z-VALUE - . 4C 
PR0{3AS I L I TY OF A SMALLER VALUE . 393E 

TEST OF CLOSVRE BY FREQUENCY OF CAPTURE. 
(FREWENCIES LESS THAN 10 ARE NOT COMPUTED. ) 

NUtwlBER OF CAPTURES Z-VALW PROBAB I L I TY 
________________________________________ 

3 

4 

5 

6 

- 660 

- . 322 
-.066 

.694 
-1 .085 

.25477 

.37360 

.47356 

.75607 

. 1 3906 

FIG. 16. ExalnpIe of the test for closure procedure 
with bral house mouse data fiom Coulombe (un- 

published thesis). 

1 . 1 . 1 1 .r ommencl uslng tne Jacnlte estlmator ln 
such cases because it is robust to heter- 
ogeneity and will tend to do well even if 

. 1 . _ a competlng mocle 1S true. q or t ze morn- 
ing data) the estimate of N from the jack- 
knife estimator w as 194 + 7.6, while that 
from the null estimator was 171 + 4.1. 
Hence both choices given by the model 
selection procedure provided similar es- 
timates. 

As a final check on whether time vari- 
ation exists in the form of morning and 

. rr evenlng ( ltterences, note t zat ta aere were 
nore captures in the Inornings (occasions 
1, 3 5, 7, 9) than in the evening (occa- 
sions 2, 4, 6, 8> 10). 

r 7 A Test Jor Closure 

Throughout this luonograph our phi- 
losophy has been that assumptions 
should be tested. One of the most critical 
assumptions behind this entire work is 
that of population closure. Although it is 
c esira ) e to test c xosureS t zere are no tru- 
ly suitable tests for this assumption. Clo- 
sure is difficult to test for because sozue 
types of variations in capture probabili- 
ties (especially behavioral) are difficult to 
distinguish froln a failure of closure. 

Burnham and Overton (pers. comm.) 
suggest a closure test based on Model Mh 

r . 1 . Tr - r ,} . ct. Appenctlx X . r lg. lt glves an exam- 
ple produced by program CAPTURE of 
this closure test applied to Coulombes 
(unpublished thesis) full data set. The 
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tests and the indicated model. If strong 
behavioral variation is indicatedS the clo- 
sure test is not valid. 

Additional evidence regarding closure 
is obtained from a test of average cap- 
tures per trap as a function of trap dis- 
tance from the edge of the grid. That test 
is discussed in the section on DENSITY 
ESTIMATION; it tests for whether the grid 
attracts animals. 

Fina y, we mention t lat t le c osure 
test used here is oriented toward detect- 
* t 1 1 . 1 1 . lng Dreatc£owns ln closure on y durlng 
the initial and final stages of the experi- 
ment. The test is not appropriateS for in- 
stance, for identifying situations in which 
animals emigrate during the tniddle of 
the study period and then ilumigrate 
back to the study area in the latter stages 
of an experiment. 

DENSITY ESTIMATION 

Introduction 
The luodels discussed to this point in- 

volve only population size N as the pa- 
rameter of interest. Often, interest may 
lie in population density, the number of 
animals per unit area (e.g., squirrels/hec- 
tare). One could naively take N divided 
by the area enclosed by the trapping grid 
as an estimate of density. That approach 
however, leads to severe overestimation 
as a result of what has been called 'Cedge 
effect, i.e., not all animals have their en- 
tire hozue range within the trapping gride 
but tnay still be caught because some 
traps near the grid boundary are within 
their home range. Although biologists 
have recognized this problem for de- 
cades (Dice 1938 1941; Stickel 1954)> 
statisticians concerned with estiluation of 
population abundance have tended to ig- 
nore or lave failed to recognize the prob- 
leln. This probably is due in part to the 
fact that abstract models for capture stud- 
ies such as ball-and-urn modelsS have no 
spatial coluponent) hence do not include 
any concept of density as distinct frozn 

r nuln Ders ot an1ona s. 1 . l nree as1c approac zes are g1ven 1n 
the biological literature to solve this 

problem. Two of theln rely on Dice's 
(l938) concept of a boundary strip about 
the grid such that the effective trapping 
area is the grid area plus this boundary 
strip area. Dice assumed the boundary 
strip to be one-half the average diameter 
of the home range of the population 

, 1 r n f) e1ng trappee. ze trst z approac zes at- 
tempt to estiluate this strip width, W, 
from the capture data. These 3 ap- 
proaches are given below: 
(1) Holne range size is estimated froln 

the locations of different captures for 
the same animal and is used to esti- 
mate the strip width W. A variety of ap- 
proaches have been used; all are ba- 
sically ad hoc and subject to numerous 
problems, e.g., results depend upon 
trap spacing and numbers of recap- 
tures (Hayne 1949b Stickel 1954> 
r n s rert r n 1 ana ia 1Y {Y . . i le asic idea can De 
developed into an elaborate statistical 
estimation problem (Jennrich and 
Turner 1969)> but as far as we know 
estimation of W l)ased on luovement 
data remains unsatisfactory. 

(2) The parameter W is directly estimat- 
ed based on data drawn from selected 
subgrids (MacLulich 19517 Hansson 
19697 Seber 1973:51 Smith et al. 
1975). As suggested by Burnham and 
Cushwa (pers. comm.) that idea can be 
developed into a procedure allowing 
joint estimation of D and W from data 
on 1 suffiiciently large grid. We dis- 
cuss this approach in detail below. 

(3) The use of 44assessment>' lines is the 
most complex approach to density es- 
tirnation. It involves designing the 
study to specifically estimate the ef- 
fective trapping area as well as the 
size of the population at risk of cap- 
ture. There are numerous variants on 
this approach (Smith et al. 1971? 19727 
1975, Swift and Steinhorst 1976 
O'Farrell et al. 1977). We have not 
pursued this approach here because 
the proper data analysis depends upon 
the study design. 

Of those 3 approaches, only the second 
seems to be formulated in a rigorous sta- 
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TABLE SO.THE INFOAoN NEEDEX3 TO ES4E DENSITY USEX T W NESD SCX9S AND 
TH:E DATA FROM COULOMBE (PUBLISHED THESIS) 

2 . - t 

No. Grid AreajAi (individllals) ( indiviZoals ) Be(ts) 

h ,e, wS ^ st .. s o 
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F1G 1X. A series vf 4 neswd subgrids with a 
bourldary strip of wldth W around each subvid. 
Note the torFwer of the boundary seip is a quarter 

cireIe of radles W. 

in the calculations T>ps were 3 m apart 
and the area enclosed by the grid was 
()*073 ha We can delineate subvids of 
slualler slze by examlnlng smaller groups 
or t>ps ln pco ar we can coneew 
tuallze a series of nested subvids (see for 

. _t examp e filg JW 
The size of the population at risk of 

canture for each ffrid noust b stilnated 
The choice of a population estimator 

8 r % s s 

snou d e ased on t e mockel select:ion 
rocedures usin the data for the entLre 

gricl For i - 1> 2> * * ** kS assume that apop- 
ulation estimate N has been made for the 
ith grid by using data obtained only fr:>m 
that gid The naive estimator of densit 
of the Lth gr3Wd 1s gven by 

YL Ni/AT 
i iS2> .*.>kS 

X X X X X X X X 8 X X X ^- s As 

X X X X X X X X X X X X X X X 

X X X X X X X K X X X X X-K X 

X X X X X X X X X X X X X X X 

X X X X X X X X X: X v X X X 

X X X w X X X X X X X ^ X X X 

X w X v X X -w- X H K X X X w X 

X X X X X X X X X s X w X w X 

X x X ^ X - X X X ^ X X X X X 

X X X X X X X X X X X X X w X 

X w X X X r X--- X X X X X w X 

X X X X X X X X X X X ^ X X X 

X w X X X X H- X X X X x X X X 
; 

X X X X X X X X X X X X )( X X 

X X X X X X X-- X X X -K-- X Pi- x X 

X X X X X X X X X X X X >S X X 

FIG. 17* A 17 x 17 trapplng d VY1dK 4 nested 
subgrids 

tistical fashion without arbit assump- 
tions. IoweverS even the second ap- 
proach cannot be tnade worliable wlthout 
sozue arSwary ad hee ieares. 

Problem Formulon 
We will illustrate tlle proljlem wth 

sotne data from a liveWapping sdy of 
feral house mice Mtks musculus in a 
southern Callfornia coastal salt marsh n 
DecelnSer l962 by Coulolmle (unpub- 
ltshed thesis)5 that were also tesell to il 

lustrate the tnodel selection procedure. 
0nly the basic speelfications of the sdy 
will be needed here. 100 Shernlal;w live 

aps were laid out in a 1(1 x 10 square 
gridX Morning and evenlng eapp1ng ses- 
sions were conducted for S days and pro 
vided 10 trapping occasions7 although 
only the morning sesssons will be used 
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where Ai is the size (area) of the ith trap- 
ping grid. The grid data are given in Ta- 
ble 20. Note that the standard error of Y 
is Se(Ni)/Ai 

The four Yi values in Table 20 cannot 
reasonably be considered each an un- 
biased estimate of a single pararneter. 
The bias is attributed to the phenomenon 
of edge effect, wherein the area used by 
individuals at risk of capture is not re- 
stricted to the area contained within the 
trapping grid; rather, there are areas out- 
side the trapping grid that are part of the 
home ranges of individuals at risk of cap- 
ture. 

We assume that the population density 
is constant in the area of trapping. That 
is) there is not a trend in density across 
the grid. Under these conditions it is rea- 
sonable to think that there is an area of 
constant width about the trapping grid 
such that the actual area used by the pop- 
ulation at risk of capture is the total area 
of the trapping grid plus that of the 
boundary strip. Let W equal the width of 
this strip. This is illustrated for the four 
grids in Fig. 18. The concept of a bound- 
ary strip goes back at least as far as Dice 
(1938). We need not interpret W, but 
from the inception of the boundary strip 
concept, biologists have considered that 
W is related to home range size (Dice 
1938, 1941) In fact they arbitrarily as- 
sume W is one-half the Inaximum linear 
dimension of the average hollle range of 
the species. 

Statistical Treatment 

The approach to density estimation 
that we advocate for use with grid trap- 
ping is to formulate the problem as one 
of joint estiluation of D and W, with the 
paralneter N being a function of D and 
W. Then, by having 2 or Inore grids of 
different sizes, we can estiInate those 
parameters with a weighted nonlinear 
least squares procedure. 

In what follows, we assulue that den- 
sity (D) is expressed in individuals per 
unit area and strip width (W) in linear 
units, such as meters. Consider a layout 

of traps in the shape of a square or rec- 
tangle. That is, by connecting the outer- 
most traps, a square or rectangle results. 
Let P be the rneasured perimeter of the 
grid Let A be the area within this perim- 
eter, and let A(W) equal the area obtained 
by adding a boundary strip of constant 

. sxY r n fb 1 

W1C t 1 w. i len t le tunt amental re atlon- 
1 . . 

shlpS 1S 

A(W)=A+PW/c+7rW2/c, 
where c is a conversion factor to express 
PW or w2 in units of A. For exaluple, to 
convert m2 to ha, c = 1,000 InSha. 

Let there be k such grids identified. 
These may be subgrids of one gricl, or 
luay be physically separate study grids. 
Assume a constant density applies for 
each grid. Then, for grid i we would ex- 
pect to have 

Ni = D Ai( W) - D[Ai + Pi W/c 
+ X W2/c], 

where Ni is the population at risk of cap- 
ture with respect to the ith gricl of traps 
only. Conceptually, we should let the ac- 
tual nulubers of individuals at risk of cap- 
ture on grid i be a randoln variable with 
expectation DAi(W). Then we woulel 
write E(Ni)= DAi(W), and it is really 
E(Ni) we are estiluating for the ith grid. 
Letting i= 1) . . ., k we oltain structural 
equations relating the parameters D) Wt 
and the induce(:l parallleters Ni. The area 
Ai, and the grid perilneter Pi tnust l)e 
known. Next we redefine the basic strue- 
tural equations as 

y _ Ni 
i - D[1 + aiW + biW2] 

i = 1, 2, . . . k, 
where 

ai = Pi and hi = 
Aic Aic 

Assume that froln the trapping clata of 
each grid we have estimates of the Ni , 
expressed as Ni, and estiluates of their 
variances Var(Ni). ASSUme further that 
the Ni are good estimates in the sense 
that they have sluall bias, so we can write 
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Ni = yi = D[1 + aiW + biW2] + e} 
Ai 

i- 1>2> ...k, 
where si is a randozn error with E(e) - 0, 
and covariance matrix E(e st)-}. The 
small bias of the Ni is a big assumption 
that relies heavily on previous sections. 
Note that Yi- Ni/Ai is what we would 
call the naive estimator of density, D, 
from the ith trapping gridS clearly it can 
be significantly biased unless Al is large 
relative to (PiWlc + xW2/c), the area that 
is added by assuming a strip width of W. 
Note that for a sequence of k subgrids of 
increasing sizeS the most biased estimate 
of D is obtained from Yl because Al is 
smallest relative to (PlW/c + 7rW2lc). On 
the other hand, Yk is the best estimate of 
D because Ak is largest relative to (PkW/ 
c + vW2/c). If we had a very large grid, 
say the state of Wyoming the contribution 
of area due to the boundary strip W would 
be negligible, and we could ignore the 
problem. Because this is not the casee we 
use our biased estimates of Yi to find an 
unbiased estimate of D. 

We assume E e fr) - X because in gen- 
eral the naive density estimates, YiS are 
not inc bependent from one another if 
these sulogrids derive from 1 overall grid. 
Hence, we must estimate the covariance 
Inatrix Ai of the k estimates of Yi. A simple 
and intuitive procedure is to assume the 
correlation between Yi and YJ is just the 
proportion of overlapping area betweem 
grid i and grid j including their boundary 
strip. Then the covariance of Yi and YJ is 
Se(Yi) * Se(YJ) COrr(YiS YJ). With the re- 
sulting covariance matrixS generalized 
nonlinear least squares can be performed 
to estimate density and strip width as D 
and WS respectively. Note that $ is a 
function of WS because the amount of 
overlap between grid i and grid j is a 
function of the estimated strip width W. 

In the most common situationS there is 
one grid such as our example in the Cal- 
ifornia salt marshS and one must choose 
a small number of subgrids to use in this 
approach. We reeommend 4 or more nest- 
ed grids. The main coneern is to keep the 

inner grid large enough so that N1 is well 
estimated. Other possibilities (not rec- 
ommended) are to include subgrids con- 
sisting of halves and quarters of the total 
gridS or both. 

The basic idea behind this procedure 
was introduced by MacLulich (1951)> but 
until recently no method of estimating 
the variances of D and W had been given 
(Smith et al. 1975). 

In Fig. 19 a complete analysis is pre- 
sented for the California salt marsh feral 
tnouse study. First note that we have 
computed the matrix of captures per trap 
station. That matrix includes the data for 
both the morning and evening trapping 
sessionsS or for all 10 occasions. Multiple 
captures per trap cause some entries to 
be greater than 10. Visual study of this 
matrix (Fig. 19a) does not disclose any 
gross trends in mouse density across the 
grid. Fig. l9b shows the results of 3 chi- 
square goodness of fit testsy where the 
capture matrix is first collapsed by rowsS 
then by columns5 and finally by rings. 
Those tests generally tend to reject the 
null hypothesis of uniform probability of 
capture by rows or by columns. HQW- 
ever5 we are more concerned in identi- 
fying gross irregularities in mouse den- 
sity such as no captures in one corner of 
the gridS or a strong trend of decreasing 
probability of capture from right to left. 
The tests identify a problem of higher 
trap success at t ze grid edges. This is in- 
dicated by the test of rowsS where a large 
portion of the chi-square value is contrib- 
uted by the ninth and tenth rowsy and by 
the ring testS where the outside ring of 
traps had much better success than ex- 
pectedS anc > t ze inner rsng poorer success 
than expected. For large trapping gridsS 
the problem could be corrected by not 
using the data for the outer ring of traps. 
This is very wasteful of dataS howeverS 
and we will ignore the problem here. 

ze next 4 pages of outut (Figs. 19e-f) 
consist of the population estiluates for 
the whole grid and each ofthe 4 subgrids 
coluputed with the jackknife estimator 
derived from Model Mh. That model was 
selected based on the ouWut for the tests 
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MATR I X OF CAPTURES PER TRAP STAT I ON . luates of D and W. The columus headed 
NAIVE DENSITY PEEMETEWAREAs and 

^r 1 

PI/AREA corresponc * to Y iS aiy and iS re- 
spectivez -Y1 and the COVASANCE MATEUX 
corresponds to $ for the initial value of 

tt r . 

W. 1 ze rlum zer ot lteratlons requlrec . to 
t + th ut ' aldfr es llnate e paral e ers 1S slVen1 l O 

this example it is 189. The maximum 
nutuber allowed in prograzn CAPTURE 
is 300. The approximate nuluber of sig- 
nificant digits of D and W is also printed. 
A table listing the grid nuluberS the naive 
density1 and the predicted value is then 
giver. This allows the investigator to get 
a feel for how well the zuodel fits his data. 
Note that all the residuals in the exaluple 
are negative; this is because they are all 
highly correlatedS and hence we expect 
theln to be of the salne sign. The lnultiple 
correlation coefficientS RS is also printed 
to help assess the fit of the luodel. The 
value of R2 is interpreted as the propor- 
tion of the variance in the data that is ex- 
plained by the lnodel (0 S R2 S 1). The 
computed values of 1) and W are highly 
negatively correlatedS indicating the 

uts 
- - - - - - - + 

l - 
RW 1 1 9 

RSl 2 1 12 

R)l 3 1 W 

R(IU 4 1 B 

R1 EJ 5 1 7 

ROU 6 1 5 

ROW 7 1 7 

Rt);J 8 1 5 

RS 9 1 5 

RO#J 10 1 I O 

Grid 
1 

2 
3 

-4 

FIG. 19a. Nested subgrids used ill the deuxity 
estinlation protedure wii iraI house mouse data 
iom Coulolube (unpublished thesis). In the matrixS 
trap coonlinate§ are rounded to it nearest whole 
integer. In goodness of St testsy trap coordinates 
that are not integers and noarectangular trappiLng 

grids will cause spurious reswtlts. 

described in the section on model selec- 
tion (E;ig. 15). 

The final page of output (Fig. 19g) 
gives the generalized least squares esti- 

CH I -SQUARE TEST OF UN I FORM DENS I TY BY ROWS . 

ROW 

ORSERVEO 
EXPECTEO 
CH I -SaJARE 

63 

58.500 
. 3W6 

z 

53 
58.500 

.517 

56 
58.500 

. 1 07 
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63 
58.500 

.346 

59 

58.500 
.00# 

6 

50 
58.500 

I .235 

44 
58.500 

3.594 

8 

43 
58.500 

4. 1 07 

9 

74 
58.500 

4. 1 07 

10 

80 
58.500 

7.902 

TOTAL CH I -SWAK a 22 . 26 W 1 TH 9 DEGREES OF FREEDOM . PRO2AS I L I TY OF LARGER VALUE = . 0081 

CH I -SaJARE TEST OF UN I FORM DENS I TY LY COLUMNS . 

COLUt 
OBSERVED 
EXPECTED 
CH I -SQUARE 

72 
58.500 

3. 1 15 

2 

73 
58.500 

3. 59 

48 
58.500 

I . 885 

4 

57 
58.500 

.038 

53 
58.500 

.517 

6 

53 
;Z8 . 500 

.517 

52 
58.500 

.722 

8 

52 
58.500 

.722 

9 

59 
58.500 

.004 

lo 

66 
59.500 

.962 

TOTAL CH 1- = l 2 . 08 W I TH 9 DEGREES OF FREE . PROBA2 I L I TY OF LARGER VALUE = . 2090 

CHI-SaJARE TEST OF UNIFORtl DENSITY SY RIKS (NTER RlK IS ER I ) . 

RING 

OBSERVED 
EXPECTED 
CH X -SQl JARE 

2q7 
210.600 

6.291 

2 3 
160 96 

163.800 1 17.000 
.088 3.769 

5 

17 
23.400 

I .750 

4 

65 
70.200 

. 385 

TOTAL CH I -SOUARE s 12.28 WI TH q DEGREES OF FREEDOM . PROSAS IL I TY OF LARGER VALUE = . 0154 

FIG. l9b. Chi-square tests of uniform density with feral house mouse data from Coulombe (unpublished 
thesis). 

q 6 6 6 7 5 5 9 6 

6 4 7 2 W 4 2 4 8 

8 9 7 4 8 3 3 3 7 

9 8 Z 4 10 6 7 6 3 

9 4 4 6 4 7 7 6 5 

8 3 4 3 4 9 5 4 5 

6 I 8 3 3 5 2 3 6 

5 1 5 7 2 4 6 5 3 

9 6 6 10 5 4 7 B 14 

9 6 8 8 6 5 8 11 9 



72 WILDLIFE MONOGRAPHS 

hUMBER QF tRAPP I NG OCCAS 1 WAS 5 
NU"3ER OF ANIS CSTURED. Mf Tv I ), WAS 33 
rorK NU"BER OF CAPTURES. N., UAS 50 

FREWENCIES OF CAPTURE8tl I } 

ww X e 3 X 5 
Ft 11* 18 13 2 O O 

CUTED JACKKN I FE CWFF I C I EN TS 

NU"BER OF TRAPPING OCCASIONS US 5 
NUMBER OF ANIMALS CAPTUREO. H(TsI }, WAS 67 
TOTAL NU"BER OF CAPTURES . N ., WAS 110 

FREOt,JENC IES OF CAPTURE F ( I ) 
1^ 1 2 3 # 5 

Ft 11. 37 21 5 # 0 

COMPUtEO JACKKNIFE COEFFIC1ENT5 

Nt I ) 

X X . eoo 
2 1 .000 
3 1 . OOQ 
o I .000 

5 l . QOO 

Nt2 
2. 00 

.550 
I .000 

I .000 

I .000 

NX3) NlQl Nf5) 
e . S00 3.000 3. DOt 

.050 - .250 - . 25Q 
I . 133 f vU50 1 wE50 
l . 000 .992 . g9E! 

I .000 1 OQ0 l . OOQ 

N(W} Nt5 
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.992 . S9e 
I .000 l . Q00 

Nl I ) N(Z) Nt3) 
1 1.800 2.90Q 2.800 
e l . OoO . 55C .050 
3 1 . Ooo 1 . QQo a . 133 

l I .000 1 .000 1 . ooo 

5 1 .000 1 .000 1 .000 

THE RE5ULTS OF THE JACKKNIFE CUTATI 

Nl I 1 SEX 11 .95 CONF. LIMIT5 TEST 
33 Cl 
47.4 5.09 37.4 S7.4 
52.4 7.57 37.5 6v.e 

53.3 9.51 34.7 12.0 
53.3 10.62 3e.4 79.1 
53.3 10.62 32.W 74. } 

'-HAT - .2128 

THE RESULTS OF THE JACKKNIFE COMPUTATIONS 

Nt t ) SEI I ) .95 CONF. LIMITS TEST 
61 Cl 
96*6 7.30 82.3 1 10.9 

109.# 10.91 88.0 130.7 
124.3 13.65 87.E t4} . I 
1 16.0 15.17 86.2 lW5.7 
1 16.0 15.17 86.2 1q5.7 

>-HAT a . Z056 
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I 

e 
3 

5 

AWRAX P 

r OF Nt 1+1 ) VS. NX 11 
rHI-513UAKt l D.F. 1 

2.839 
. 198 
. ooe 

0. QOO 
O .000 
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l 

e 1 
3 1 
4 1 
5 1 

AVERAGE P 

r OF N( 1+1 ) VS, Nl I ) 
vH I -SQUARE f I D . f . } 
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e.23l 

.789 
O.OOD 
O .000 

INTERPOLATEO POPU.ATlON ESTIMATE IS 

APPROXIMATE 95 PERCENT CQNFIDENCE INTERVAL 

47 Ul TH STAARC1 ERROR # . > INTERPOLATEO POPlATION ESTIMATE IS 107 W } TH STANDARD ERROR 10 . l 827 

86 TO I zV 37 ro 57 APPROX I MATE 95 PERCENT C 1 DENCE I NTERVAL 

HlStO0RAH w Ft 11 

FRECOUENCY 18 13 2 0 0 
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EACH * EOUALS 2 POINTS 
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HISTOGRAM OF f ( 1 } 

FREOUENC:Y 37 Z 1 5 4 
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EACH ' EQUALS 4 PO I NTS 
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FIG. 19C. Example of population estimatiQu wiffi 
variable probability of capture hy allimal under 
Model lqh w1th iral house mouse data (Coulotnbe 
(ullpublished thesis) froln inner inner grid of Fig. 

19a (X = 4-7 Y- 7). 

FIG. 19d. Example of population estilnation with 
variable probability of capture by animal under 
Model Mh with bral house mouse data (Coulonlbe 
unpublished thesis) from the middle inrwer grid 

of Fig. 19a(X - Y - 3 8). 

strong inverse relation between density 
and strip width. This negative correlation 
makes it difficult to estimate either pa- 
ralneter with a small standard errorS be- 
cause other combinations of D and W 
also result in almost as good a fit as the 
values selected Finally a test of whether 
W is significantly different from zero is 
printed. In that examE)le the highly sig- 
nificant difference of W from zerv indi- 
cates that the estimate of D is much bet- 
ter than the naive estimate based on tlle 
actual grid area. 

DTSG8SSXOB 

The density estiInation problem results 
because the grid is an artiIScial entity in 
the environment and animals trapped 
use areas both iIlside and outside the 
grid. A practical problem illustrated ln 
the example is that the grid can attract 

animalsy thus zCinducing>> a higher den- 
sity than would otherwise be found. The 

- prob em ofthe grid attracting animals can 
. rW cause severe zlas. t attraction occurs 

during trapping, then the assumption of 
population closure will be violated. With 
removal trappingS over a long enough 
time the problem is sure to develop. The 
problem may still occur ir} livetrapping 
studies. One possible test for this effect 
is the CCring>> test given in Fig. l9b. Even 
with some approach like prebaiting to al- 
low this attraction effect to stabilize be- 
fore trapping both methods (recapture 
movenaents and direct estimation of W 
arld D) will be invalid if the grid itself 
attracts animals. In that case it appears 
assesslnent lines would have to be used. 

If the above method produces a poor 
resultS an alternative approach is to base 
an estimate of W on animal movements 
as determined from recapture locations. 
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NUMBER OF TRAPP I Nt; OCCAS I ON5 WAS 5 
NUMBER OF AN I MAL5 CAPTUREO , M t T + 11, tWAS 1 60 
TOTAL NUMBER OF CAPTURES , N ., WA5 356 

FREQUENC I E5 OF CAPTURE, F t I ) 
1- I Z 3 4 5 

FX I }s 45 59 36 15 5 

CO+UTED JACKKN I FE COEFF I C I ENT5 

NU"BER OF TRAPPlhG OCCASIONS WAS 5 
NUMBER OF ANIMALS CAPTUREDs M(T+I }, WAS I 16 
TOTAL hW1BER OF CAPTURES. N., WAS 202 

FREQUEhClES OF CAPTURE.FZ I 1 
1- 1 2 3 4 5 

F I 1- 55 43 1 1 7 0 

CO"PUTED JACKKN I FE COEFF l C I ENTS 

Nl I ) Nt2) N(3) N(41 
1 1.800 2.400 2.800 3.000 
2 1 . 000 .550 . 050 - .250 
3 1.000 1.000 1. t33 1.250 
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THE RESULTS OF THE JACKKNIFE CO"PUTATION5 

N(ll SE1I} .95 CONF. LIHITS TEST OF N(lsl] v5. N{l) 
160 CH I -5QUARE ( I D . F . ) 
196.0 8.05 180.2 211.8 .007 
196.5 1 1.69 173.5 219.4 2.000 
189.8 15.15 160.1 219.4 2.847 
185.1 17.31 151 ve 219.0 0.000 
185.1 17.31 151.2 219.0 0.000 

THE RE5ULTS OF THE JACKKNIFE C0MPUTAT ION5 

Nt I ) SEX I ) .95 CONF. LIMXTS TEST OF Nl l+l ) V5. Nt 
1 16 CHI -5OUARE I l O . F . ) 
160.0 8.90 142.6 177.4 6.866 
173.7 13.20 147.8 199.5 .195 
175.6 16.64 143.0 208.2 .073 
174.9 t8.62 138.4 211.4 0.000 
l74.9 18.62 138.4 Zl t .4 0.000 
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AVERAGE P-HAT = 243 

I NTERPOLATEO POPULAT I ON EST I MATE I S 

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 
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FIG. 19e. Exalnple of population estimation with 
variable probability of capture by animal under 
Model Mh with feral house mouse data (Coulombe 
wlnpublished thesis) from the middle outer grid 

of Fig. 19a (X - 2A91 Y = B9). 

Let W be such an estimate, for example 
one-half of the average maximum dis- 
tance Detween trapped locations for all 
animals captured at least twice. The stan- 
dard error of W, Se(W), can be computed 
from the data themselves. The estimator 
of density is then 

D- N 
A(W) 

where N is based on all the data (i.e., the 
entire grid) and 

A(W) = Ag[l + aW + bW2] 
for a and b as defined previously in this 
section. An estiluator of the salupling 
variance of D is given by 

Var(D)- Var(N) 
[A(W)]2 

+ (D)2(1 + aW + bW2) r(W) 

FIG. l9f. Exal}ple of populatin es;tilllatiear} with 
variable prohability of capttlre 1)v allinal under 
Mdel Mh with iral hovIse llluse clrlta (Coulombe 
unpublished iesis) iom the entire grid of Fig 

19a (X = 1-lOs Y - 1-1()). 

and the standard error of D is simply 

Se(D)- +/tar(D). 

These variance formulas are valid what- 
ever the technique for estimating W from 
recapture locations. 

In the exaluple of the feral house mice 
W is calculated as 3.63 m with Se(W) - 
0.149 and compares favorably with the 
estimated value of W= 4.65 froln Fig. 
l9g. 

The methods outlined in this section 
require large amounts of data to achieve 
satisfactory results. Both a large trapping 
grid and a large nuluber of captures are 
required. A grid size of 9 x 9 probably 
can be considered the minilnuln; how- 
ever a larger grid such as 15 x 15 is 
lnuch better. Good trapping suceess to 
achieve a large number of captures is 
necessary to provide a useful population 
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STARTING VALUES FOR DENSITY ESTIMATION-- 

NUMBER 0f GR I DS 4 

TRAP I NTERVAL 3 °° 

UN I TS COtSVERS I ON 10 00 0 . 00 

I N I T I AL DENS I T Y E S T I MA T E . 5089 

I N I T I AL STR I P W I DTH E S T I t1A TE 882 . 6797 

GRID NAIVE DENSITY PERIMETtR/AREA Pl/^REA STARTING COVARIANCE MATRIX 

I Yl I B At I 1 8( 1 ) 

1 5770.927 .4444444 . 3879E-0 I . 369E-06 

2 4750.710 .2^^&i67 . 1396E-01 .273E+06 .205E+06 

3 3768.521 .1904762 .7124E-02 . 146E-06 . 109E+06 .592E+05 

4 2.554.402 .1481481 .4309E-02 .Ei25E-05 .468E+05 .254E+05 .1 10Es05 

REStJLTS 0f ITERATIONS 
FUNC T I ON E VALUA T I ONS REQU I RED 189 

ESTI"ATED SIGNIFICANT DIGITS OF PARAt1ETER VALUES 8 

F I TTED ItOOEL CCt1PARED TO THE DATA 

GRIDt I ) Yt I ) Ft I ) 

1 5770.927 5505.869 

2 4750.7 1 0 3583. 1 34 

3 3768. Y 1 2875 . 007 

4 2654.402 25 1 1 .652 

MULTIPLE COMELATION COfFICIENT IS .93181 

ESTltRATEO OENSITY- 1408.934 172.1260 - ITS STANOARD ERROR 

ESTltbtATEO STRIP WIDTH- 4.653 1.0576 - ITS STANARO ERROR 

CORRELATION Of ESTlt1ATORS -.9471 

TEST OF ESTIMATED STRIP WIOTH GREATER THAN ZERO. 

Z-VALUE s 4.3998 PRO8A8ILITY OF LARGER VALUE - .0000 

F I NAL COVAR I ANCE ^ATR I X 

. 3694Es06 

. 1560Ev06 .2048E-06 

.5398E+05 .7085E-05 .5924E+05 

.1621E+05 .2127Ev05 .1779E+05 . 1100E+05 

Fl6. lGg Example of joillt estimation of (lensity 
and bt}llndary strip width with bral hollse 1OUSt 

data Som Coulombe (unpublished thesis). 

estimate for each grid. This becomes a 
problem especially with the smaller 
grids, where only a fraction of the data 
are used to estimate the population. Be- 
sides requiring a good population esti- 
mate, a good variance estimate for N is 
required because that quantity is used in 
constructing the estimate of the weight- 
ing matrix }-1 Poor data result in a poor 
weighting luatrixS which then results in 
poor estimates of D and W. 

Possible methods to increase the 
amount of data are (1) to place traps close 
together to increase recaptures (2) to 
place grids in a uniform habitat so that 
discontinuities in density do not occur, 
and (3) to increase the number of traps. 
r n 

. 1 

o repeat t le meta zOCI requlres < arge 
atnollnts of data. A carefully designed 
study is reguired to obtain reliable values 
of D and W and only rarely can a typical 
capture-recapture study be made to yield 
reasonable estimates. 

STUDY DESIGN 

The objective of this monograph is to 
present rnethods for the thorough analy- 
sis of capture data when the target pop- 
ulations are closed except for known re- 

movals. However, proper planning, 
designS and field conduct of such studies 
is necessary to obtain meaningful data for 
analysis. Many factors mlust be consid- 
ered when planning a capture-recapture 
or removal study to estimate animal 
abundance. We consider these as falling 
into 2 broad categories: statistical design 
and data recording considerations, and 
field procedures, although the distinction 
may sometimes seem a bit arbitrary. Ex- 
amples of such considerations include 
(but are not limited to) the following: 

Statistical corlsiderations 
number of capture occasions 
time between occasions 
size and shape of trapping grid 
spacing of traps 
number of traps at a point 
numbering of traps 

Field procedure coresideratior7s 
. 

a Slve vs. removai > captures 
choice of trap type 

. o f} 

c lolce ot e ectrons nlng gear 
method of marking or tagging 
method of recapture 
use of bait 
time of day to check traps 
handling the animals 

The purpose of this section is to present 
some suggestions and cautions regarding 
the aspects of study design. The general 
themes presented are to conduct the ex- 
periment so that (1) assumptions can be 
tested, (2) the closure assurnption is met, 
(3) the simplest possible model is appro- 
priate7 and (4) the number of animals 
captured is maximized (including recap- 
tures). We begin by mentioning 
livetrapping versus removal methods, 
then discuss closure proceed through 
ways of eliminating variation due to tilne 
behavior, and heterogeneityS and then 
c Wiscuss sample size considerations such 
as grid size and number of traps. 

For ac c iitional discussion of design 
consideration in grid trapping tlle reader 
is referred to Overton and Davis (1969), 
Smith et al. (1969, 1971, 1975), Tanaka 
(1970)7 and Hansson (1974). 
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It is beyond the intended scope of this 
uonograp ] to provide guidance on the 
operational aspects of capture studies, al- 
though they are important. For exaluple, 
if the method of luarking (or tagging) is 
such that luarks are lost, then a basic as- 
sumption needed for lneaningful results 
is violated. When making decisions about 
a field study, the scientist should consid- 
er the probable effects of the experiInen- 
tal design on assuluptions necessary lor 
data analysis. For additional discussion 
of field procedures the reader is referred 
to Davis (1956), Southwood (1966), and 
Taber and Cowan (1969). 

Livetrcipping Versus Removal Hethods 

As discussed in the previous sections, 
reluoval Inethods are a special case of 
livetrapping methods. That is, the remov- 
al estimators can be used on livetrapping 
data. Hence, we recolnmend that live- 
trapping Inethods should be used if pos- 
sible because of the wider array of op- 
tions available for the data analysis. A 
hazard of removal studies is that they dis- 
rupt the population, and as substantial 
ani lual s are remove d) ilu migration luay 
occur; this violates closure. 

For livetrapping studies, all possible 
precautions should be taken to prevent 
deaths of the aniluals while in the traps, 
e.g., shading the traps in sulumer, or 
avoiding periods of extreme cold. Simi- 
larly, it is assumed (iluplicitly) that the 
lnethod of marking will not induce luor- 
tality. If substantial mortality cannot be 
avoided, then one must analyze the study 
as a removal experiInent. 

Closure 

For the analysis lnethods presented 
here, the single most important assump- 
tiOll is closure. Closure is very difficult to 
test for, yet any violation of this assump- 
tion biases the tests and population esti- 
uators presented here. 

Considerations to help assure closure 
include, for example, tiluing the trapping 
to avoid known luigration tilnes, and pe- 

riods of recuitlnent (e.g., juveniles be- 
coming trappable) or iluluigration. Also 
keep the duration of the experilnent as 
short as possible. If it is necessary to 
study the population at such times, open 
population lmodels should be usecl for 
data analysis (Seber 1973, Pollock 1975, 
Arnason and Baniuk 1977). 

Grids are often thought to attract ani- 
uals. For example, when kill traps are 
used, aniluals from the area around the 
grid will luove onto the grid as local an- 
iluals are removed (cf. Gentry et al. 1968, 
Sluith et al. 1975:38). This violates clo- 
sure, ancl the only good solution seelus to 
be to keep the length of the study (in 
days) very short so that the study will end 
before significant imluigratioll can occllr. 

Elimitlating Varifltiotl Due to Tiz7le, 
Behavior, atl d Heterogeneitzy 

Given that closure is satisfactorilv 
achieved, the next luost important CO1;- 

sideration is twofold: ( 1) achieving a 
large enough number of captures to ob- 
tain reliable results, and (2) achieving a 
study for which the best model is the sim- 
plest possible one (e.g., Model Nl0 rather 
than /ttbh, or Model Mb rather than NItb)* 
In this section, we discuss lnethods of 
eliIninating variation of capture probabil- 
ities due to time, behavioral response to 
first capture, and heterogeneity of indi- 
viduals. 

Of the 3 factors that affect capture prob- 
abilities, time is the one most easily con- 
trolled by the biologist. He can select the 
season of the year the studies are to be 
conducted, the length of the trapping pe- 
riod, and the tilne of day when trapping 
is to be done. In all those decisions, the 
objective is to reduce variation in capture 
probabilities over time. Among other 
things, this means that equal effort 
should be expended on each occasion. 
For exaluple use the same nuluber of 
traps thoughout, trap at the sallle time of 
day, and if bait is used, use the salne type 
and amount on all occasions. The study 
should be done when weather conditions 
will be as constant as possible, because 
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variable weather is likely to cause time 
variation in capture probabilities (Getz 
1961). 

Behavioral response is common in 
small mammals, and it is doubtful if 
much can be done to avoid it. Apparently 
for this reason, many biologists have 
studied and used strict removal lnethods 
for small mammal population estimation. 
If there is any choice, a method of cap- 
ture (for livetrapping) should be used 
that will not result in a trap response. 
One approach is to use different methods 
of capture on each occasion (cf. Overton 
and Davis 1969). This is an excellent pro- 
cedure, but its application to multiple 
capture occasions is severly limited be- 
cause one cannot usually find 5 or 10 
quite different capture lnethods. We 
note, however, that the use of different 
trapping methods probably will result in 
time variation (the different methods oc- 
cur of necessity at different times). Con- 
sequently, there is a trade-off here: re- 
duced behavioral variation may result in 
increased tilne variation. 

A columon source of heterogeneity is 
the lack of equal access to traps if traps 
are far apart relative to home range 
(Eberhardt 1969a). The above phenolne- 
na are part of the reasoning behind our 
recomlnendation of 4 traps per home 
range when we discuss sample size con- 
siderations in the next section. 

Other sources of heterogeneity are dif- 
ferences in activity or catchability related 
to measurable characteristics such as 
size, age, or sex. Such sources can be re- 
luoved by stratification if the attributes 
are recorded and sample size permits. 
Unfortunately, sample sizes are seldonl 
adequate to allow stratification. Hetero- 
geneity luay also be due to some unrec- 
ognized attribute, and thus cannot be 
eliminated by stratification. Different 
methods of capture luay increase the 
number of aninlals captured in this case, 
but will not eliminate the basic problem 
of heterogeneity of capture probabilities. 

One possible Inethod of eliminating 
heterogeneity, and possible trap re- 
sponse, is to locate traps randomly on 

each trapping occasion. We are unsure of 
the usefulness of the technique, and 
would like to see further studies con- 
ducted to see if significant reductions in 
heterogeneity result. For logistical rea- 
sons, the randomization of trap locations 
on each occasion probably is not feasible. 

A valuable check on the livetrapping 
methods presented in this monograph 
can be luade by using a second method 
of estimating the proportion of luarked 
animals in the population. A columon ex- 
ample is killtrapping or hunting after the 
capture-recapture experiment has been 
completed. Then, using the number of 
marked aniluals in the population, Mt+1, 
and the ratio of marked to unmarked an- 
imals obtained from the killtrapping or 
hunting, a second and somewhat inde- 
pendent population estiluate is made 
with Chapman's (1951) version of the 
Lincoln estimate, 

(Mt+l + 1) 
xT= (all animals killtrapped + 1) _ 1 

(marked animals killtrapped + 1) 

(cf. Seber 1973). Of course traps are traps, 
and kill traps still present a strange object 
in the anilual's environment. Another 
possibility for small mammals marked by 
toe clipping is to use tracks to obtain a 
ratio of marked to unmarked animals. Bi- 
ologists have used smoked plates (Justice 
1961) or dust covered tiles to obtain an 
estimate of the proportion of marked an- 
iluals, and thus a second population es- 
tiluate to compare with that obtained by 
livetrapping methods. The use of tracks 
has the distinct advantage of being a truly 
different method of salupling the popu- 
lation. Much confidence in the popula- 
tion estiluate is obtained whell the 2 es- 
timates are similar. 

In addition to design considerations, 
poststratification of the data can be used 
to create subsets of data which are more 
holuogeneous with respect to capture 
probabilities. This is nothing more coln- 
plex than partitioning the data into sub- 
sets on variables such as species, sex, 
age, weight, etc. If there are sufficient 
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data, such poststratification is a valuable 
device. The subsets so created are then 
analyzed separately by the methods de- 
scribed in this monograph. The only ad- 
ditional testing one might do is for ho- 
mogeneity aluong these strata (subsets) 
(see White 1975). 

Sample Size 

To obtain reliable estimates of popu- 
lation size, a sufficiently large saluple 
must be taken. Typical sample size con- 
siderations are not applicable here (e.g., 
deterluining the numbers of plots to saln- 
ple). Rather, "saTnple size" relates to the 
nuluber of animals captured. For a live- 
trapping study, one lnust have both a 
large enough number of distinct animals 
captured and a sufficient number of re- 
captures (except for Model Nlb and Mbh) 
The factors that control expected num- 
bers of captures are (1) grid size, in terms 
of area covered and numbers of traps 
used, (2) capture probabilities, and (3) 
nulaber of trapping occasions. We dis- 
cuss these 3 factors in relation to the size 
of the experiment necessary to achieve 
precise population estimates. 

The size of the grid is the first decision 
to be luade. Grid size is a function of trap 
spacing, s, and the number of rows, r, and 
colusuns, c, of traps. Equal trap spacing 
and a systematic grid layout are suggest- 
ed. At each grid station there will be one 
or luore traps. If densities are very high, 
we recolumend 2 or more traps per sta- 
tion to avoicl colnpetition for traps. Few 
studies have been made comparing 2 or 
luore traps per station with 1 trap station, 
and we suggest further research is re- 
quired to see where multiple traps per 
station increases the probability of cap- 
ture for individual animals. 

The olejective of grid trapping over a 
short time period is to estimate the pop- 
ulatioll size and usually also the density 
at the grid site. Because of"edge effect" 
(as discussed in the section on density 
estimation), it is necessary to estiluate 
effective trapping area as well as N. In 
practice, this lneans we must be able to 

estimate strip width W as well as N. This 
requires that the traps be laid out to eover 
an area, rather than in a single line. Nlore- 
over, we must be able to associate each 
trap with an arbitrary X-Y eoordinate sys- 
tem. For praetieal reasons, this implies 
solne sort of regular grid layout (often 
square or reetangular) with equal spaeing 
between traps. This latter aspeet of trap 
layout is not neeessary just for estiInation 
of N: for example, if trapping was on a 
sInall island, or in an enelosure, knowl- 
edge of trap loeation in a eoordinate sys- 
tem would not be needed. Finally, for the 
density estimate to be Ineaningful, the 
grid should be plaeed in a homogeneous 
habitat type, to assure uniforln density 
over the grid. 

For a ehoiee of r and e when the objec- 
tive is density estiluation, we suggest that 
both values be greater than or equal to 5; 
as a minimum we recommend r + C ¢ 20. 
Examples are a square grid 10 x 10 or a 
rectangle 5 x 15. We note much work in 
the literature relies on 16 x 16 gricls 
(Gentry et al. 1968, Smith et al. 1971), 
and we suggest that grids shoulcl be at 
least that large for attempts to uxe the 
density estimatioll method based on nest- 
ed subgrids. We base this recolulllenda- 
tion on the fact that a large number of 
captures is required in each subgrid; 
hence, the larger the size of the subgrids 
the better the chance that large nullllers 
of captures will be achieved. 

The next decision to be lllade is the 
spacing of traps (i.e., the value of s). NIost 
work with small luamnlals uses 15-ln trap 
spating or less (Barbehenn 1974, himith 
et al. 1975). The rationale, when one is 
given, relates to the size of holne raIlge. 
Let s be the spacing between traps, and 
let 2W be the average linear holne range 
size. Home ranges Inay rarely be eircular, 
but assuluing for design purposes that 
they luay be circular, then their ra(lius is 
W. We suggest at least 4 traps per holne 
range. This iluplies s S (N/2)W. For lest 
results we suggest s S W/2. Clearly, this 
iInplies some knowledge of holne range 
sizes hefore a goocl stucly ean be (le- 
signed. This is olot unreasonable to ask; 



subgrids will otherwise be too sparse for 
reliable results. We believe that reliable 
density estimates using the subgrid ap- 
proach require a grid of at least a 10 x 10 
and as a minimum 75 to 100 different an- 
imals caught. 

We now consider an approach to de- 
termining a minimum grid area on the 
basis of the above criteria. We start with 
the relationship N= D A(W), where 
A(W) is the effective trapping area. For 
a rectangular grid, this is 

N = D[LrLe + 2(Lr + L)W + qrW21, 
where Lr is the length of a row [Lr= s 
, \ . tr- F anc -c c- s c- J 1S tS ae engt R 

o r r n ot a co, umn ot traps. . i ausy t ae area cov- 
ered by the grid is LrL. 

As mentioned above, without soIne 
knowledge of D and W, a suitable study 
cannot be designed. Assume Df, and Wo 
are the best guesses of the values of the 
paralneters. To determine if a grid study 
is at all feasible, set N - 50, substitute 
D, and WO in the above equation, set Lr 
= Lc - L (a square grid), and solve for L 

L - +/0.8584(Wo)2 + NlDo - 2Wo 
Then the actual area the grid must cover 
is L2. 

This procedure is not difficult; how- 
ever one must be careful to use the same 
basic units for D L, and W. For example, 
let W() be 100 feet (30.5 m) and assulne a 
density of 1 animal per acre (1/0.4 ha). For 
compatibility of units put Do in terms of 
square feet then Do- (1/43,560) feet2. 
Solving for L gives 

L - /(0.8584)(100)2 + (50)(43,560) - 200 
- 10279 feet. 

This translates back into 37.5 acres (15.2 
ha) as an absolute minimuln grid size 
[37.5= (1,279)V43>56()]. 

This is clearly conservative because 
not all animals will be caught. Iluproved 
planning requires us to deterlmine grid 
size so that a given nu1nber of aniluals 
Mt+1 will be caught. But the expected 
number of distinct aniluals caught de- 
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the biologist should have some behavior- 
al knowledge of the species being stud- 
ied so that sampling decisions can be 
Inade intelligently. In fact, in any statis- 
tical sampling problemS a good study can- 
not be planned without soIne prior 
knowledge of the population paralneters 
to be estimated. 

r . . 1 e ana yses presentec v ln t llS mono- 
graph for estiInating population size re- 
quire sufficient nulubers of captures to 
produce satisfactory results. Defining 
"sufficient numbers" is an extrelnely 
complicated task. Based on our experi- 
ence with both real and simulated data, 
however, some crude guidelines may be 
stated. For instance, experiments in 
which Mt+1 is on the order of 10 or 20 
animals siluply do not provide enough 
inforluation for the procedures discussed 
here to perform well. The nllmber of dif- 
ferent aniluals captured needs to be sev- 
eral tilnes larger, and will depend heavi- 
ly Oll the probabilities of capture of the 
population Inenabers being studied. That 
is, a population in which melubers have 
an 'average' capture probability of 0.40 
or 0.50 might only have to be as large as 
50 before the estimation and testing tech- 
niques becolne useful, whereas a popu- 
lation size of 200 or so might require an 
average capture probability of only 0.20. 
For Inost studies, a relatively large num- 
ber of recaptures must be realized before 
the experilnent has a chance to produce 
useful results and this again relates to 
the magnitude of the probabilities of cap- 
ture involved. In general, the probabili- 
ties lnust be larger for stnaller popula- 
tions but in no instance should N be less 
than 25 or average capture probabilities 
less than 0.10 when trapping small luam- 
mals for only a few occasions (say t S 10). 
These recommendations do not guaran- 
tee that the data can be satisfactorily ana- 
lyzedS but we have seen enough real and 
simulated data to say that if the data fail 
these criteria it is iluprobable that a pre- 
cise estiluate will be achieved. 

Estiluation of density by the neste 
subgrid approach requires even larger 
saluple sizes; the data on the smaller 
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pends upon the true underlying capture 
probabilities, which are not known. The 
only practical approach is to luake the 
best guess at the overall average proba- 
bility of first capture, p, applicable during 
the study and then use the formula 

Mt+l = N[1- (1 _ p)t]. 

Because the value of t (nuluber of occa- 
sions) has been introduced, the relevant 
colnputations for several realistic values 
of t can now be performed. 

For example, assulne p = 0.30, set 
Mt+1 = 50, and solve for N for several val- 
ues of t. Given these values of N, solve 
for the value of L, and hence luinimuln 
gric b size: 

Thus, to get reliable results in such a 
study we would say the true population 
density should equal or exceed 21 ani- 
mals/ha. If the biologist has good reason 
to believe true density is only 10 or 12 
animalslha, the study is not even worth 
doing. 

In addition to controlling the salnpling 
effort through the size of the grid and the 
nuluber of traps, the biologist can also 
select the nuluber of trapping occasions. 
In theory, the more trapping times there 
are the better, but this ignores the fact 
that the closure assuluption becolnes less 
realistic as Inore tilne passes. We rec- 
omInend a minimutn of 5 trapping occa- 
sions, but 7 to 10 is better. The interval 
between occasions should be short. In 
practice, most trapping of sluall animals 
is either once a day (Inorning) or twice a 
day (morning and evening). Trapping 
only once a day is far less likely to intro- 
duce tilne variation. With Inorning and 
evening trapping there is very likely to 
be a difference in capture probabilities 
between times. If variation of behavior 
and heterogeneity should also be pre- 
sent, the correct tnodel ends up as Mtbh 

for which no suitable estiluator is avail- 
able. Morning and evening trapping luay, 
however, be aiined at different species. 
Then a workable design would be 5 (or 
7) days of trapping in both morning and 
evening, but with separate analysis of the 

* 1 1 mornlng ancl evening data. 
In removal studies, an absolute mini- 

lnuln is t = 3 occasions (not 2, as is often 
done) because it is impossible to test for 
equal capture probabilities when t= 2. 
We recoznmend that at least 4 reluovals 
be done. 

Another valuable method of testing the 
adequacy of the design before going to 
the field is to simulate the experiment on 
a computer. Approximate parameter val- 
ues can be chosen, and the experiment 
replicated as many times as necessary. 
Among the criteria that can be observed 
are selection of the appropriate model, 
the bias of selected estimators, and the 
achieved confidence level. Obviously, 
the validity of the simulations to the field 

* 

grlc . slze 

in acres 
(ha) 

51.S (20.8) 
43.6 (17.6) 
40.0 (16.2) 

t 

4 
6 
8 

N 
rw 

S7 
53 

L 
1,498 
1,378 
1S323 

In practice, this example means if trap- 
ping were only for 4 days, one would 
need a 16 x 16 grid, traps spaced 100 feet 
(30.5 m) apart. For an 8-day period of 
trapping, the same (expected) data could 
be obtained with a 14 x 14 grid of traps 
spaced lO0 feet (30.5 m) apart. 

This process can be reversed. Let us 
say a study is planned with a square grid 
of 16 traps, spaced 15 m apart (W= 7.5 
m). Then Lr = Lc = 225 m. Substitution in 
the basic equation gives 

N= D 57,552 (In2) 
or 

N= D 5.76 (ha). 
Assume further the study is to last 5 days 
and the average capture probability is 
about p = 0.30. Then we have 

M6= N(0.83). 
We need to get at least 100 animals be- 
cause the smallest subgrid requires 50, so 
the density should be large enough that 
N > 120, or 

D ¢ 120 _ 20.8 animals/ha. 
5.76 
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In recapture studies, each animal 
should be marked uniquely, otherwise 
substantial information may be lost and 
it will be impossible to compute some of 
the tests for sources of variation. Though 
it should be obvious, we do mention that 
it is crucial to correctly record all data 
(e.g., animal number and trap number). 

To know the trap location) traps must 
be numbered uniquely. Moreover, the 
biologist must know the relationship be- 
tween the trap number and its coordinate 
on some (arbitrary) rectangular X-Y co- 
ordinate system. From the standpoint of 
data analysis, the best approach is to 
identify the traps in the field by these X- 
Y coordinates. We strongly recommend 
use of this system and we stress that den- 
sity estimation using program CAPTURE 
requires data to be collected in the con- 
text of a coordinate system. We recom- 
mend that a corner trap be numbered (1, 
1) then the rows become the "X axis>' and 
columns the '<Y axis." For example, a 4 
x 4 grid would look like Fig. 20. This 
system can be extended to cover any reg- 
ular rectangular grid of r rows and c col- 
umns. 

When traps are checked both morning 
and evening, it is necessary to record not 
only the day of capture, but also the time. 

Data recording will be facilitated by 
using standard field forms and standard 
conventions for trap numbering and ani- 
mal identification. One example of a stan- 
dardized method is presented in Brotz- 
man and Giles (1966). 

Data Anomalies 

Various anomalies and unplanned 
events may occur in trapping. For exam- 
ple, (1) several animals may be found in 
1 trap, (2) animals may be found dead in 
traps, (3) released animals may be found 
further down the grid trapped again on 
the same occasion, and (4) a trapped an- 
imal may escape when one attempts to 
remove it from the trap. We Inake the fol- 
lowing suggestions regarding these hap- 
penings: (1) more than 1 animal per trap 
presents no problem. Record each animal 

(4, 1) (4w 2) (4,3) 

FIG. 20. Example of trap numbering for a 4 x 4 
grid with a standard coordinate system. 

study will depend on the similarity of 
parameters selected to the actual param- 
eter values. However, insights about the 
experiment can be gained through sim- 
ulations that cannot be achieved in any 
other way. We note that program CAP- 
TURE has the capability to conduct these 

. * slmu atlon stuc bles. 

Recording Data 
If density is to be estimated on the ba- 

sis of grid trapping data, the minimum 
information that must be taken when a 
capture occurs includes: (1) animal iden- 
tification code, (2) trap location, and (3) 
trapping occasion. Usually, the species, 
sex, and age are also recorded for each 
animal, though for analyses given here it 
has no purpose except to partition the 
data by species, sex, and age. While ana- 
lyzing the data separately by species is 
recommended, there often are not enough 
data to further partition by sex and age of 
animal. 

For true removal studies (e.g., electro- 
fishing), there is no animal identification 
code. As suggested by Raleigh (pers. 
comm.), it is very important in removal 
studies to record the individual by 
species and to analyze the data by at least 

. . . 

a 1 f\t tfX V fAlA f+ 1 fW ffUl 1 YS Ct 
lllC;zlUl tCXAtJll\Jlll1t_ ;1VH 
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separately. This type of data does not in- 
validate the analyses present here; (2) an 
animal dead in the trap in a livetrapping 
study is a more serious problem. If it is 
t ze ast trapping occasion it c Boes not mat- 
ter. Otherwise the data analysis must be 
luodified. Solne of the methods described 
here can allow for known removals in a 
true livetrapping study (specifically 
Models Mo and Mt). Because not all tests 
and estitnators can be so modified, we 
have not dealt here with such modified 
Inodels. We recommend the following: if 
trap deaths are less than 5 percent of total 
captures, remove those data from the to- 
tal results, run the analyses and add that 
number of dead animals to N, and then 
Inultiply the density estimate Dv by (1 + 
proportion dead). If such deaths are luore 
than 20 percent of total captures, use the 
generalized removal method of analysis 
on first captures. For 5-20 percent trap 
deaths, the only safe analysis may be the 
removal Inethod. These modifications 
give N and D relative to the first day of 
the study. If one desires these estimators 
to apply to the population remaining 
alive after the study, then simply delete 
all trap deaths from the data set prior to 
analysis; (3) the same anirnal is caught 
nore than once on a given occasion, the 
only added information provided is on 
movement. We recommend that both 
captures be recorded, but only the results 
of the first capture be used for data anal- 
ysis; and (4) an animal escapes during 
handling before it is tagged, or before the 
mark is read. Do nothing but record the 
o _ tact. Jo not attelnpt any sort of ana ysis 
of this C<record.'' In essence, it does not 
b coln art fth ep o e aa. 

COMPREHENSIVE EXAMPLES 

Preceding sections have given the de- 
tails of the specific Inodels, estimators, 
and tests that are the basis for our anal- 
ysis of capture data. The analysis of a set 
of livetrapping data by these methods 
will involve the Inodel selection proce- 
dure, followed by estimation of N under 
the selected (or most appropriate model); 

OVERALL TEST R£5UlTS -- 
2-VALUE 
f3AB I L I TY w A SMALLER VALX 

- 1 . 08Lt 

. 1 3925 

TEST OF CLOSURE BY FR1DQUE<Y OF CAPT?E. 
lFR£CkUlEKI£5 LESS THAN 10 ARE N0T COWUTED. ) 

ER OF CAPTURE5 SZ-YALU£ PROBAB t L I TY 
________________________________________ 

2 . l > .57306 
3 t}64 . 6786t 
9 X .208 .88650 

FIG. 21a. Example of test procedure for popula- 
tion closure with the Scheme B taxicab data from 

Carothers tl973b). 

density estimation may also be desired. 
Finally, in the course of these analyses 
various summary statistics can be com- 
puted. Below, we given several complete 
examples ofthe entire analysis process of 
livetrapping data for purposes of estiluat- 
ing population size. We do not include 
density estimation for all these exaluples 
because its essential features are always 
the same. Also, no further exaluples are 
given here of the analysis of reluoval data 
because that subject is substantially Silil- 

pler than the analysis of capture-recap- 
ture data. 

* 7 A Taxtcs Example 

Carothers (1973b) conducted an inge- 
nious capture-recapture experilnent on 
the taxicab population of Edinburgh, 
Scotland. Such a study has the advan- 
tages of known population size yet the 
population is a real one (though not in- 
volving aniluals) as opposed to a coln- 
puter simulation experiment. Two differ- 
ent salupling methods were used; we 
have already used Carothers' Scheme A 
in the section on Model Mh to illustrate 
the jackknife estimator (see Fig. 6), the 
entire 10 days of observations ("trap- 
pings") froln Schetne B are used as an 
example here. In that scheme, observers 
had fixed stations in the city. This corre- 
sponds to a trapping study with 10 days 
of trapping at fixed trap locations. The 
true population size was 420, and we can 
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OCCASION JX I 2 3 4 5 6 7 8 9 10 
AN I MALS CAUGHT N 1 J ) m 48 52 47 44 48 45 48 43 47 53 
TOTAL CAUGHT M1J)X 0 48 90 122 146 173 188 203 213 Z25 241 
NEWLY CAUGHT U(J)= 48 42 32 24 27 15 15 10 12 16 
FRENENC I ES F ( J ) - I 04 67 51 12 6 1 0 0 0 0 

I . TEST FOR HIETEROGENE I TY OF TRAPP I NG PROBAB I L I T I ES I N POPULAT I ON . 
NULL HYPOTHES I S OF MOOEL M ( O ) VS . ALTERNATE HYPOTHES I S OF MODEL M ( H ) 

CHI-SQUARE VALUE s 7.913 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE = .09482 

2 . TEST FOR BEHAV I ORAL RESPONSE AF TER I N I T I AL CAPTURE . 
NULL HYPOTHESIS OF MODEL M(O) VS ALTERNATE HYPOTHESIS OF MODEL M(B) 

CHI-SQUARE YALUIE s .095 DEGREES OF FREEDOM s 1 PROBABILITY OF LARGER VALUE = .75743 

3. TEST FOR TIME SP£CIFIC VARIATION IN TRAPPING PROBABILITIES. 
WLL HYPOTKS I S OF MODEL M ( O ) VS . ALTERNATE HYPOTHES I S OF MODEL M l T ) 

CH I _SaJAR£ VALUIE s 2 . 247 DEGREES OF FREED()M = 9 PROBAB I L I TY OF LARGER VALUE = . 98693 

4 GOOONESS OF F I T TEST QF MODEL M ( H ) 
NULL HYPOTHESIS OF MOOEL M{H) VS. ALT£RNATE HYPOTHESIS OF NOT MODEL M(H) 

CH I -SaJARE VALUE s Z . 300 DEGREES OF FREEDOM s 9 PROBAB I L I TY OF LARGER VALUE = . 9857B 

TEST OF MODEL M ( H ) BY FREQUENCY OF CAPTURE 
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED. ) 

NUF8ER OF CAPTURES CH I _SaJARE D . F . PROBAB I L I TY 

1 6.769 9 .66113 
2 6.246 9 .71504 
3 4.714 9 .85847 

5. GONNESS OF F I T TEST OF MODEL M ( B 1 
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B) 

CH I -SQUARE VALUE = a . 957 DEGREES OF FREEDOM = 16 PROBAB I L I TY OF LARGER VALUE = . 91516 

5A . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF F I RST CAPTURE PROBAB I L I TY ACROSS T I ME 

CH I -SQUARE VALUE = 7 . 598 DEGREES OF FREEDOM = 8 PROBAB I L I TY OF LARGER VALUE = . 47369 

58 CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF RECAPTURE PROBAB I L I T I ES ACROSS T I ME 

CH I -SQUARE VALUE = 1 . 359 DEGREES OF FREEDOM = 8 PROBAB I L I TY OF LARGER VALUE = . 99480 

6 . GOOOKSS OF F I T TEST OF MODEL M ( T ) 
WLL HYPOTHES I S OF tlODEL H I T ) VS . ALTERNATE HYPOTHES I S OF NOT MODEL M ( T ) 

CHI-SQUARE VALUE = 188. 341 DEGREES OF FREEDOM = 168 PROBABILITY OF LARGER YALUE = . 13483 

7 . TEST FOR BEHAV I ORAL RESPONSE I N PRESENCE OF HETEROGENE I TY . 
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH) 

CH I -SaJARE VALUE = 1 5.148 DEGREE5 OF FREEDOM = 26 PROBAB I L I TY OF LARGER VALUE = . 95458 

MBEL SELECT I ON CR I TER I A . MOOEL SELECTED HAS MAX I MUM VALUE . 

MODEL M(O) M(H) M(B) MlBtl1 M(T) M(TH) M(TB) M(TBH) 
CR I TER I A . 93 1 . 00 . 37 . 52 0 . 00 . 46 . 36 59 

FIG. 21b. Example of model selection procedure based on Scheme B taxicab data from Carothers 
(1973b). Appropriate model probably is Mh. Suggested estimator is jackknife. 
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NU"8ER OF TRAPP I NG OCCAS I ONS UAS 10 
NUt18ER OF ANIMALS CAPTUREO. M{T+I ), WAS 241 
TOTAL NU"BER OF CAPTURES, N., UAS 475 

FREOUENC I ES OF CAPTURE, F { I ) 
1s 1 2 3 4 5 6 7 a 9 lo 

Ft I t 104 67 51 12 6 1 0 0 0 0 

COPPUTED JACKKN I FE COEFF I C I ENTS 

Nt I ( N(2) N(3} N(4) N(5) 
I I . gO0 2 700 3.400 4 .000 4. 500 
2 1 .000 .289 - .878 -2 .278 -3 .722 
3 1 .000 1 .000 1 .476 2.535 4.042 
4 1 .000 1 .000 1 .000 .743 .077 
5 1.000 1 .000 1 .000 1 .000 1 . 1 03 

lowed by the computed selection criteria 
and a suggested appropriate model. The 
first 3 tests compare Model Mo to Models 
Mh, Mb, and Mt, respectively. From Fig. 
21b results are sumluarized below for 
those 3 tests: 

Chi-squclre Significczzlce 
Test of Moclel value level 
Mo versus Mh 7.913 0.09482 
Mo versus Mb 0.095 0.75740 
Mo versus Mt 2.247 0.98693 
The only indicatioll of variability in cap- 
ture probabilities is heterogeneity (sig- 
nificant at the lOSo level). The study was 
designed to achieve constant nulubers 
capturecl every day; therefore it is not 
surprising there is no indication of tilne 
variability in capture probabilities. Also, 
we do not find it surprising that there is 
no indication, from test 2, of behavioral 
response. One would not expect "trap" 
responses from taxicabs. 

Tests 4, 5, and 6 examine the goodness 
of fit of Models Mh, Mb, and Mt, respec- 
tively. When any of those tests reject, we 
are saying that model does not appear ap- 
propriate for the given study. Test 4 in- 
dicates no departure from Moclel N1 h 

(overall chi-square of 2.3 with 9 df). Nor 
does test 5 reject Model Mb (overall chi- 
square of 8.957 with 16 df). The goodness 
of fit test to Model Mt does not cause us 
to reject Mt, but does luake us suspicious 
of that model (probability of a larger val- 
ue = 0.13483). Finally, test 7 gives us no 
cause to suspect Model Mh should be re- 
jected in favor of Model Mbh (chi-square 
of 16.148 with 27 dfl. 

By itself, none of these 7 tests is defin- 
itive in suggesting the appropriate luod- 
e ; rather it is necessary to consider the 
results of all the tests. In this exaluple we 
see some evidence of heterogeneity, but 
no evidence of time or behavioral varia- 
tions in capture probabilities. Bearing in 
luind the robustness of the jackknife es- 
timator of Model Mh we are willing to 
conclude the appropriate model for these 
data is Mh. The C<model selection crite- 
ria" computed by the program suggests 
Mh as appropriate (with Model Ml, as the 

THE RESULTS OF THE JACKKNIFE CO"PUTATIONS 

I N ( I } SE t I ) . 95 CONF . L I M I T S TE S T OF N ( I * I } YS . N ( I ) 
0 241 CH I -SIZUARE ( I D . F . ) 
1 334 .6 1 3. 34 308 .5 360 . 7 1 3. Ee5 
2 370 e 21.53 328.0 412.4 2.344 
3 389. 1 3 1 . 54 327 . 3 450.9 1 .680 
4 408.6 44.09 322.1 495.0 2.137 
5 433.3 58.67 318.3 548.3 0.000 

AVERAGE P-HAT = .1301 

INTERPOLATED POPULATION ESTIMATE IS 55 UITH STAAM E 20.30?4 

APPROXIMATE 95 ERCENT COSIX<E INTERVAL TO 406 

H 15TOGRAM OF F ( I ) 

FREOuENCr 104 67 51 12 6 1 0 0 0 0 

EACH * EQUAL5 1 I POINTS 

99 . 

88 * 

77 * 

66 * ' 

55 * ' § 

44 * * 
33 * 
22 

I l * * * * . 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

FIG. 21C. Example of population estimation with 
variable probability of capture by animal under 
Model Mh with Scheme B taxicab data from 

Carothers (1973b). 

be reasonably certain of the closure as- 
suluption. 

In this example, the concept of density 
is not applicable, nor is it meaningful to 
identify "trap" locations. Consequently, 
the first page of computer output is the 
test of closure (Fig. 21a). From Fig. 21a, 
we have the overall test value z= 
-1.084. This is not significant, conse- 
quently we would not reject closure. 
There were enough resightings 2, 3, and 
4 times of the same taxicab to allow spe- 
cific tests of closure on just those cabs 
seen that luany times. None of the 3 tests 
are significant. 

The next section of output is the luodel 
selection procedure (Fig. 21b). After the 
headings, some sum1nary statistics are 
presented (daily captures nj, cumulative 
marked Mj, new animals Uj, and capture 
frequencies fj). The rest of the model se- 
lection procedure output (Fig. 21b) is de- 
voted to the 7 tests of assumptions fol- 
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best second choicel. Given these resultsS 
the user should look next at the jackknife 
estimate for these data and should con- 
sider all other estimators as being inap- 

. 

proprlate. 
Fig. 21c gives the results of estima- 

tion of N from Carothers' Scheme B data. 
This page of output will always give the 
summary statistics Mt+l, n., and the cap- 
ture frequencies. Then the jackknife 
coefficients are given for the number of 
trapping occasions used. Next, the results 
of computing the first S jackknife esti- 
mates are shown. For example, Nh= 
334.6 with a standard error of 13.34 
while Nh5 - 433.3, and SE(Nh5) - 58.67. 
In that example, the selected estimate of 
N is 365 with standard error of 20.3. The 
approximate 95 percent confidence inter- 
val on N is 325 to 406. That confidence 
interval fails to cover the true N - 420, 
reflecting the previously discussed poor 
coverage of the confidence intervals as- 
sociated with the jackknife estimator, but 
the relative error of the estimator is only 
13.1 percent (which is consistent with 
our simulation results on Nh). In terms of 
real capture-recapture studies this 

, amount of bias is, in our opinion, accept- 
able. 

Finally we note that jackknife esti- 
mator is better (i.e., nearer to N = 420) for 
Carothers Scheme B data than the com- 
tnonly used estimators as Petersen (1896) 
or Schnabel (1938). 

As a further aid in judging the validity 
of t ze study, the estimated average cap- 
ture probability is given. From Fig. 21e, 
AVERAGE P-HAT = 0.1301. Our studies 
have indicated that a value of less than 
0.10 suggests the capture results may not 
De trusted to produce good results. A 0.13 
average probability is not very high, but 
it is acceptable when the true population 
size is as high as 420. 

A Penned Rabbit Study 

Edwards and Eberhardt (1967) report- 
ed the results of a livetrapping study on 
a penned population of 135 wild cotton- 
tails Sylvilagusfloridanus. To our knowl- 

OERALL TEST ZSWT5 -- 
Z- VALtJE 
PROBAB I L I TY OF A SHALLER VALW 

-2. 132 
.01650 

TEST OF CLRE BY FRE<Y OF CAPT. 
(FR£NCIES LESS THAN 10 ARE NOt COMPUTED. ) 

Wt1B£R OF CAPTURES Z-VALl"JE PWBAB I L I TY 
____________________________________ ___ 

2 3 .69 1 . 99989 
FIG. 22a. Example of test for population closure 
procedure with cottontail data from Edwards and 

Eberhardt (1967). 

edge there have been few other con- 
trolled studies like that done, which is 
unfortunate because it would be very 
valuable to have more data sets on real 
populations where N is known. 

It that study, 135 wild cottontails were 
captured and placed in a 40-acre (16.2 ha) 
rabbit-proof enclosure. After allowing 4 
days for the rabbits to adjust to their new 
surroundings, livetrapping was conduct- 
ed for 18 consecutive nights. When pro- 
gram CAPTURE was used to analyze the 
resultant data, the results were disap- 
pointing 

Fig. 22a shows the results of the clo- 
sure test applied to Edwards and Eber- 
hardt's (1967) data. Because z=-2.132 
(P= 0.0165) one would normally ques- 
tion whether closure was true. In that ex- 
ample, we attribute the result to a time 
variation in daily capture probabilities, 
specifically there were fewer captures to- 
ward the end of the 18 days than at the 
start. As mentioned before, this 4'closure 
test" can detect only certain types of time 
variations of individual capture probabil- 
ities. It cannot of itself '<knowi7 the cause 
of the variations. Therefore, all the evi- 
dence in the data or otherwise available 
must be used to reach final conclusions 
a Dout c. osure, or about other questions 
such as the presence of behavioral re- 
sponse (which also gets confounded with 
closure). 

A brief data summary and the tests of 
assumptions are given by the model se- 
ection procedure (see Fig. 22b). From 

tests 1 25 and 3, we see that Model Mo is 
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(3CCASI Js l 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 
AN{>LS cSGHr N(J)s 9 8 9 14 8 5 18 11 4 3 16 5 2 7 9 0 4 10 
TOTK CAT M ( J ) - Q 9 15 18 29 33 34 44 51 52 53 62 62 63 68 74 74 74 76 
ffiLY CAT U ( J ) w 9 6 3 11 4 1 1 0 7 1 1 9 0 1 5 6 0 0 2 
FRE:QtJENC I ES F ( J ) s 4 3 16 8 6 0 2 1 0 0 o 0 0 0 0 0 0 0 0 

I . TEST FOR HETERO(3EFE I TY Of TRAPP I NG A8 I L I T I ES I N POPWAT 1 N . 
KLL HT<SIS w L M(O} YS. ALTEATE HYPOT<SIS w ML MSH) 

CH I -fi4lJ YALUE w I 1 I 1 0 XBREES 8f FREEDtBtl w 3 PR(:IBAB 1 L I Tr w LARBER YALK x . 01 1 15 

2. TEST FW KEY 1 wK KtiDONS£ AFTER I N 1 T 1 AL OWT . 
NlLL HYMTHE515 OF P100EL MfO1 VSt KTETE HY T<SIS w ML M(B1 

CH I -54UARE VALUE s . 062 X9EES 4B FREEDI:t1 w I M%AB I L I TY w LARBER VALW s . 80367 

3. TEST F0R TIME SPE:CIFIC YARIATIN IN TRIK ILITIES. 
NtLL HYPOTEESIS OF t"ODEL M(O1 VS . ALTERNATE HYPOTHESIS OF M9OIEL Ml T 1 

CH I -SaJARE VALUE w 96. 9 XES y FZE w 17 PR%AB 1 L I rY y LARGER VALW s . 00012 

s . ESS w F I T tEST OF MbEL " I H ) 
NILL APOTHESIS OF HODEL H(H) VS. ALTErE HTHESIS OF KT ML M(H) 

CHI-SU VALUE w 55.502 DEGREES OF FZE " 17 4IL I TY OF LARXR VALW - .00001 

TEST OF FlOOlEL MlHl BY FREKY OF CWTWE 
IFREaJEt<:IES LE55 tHAN 2T A*E NOT CALCUAtED.l 

NUwBER X CAPTURES O11 -5;au D . F . f>Rt8AEl I L I TY 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

I w .023 17 . C0002 

5. (iOOOKSS CF F I T TEST 1:F L M ( 51 
NULL HYPOTHESIS 9F MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(S) 

CH I -At VALW X 102. 913 DE9EES OF FREEDOM w 31 PROOAB I L I TY w LARGER VALUE s 0 . 00000 

5A . CONTR l WT 1 w TEST w < I Tr OF F I RST CAPTWE PRZAB I L I TY ACROSS T I z 

CH I -SQIJAK YALW ' 7 . 065 X9EES w FKEDt w 15 PR%AB I L I TY w LARGER VALUE - * 00004 

5B . Ct:3NTR I OUT I ON OF JEST OF HOt£NE I TY OF RECAPT PRWAC I L I T I ES ACROSS T 1 S 

CHI-SQUARE VALW w 55.-9 X(3REES w FREEDOM w 16 WOBABILITY w LARGER VALUE w .00000 

6 . (il MOONESS OF F I T TEST OF M()OEL M f r ) 
NULL HTHESIS w L M(T} VS. KTErE HYWTHESIS X KT EL MIT1 

EXPECTED VAL<S TW SMLL. TEST KT KRFO 

7 . TEST FOR BEHAV I ORAiL RESPONSE I N PRESENt:E w F£TEROGENE t TY . 

NULL HTHES I S (lf MO4EL ( H 1 VS . ALTETE HT<S I S w L M l > ) 

CHI-EiaJ YALW w 9.023 X9EES w RREEWH w 17 PROBA8tLlTY w LARGER VALW w 00002 

tSOOEL SELECT I ON CR I TER 1 A . L WLECTED HAS MX 1 vALV . 

HODEL M(Q) H(H) HIB) M{>) MtT} MfTH) HxT8) H8T - 
CRITERIA 15 O.00 .N .Ol 1.00 .64 .22 .M 

FIG. 22b. Excllllple of model selection pr()cedure based on cottolltail datcl S0111 Edwclrcls cllel Elerharelt 
(1967). Appropriate model probably is XIt. Suggestecl estilllatr is Darr)ch. 

not acceptable moreover, the tests show (tests 3 and 1). Although test 2 fails to 
that there is clearly time variation in av- suggest that Model Mb is better than 
erage daily capture probabilities and that Model M,, we cannotS from that alone, 
there probably is some heterogeneity conclude there are no behavioral re- 



FREQUENCY 9 8 9 1 4 8 5 1 8 11 4 3 1 6 5 2 7 9 0 4 1 0 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

EACH * EaJ^LS Z PO I NTS 

18 - 
16 * * 

14 * * * 

lZ { . . * 

10 * * * v * * * * 

8 * * * * v . . . . * * 

6 * * * * * * * * v * * . * 

4 * * * * * * * * * * * * * * * * 

Z * v * * * * * § * * * * * * . § § 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

FIG. 22C. ExaIliple of population estimation with time specifie changes in probability of capture 
under Model Mt with cottontail data from Edwards and Eberhardt (1967). 
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(:)CCASI 1' 1 2 3 4 S 6 7 8 9 10 1 1 12 13 14 15 16 17 18 

ANIS CAT N(J)- 9 8 9 1W 8 5 18 11 4 3 16 5 Z 7 9 0 4 10 

TOTAL AN I MAL5 CAPTD 76 

P-HAT { J ) - . 12 . I I . 12 . 18 ^ I I . 07 . 24 ffi 19 . 05 . 04 .21 . 07 . 03 . 09 . 12 0 . 00 . 05 . 13 

POPULAT T U EST I >TE I S 76 W I TH STAZARD E 
.0165 

77 OX I MTE 9fi PERCENT CONF I CEKE I NTERVAL 7S TO 

HISTF w N(J) 

sponses In fact, test 7 (p = 0.00002) 
shows that there are time variations in 
capture probabilities which may be be- 
havioral. 

Only 2 of the goodness of fit tests (4 
and 5) could be computed. The goodness 
of fit to NIodel Mt could not be done be- 
cause of the small numbers of individuals 
caught most days. The other 2 tests, how- 
ever, resulted in rejection, indicating that 
neither Model Mh nor Mb is a satisfactory 
model for the data. 

When the goodness of St test cannot be 
computed for Model Mt, the model selec- 
tion criteria are computed based on the 
assumption that test 6 would give a sig- 
nificance level of 0.50. This tends to give 
undue weight to Model Mt, but there is 
really no good solution to this problem. 
For Edwards and Eberhardt's data, Mt is 
the indicated best fitting model, with 
Model Mth the next best. This is consis- 
tent with the observation that capture 
probabilities do appear affected by both 
time and heterogeneity. 

The estimation of N based on Model 
Mt is given in Fig. 22c. The point esti- 

mate of population is 76 which is the 
same as the number of distinct animals 
captured (i.e., M19= 76). As further evi- 
dence for determining whether Nt is a re- 
liable estimate (and model), one should 
compute the overall average capture 
probability: 

. _ 

n. 
tN 

1 1 1 1 1 1 , 1 

For Eawarcls ana EDernarat s aata: 

P (18)(76) 
The advantage of using this formula in- 
stead of 

t 

P - E Pj /(t) 
i=l 

is that we know the true population size 
is greater than or equal to 76. Thus we 
know this value of p is an upper bound 
on the true expected value of p, and hence 
average capture probability is less than or 
equal to 0.10. This should raise a red 

- 

f ag to t ze investigator average capture 
probability may well be less than 0.10, 
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FIG. 23a. Example of anilnal by animal sulnmary of deer mouse eapture data from V. Reid (pers. comm.). 

in which case this analysis is not trust- 
worthy when (apparent) population size 
is around 100. 

In fact if we use the true value of N - 
135, then average capture probability in 
this experiment was 0.056. We also point 
out that even after 18 days of trapping 
only 53 percent of the population had 
been captured. This example illustrates 
our contention that it is very important to 
have average capture probabilities well 
above O.OS or 0.10 for the population 
sizes typically encountered in capture- 
recapture studies (50 to 150). Consider- 
ing that N - 135 and the population was 
penned we suggest that the '4true'' situ- 
ation was as follows. There was signifi- 
cant tiIne variation and heterogeneity but 
little real behavioral response. The av- 
erage daily capture probabilities de- 
clined in the last 9 (of the 18) days and 
this caused rejection of both the closure 
test and test 7. No good estiluator of pop- 
ulation size is available for data of this 
type and quality. 

An Example of Trap Response 

Many data sets we have seen on Pero- 
myscus 1naniculatus have fit Model /Ib 

(trap response). The following is an ex- 
ample supplied by V. Reid (pers. 
comm.). The data were taken in a 6-day 
livetrapping study near Wet Swizer 
Creek, Rio Blanco County Colorado, Au- 
gust 1975. A rectangular grid of 9 x 11 
traps was used with 50-foot (15.2-m) trap 
spacirlg. One Sherluan live trap (for sInall 
mammals) was placed at each grid point 
and trapping was done twice daily (morn- 
ing and night) we have used only Inorn- 
ing captures for this example. The reader 
should study Figs. 23a-e which give 
the basic results, before proceeding. 

A summary of luovernent information 
from recaptures is given in Fig. 23a. We 
reluind the reader these distances are in 
units of 1 trap spacing [i.e., 50 feet (15.2 

r n . 1 m rere . . . zus t ile mean maxlmum diS- 
tance of 2.23 implies the average maxi- 
muln movement was 111.5 feet (34 m). 
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OCCAS I ON J= 1 2 3 4 5 6 
AN I MALS CAUGHT N t J ) - 16 29 27 29 32 38 
TOTAL CAUGHT M ( J ) w 0 16 31 3B 44 48 51 
NEWLY CACHT U(J) w 16 15 7 6 4 3 
FREQUENCIES F(J)s 9 9 10 8 8 7 

1 TEST FOR HETERNE I TY OF TRAPP I NG PROBAB I L I T I ES I N POPULAT I ON . 
WLL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS 9F MODEL MtH) 

CH I -SOIJARE VALUE w 37 . 489 DEGREES OF FREEDOM s 4 PROBAB I L I TY OF LARGER VALUE = . 00000 

2 TEST FOR BEHAV I ORAL RESE AFTER I N I T I AL CAPTWE . 
Nl)LL HYPOTHESIS OF MOOEL M(O) VS ALTERNATE HYPOTHESIS OF MODEL M(B) 

CH I -SaJARE VALUE X 24 . 342 DEGREES OF FREEDOM w I PROBA8 I L I TY OF LARBER VALUE = . 00000 

3. TEST FW TIXE SPECIFIC VARIATION IN TRA ING ABILITIES. 
NULL HYPOTHESIS OF MOOEL M10) YS. ALTERMTE HYPOTHESIS OF MODEL M(T) 

CH I -SWSE VALUE s 24 . 773 DE9EES OF FREEDOM w 5 PROBAB I L I TY OF LARGER VALUE = . 00015 

4. ZOONESS OF f IT TEST OF MOOEL M(H) 
NULL HYPOTKS I S OF MOOEL M ( H ) VS . ALTERNATE HYPOTHES I S OF NOT M(3DEL M ( H 1 

CHI-SOUAffE VALUE - 25.225 DEGREES OF FREEDOM w 5 PROBASILITY OF LARGER VALUE = .00013 

5. GOOOKSS OF F I T TEST OF MODEL M ( B ) 
NJLL HYPOTHESIS OF EL M(B) YS. ALTERNATE HYPOTKSIS w NOT M%EL M{8) 

CHI-SaJARE VALUE s 5.978 DEGREES OF FREEDOM = 8 PROBABILITY OF LARGER VALUE = .6468 

5A . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF F I RST CAPTURE PROBAS I L I TY ACROSS T I ME 

CHI -SaJE VALUE = 1.135 DEGREES OF FREEDOM = It PROBAB I L I TY OF LARGER VALUE = . 88866 

5B . CONTR I BUT I ON OF TEST OF HOM%ENE I TY OF RECAPTURE PROBAB I L I T I ES ACROSS T I ME 

SH I -SQUARE VALUE s 4 . 843 DEGREES OF FREEDOM = q PROBAB I L I TY OF LARGER YALUE = . 30379 

6 . GXONESS OF F I T TEST OF HOOEL M ( T ) 

NJLL HYPOTHES I S OF MOOEL M ( T ) YS . ALTERNATE HYPOTHES I S OF NOT MODEL M ( T ) 

EXPECTED VALUES TOO SMALL. TEST NOT PERFO - ED. 

7 . TEST FOR B£HAV I ORAL RESSE I N PRESENCE OF HE TEROGENE I TY . 

WLL HYPOTHESIS OF HOOEL H(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH) 

CHI-SaJA*E VALUE s 22.217 DEGREES OF FREEDOM s 7 PROBABILITY OF LARGER YALUE = .00233 

HOD£L SELECTION CRITERIA. EL SELECTED HAS MAXIMUM VALUE. 

HOOEL HIO1 H(H) H{B) H(BH) M(T) M(TH) M(T8) M(TBH) 

CRITERIA 26 .17 1.00 .65 0.00 .28 .55 .27 

FIG. 23b. Example of model selection procedure based on deer mouse data from V. Reid (pers. comm.). 
Appropriate model probably is Mb. Suggested estimator is Zippin. 

One estimate of W (strip width) is pro- ing 106 feet, 32.3 m, here). Either ap- 
duced by taking half this average maxi- proach probably would be an iluprove- 
mum distance (56 feet, 17 m, here), or ment over using W- 0, but these are 
half of it plus one intertrap distance (giv- essentially ad hoc approaches. 
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MATRIX w CAPTUR£5 P£R TRAP STAT ION. OCCASION J- 1 2 3 4 5 6 

TOTAL CAUCHT H(J)- 0 16 31 38 94 98 51 

NEZY CAUGHT U(J)- 16 15 7 6 4 3 

ESTI>TED PRA3ABILITY OF CAPTURE, P-HAT X 3191 19 

EST l MATED PROBAB I L I TY w RECAPTURE, C-HAT - . 67766 
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FIG. 23C. Example of population estimation with 
constant probability removal estimator under Mod- 
el Mh with deer mouse data from V. Reid (pers. 

comln.}. 

In this example, the test for closure 
gave z = - 1.586 (P = 0.05633). But be- 
cause the closure test is known to be 
biased when there is trap response, in the 
final analysis we conclude Model Mb ad- 
equately fits the data and closure is ac- 
ceptable. A second bit of evidence on clo- 
sure is given by the "ring" test (see Fig. 
23e). That test examines for any apparent 
attraction of animals by the grid; it is not 
significant in this example, indicating 
that there is no basis to think immigration 
occurred. 

From the model selection results (Fig. 
23b) we find that tests 1, 2, and 3 all re- 
ject. This typically happens when there 
is strong trap response. Tests 4, 5, and 6 
examine the goodness of fit of the 3 
Models (]!w/th, ]!w/tb, and lut, respectively). 
We see that Model Mh does not fit, but 
Model Nlb does fit the data adequately. 
Unfortunately, the goodness of fit of Mt 

is the luost difficult test to colupute and 
with the small numbers of animals caught 
it could not be reliably computed. 

Test 7 examines for possible behavior- 
al variations in capture probabilities al- 
lowing for any heterogeneity which may 
be present (Fig. 23b). That test strongly 
suggests some forln of behavioral re- 
sponse is present. 

FIG. 23d. lNested subgrids used in the dellsity 
estimation procedure with deer mouse data frolll V. 
Reid (pers. colllm.). In the Inatrix, trap coordiIlates 
are rounded to the nearest whole illteger. II) the 
following goodlless of fit tests, trap coorclillates 
that are not integers and 1lonreetangular trappillg 

grids will eause spurious restllts 

The suggested model is Mb, and the 
corresponding estilnator of population 
size is, essentially, the Zippin reluoval 
estimator. (We have used the maximum 
likelihood estimator of N under the Zip- 
pin removal Inodel. Recall that this dif- 
fers slightly froln the estiluator usually 
computed.) Fig. 23c shows the esti- 
mate of population size under Model 
Mb to be N = 56, with a standard error of 
4.3. The approximate 95 percent confi- 
dence interval on N is 51 to 65. Note that 
the prograln does not truncate the coln- 
puted lower liluit of 47 back to 51 (the 
nuluber actually seen), but this could be 
done in reporting the results. The prob- 
ability of initial capture is p = 0.32 and 
the probability of recapture is c= 0.68. 
These are significantly different because 
Model Mo was rejected in favor of Model 
Mb. This sort of dramatic increase in cap- 
ture probability after initial capture is en- 
tirely consistent with the properties of 
the data, for example, the observed in- 
crease over tilne in the nj's (daily nuln- 
bers captured). 

The area covered by the trapping grid 
was 4.59 acres (1.86 ha); the naive esti- 
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FIG. 23e. Chi-square tests of uniforln density with deer Illouse data from V. Reid (pers. comlll.). 

luate of density is thus 12.2 mice/acre 
(30.71ha). Because of edge effect we 
know this is an overestimate. As dis- 
cussed above,s movement data from re- 
captures is one basis for estimating the 
strip width W to get an estimate of effec- 
tive trapping area. A conceptually better 
approach is to estimate W based on trap- 
ping grids of different sizes. Figs. 23e-f 
give results relevant to this approach 
for Reidis Wet Swizer Creek data. Four 
nested subgrids were chosen (as shown 
in Fig. 23d) as the basis of this procedure 
from the number of captures per trap sta- 
tion there is no apparent evidence of a 
nonuniform density over the grid. Figure 
23e gives some logical tests of this uni- 
iorm density assumption. HoweverS our 
experience with the tests is that they 
often reject when there isS in fact, no real 
density gradient (i.e.> systematic changes 
in density over the grid). Thus even 
though there may be some variation in 
density by '4rows>> it is minor. Also the 

choice of subgrids as shown tends to Inin- 
imize the problem. 

For each subgrid an estimate of the 
population at risk of capture on that 
subgrid was obtained using Model Mb. 
As explained in the density estimation 
section, we can then estimate W. The re- 
sults are shown in Fig. 23f. The 4 naive 
densities are shown with the necessary 
computed constants (based on grid sizes), 
and the initial covariance matrix of the 
naive densitites. 

The value of W is 105 with a (typically 
large) standard error of 58. NonethelessS 
this value of W is significantly greater 
than zerog so we accept as our density 
estimate D - 5.54 animalslacre (13.7/ha), 
(SE(D)-1.92). 

When this subgrid approach to esti- 
mation of D fails one must use 

D = NIA(W) 

A(W) = Ag[l + aW + bW2]> 
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STARTItIG YAL<5 FOR DENSITY ESTIMATION-- 
NUR OF GR I DS 4 
TRAP I NTERYAL 50 . 00 
UtJIT5 CObIVER51ON 43560?00 

INITIAL DENSITY ESJIMATE 30.6995 
INITIAL STRIP WIDTH E5tIMATE .5228 

GR I D NA I VE XN5 I TY PER l K TER / AREA P I / A*EA 5 T AR T I :NG COV AR I ANCE MATR I X 
I Y( 11 A( I ) Bt I ) 

t 32.67000 .3000000E-01 * 1571E-03 150. 
2 61.71000 .1666667E-01 .5236£-04 507. .152£+05 
3 17.qA00 .1 I?E-O1 ?261K-04 7.74 232. 14.1 
W 12.10 .9000OOOE-02 .:i571E-09 1 * 16 34+7 2.11 .871 

KiLT5 OF I TERAT I 
FlJKT I9J EVALUAT 10N5 KWIKD 87 
E5T1MTED SI;IFiCANT D:IGIJ5 6 PbRAKT£R VALW5 8 

F I TTED MOD£L CN"PARED TO THE DATA 
GRIDX I ) YX I ) F 1 1 ) 

1 38*6tO 32.651 
2 61.710 18.460 
3 17.424t 13.941 
4 12.197 11.745 

MU T I PLE CELAT I 0b1 C6F I C I ENT I 5 . 337 I B 

EST I MATED DEN5 I TYs S . 538 1 . 9241 w I TS STANDARD Ef?ROR 
ESTIMATED STRIP WIOTH- 105*2^ 57.w03 w ITS STAZAW ERRW 
CORRELAT I ON w E5T I STORS - . } 

TEST w EST I MATED 5TR I P W 1 DTH GR£ATER STHAN ZERO . 
Z-VA:LUE = 1 . 8145 PMBAB I L I TY OF LAR VALUE w . 034B 

F I NAL COYAR 1 ANCE MATR I X 

150 0 
91B.6 . :1521E+O5 
18.80 311.4 14. lO 
3+359 55.6Z Z.518 .87I4 

FIG. 23f: Exalnple of jOillt estimation of density alld boundary strip width with deer III()EISU data fr(: 
V. Reid (pers. colnm.). 

whereAgis the gridarea,Wderives from 55.75 (half the average luaximum dis- 
either movelnent data or an independent tance of 111.5) we get 
source and a and b are constants which A(W) = 4.59 x 1.5506 = 7.117 
can be computed. In fact, the program 
prints these constants on the density es- and hence 
tiluation page. Frozn Fig. 23f, we have 56 
(for the total gricl)> a= 0.009 and b= 7117 
0.00001571. 

As an illustration only, if we use W= (For previously given reasons, however, 
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OCCAS I 4N Jw 1 2 3 4 5 
AN I MALS CAUGHT N ( J ) s 37 5W 58 65 69 
TOTAL CAUGHT MtJ)s 0 37 68 77 98 1 10 
NEWLY CARHT U(J)s 37 31 9 21 12 
FREQUENCIES F(J)s 34 20 28 15 13 

I . TEST FOR HIETEROGENE I TY OF TRAPP I bK; PROBAB I L I T I ES I N POPULAT I ON . 
NULL HYPOTHES I S OF MODEL M ( O ) YS . ALTERNATE HYPOTHES I S OF MODEL M t H ) 

CHI-SQUAR£ VALUE = 49.016 DEGR£ES OF FREEDOM s 3 PROBABILITY OF LARGER VALUE = 0.00D00 

2. TEST FOR BEHAVIWAL REE AFTER INITIAL CAPTURE. 
NULL HYPOTHESIS OF KOiEL M(O) VS. ALTERNATE HYPOTHESIS OF MOOEL M(B) 

CHI-SaJARE VALUE a 35.B65 DEZEES OF FREEDOM - I PROBABILITY OF LARGER VALUE = 0.00000 

3 . TEST FOR T I ME SPEC I F I C VAR I AT I ON I N TRAPP I NG PROBAB I L I T I ES . 
FaLL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T) 

CHI-SQUARE VALUE - 24.071 DEES 4F FR:EENM - 4 PROBASILITY OF LARGER VALUE = .00008 

4 . GOOONESS OF F I T TEST 4F MaBEL M ( H ) 
NULL HYP()THES I S OF MODEL M 1 H ) YS . AL T£RNATE HYPOTHES I S OF NOT MXEL M ( H ) 

CHI-SQUARE VALUE w 25.504 DEGRE£5 OF FR£EDOM s 4 PRO8ABILITY OF LARGER VALUE = .00004 

TEST OF MODEL M t H ) 8Y FREWENCY OF CAPTWE 
(FREaJENCIES LESS THAN 2T RE NOT CALCULAT£D. ) 

NUMBER 4F CAPTURES CH I -SQUARE D . F . PROf3A8 I L I TY 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1 18.647 4 .0009Z 
Z 18.333 4 .00106 
3 6. 048 4 . I 9562 
4 6.000 4 .19915 

5 . NESS OF F I T T£5T OF MODEL M ( B ) 
NVLL HYPOTHES I S OF MODEL M z B ) VS . ALTERNATE HYPOTHES I S OF N9T SDEL M ( B ) 

CH I -SGIUARE VALUE s 1 3 . 51 0 DEGREES OF FREEDOM s 6 PROBAB I L I TY OF LARGER VALU£ = . 0 3562 

5A . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF F I RST CAPTURE PROBAB I L I TY ACROSS T I ME 

CH I -SQUARE YALU"E X 9 . 220 DEGR£ES OF FREEDOM - 3 PROBAB I L I TY OF LARGER VALUE = . 02650 

5B . CONTR I BUT I ON OF TEST OF HOMOGENE I TY OF RECAPTURE PROBAB I L I T I ES ACROSS T I ME 

CH I -SOUARE VALUE w 4 .289 DEGREES OF FR£EDOM w 3 PROBAS I L I TY OF LARGER VALUE = . 23187 

6. ESS OF F I T TEST OF EL M ( T 3 
NlLL HYPOTHE5 I S OF MODEL M ( T ) VS . ALTERNATE HYPOTHES I S OF NOT MODEL M ( T ) 

CH I -SaJARE VALUE - 84 .12 1 DEGREES OF FREEDOM w 66 PROBAB I L I TY OF LARGER VALUE = . 0656Z 

7 . TEST FOR BEHAV I ORAL RESE I N PRES,EKE OF HETER%EK I TY . 
NULL HYPOTHESIS OF MOOEL MIH) YS. ALTERNATE HYPOTH"ESIS OF MODEL M(BH) 

CHI -SaJAR£ VALUE - 47 . 1 DE9EES w FRE£NM w 10 PROBAB I L I TY OF LARGER VALUE = . 00000 

MOOEL SELECT I ON CR I TER I A . MXEL SELECTED HAS MAX I MUM VALUE . 

MOOEL M(O) M1H) M(B) M(BH) M(T) M(TH) MSTB) M(TBH) 
CRITERIA .55 .q2 . .6 0.00 .55 .8B 1.00 
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we suspect that W= 55.75 is an under- 
estimate and suggest W = 105 is a better 
value to use.) 

The sampling variance of D is comput- 
able by the formula given in the density 
estimation section. The only missing 
terln is Var(W) which is obtained froln 
the standard error of Inean maximum dis- 
tance (Fig. 23a) 

Var(W) = ( 50 0 575 ) = 206 64 

Then using the forlnula for Var(D) we get 
Var(D) = 0.98, or SE(D) = 0.99. 

An Example Where No LModel Fits 

In previous examples, the luodel selec- 
tion procedure usually indicated a model 
that fit the data, and for which there was 
an estimator. However, with lmany real 
data sets we have found that no luodel 
fits the data. In those cases, the proce- 
dures given in this monograph serve to 
warn that no reliable estimator can be 
computed from the data (unless it can be 
judged the entire population has been 
caught). 

In this example (Figs. 24a-e), we use 
livetrapping data collected by S. Hoff- 
man (pers. comm.) in mid-July 1974 on 
deer mice. The study site was in a sage- 
brush-greasewood comlnunity at 4,500 
feet (1,372 m) elevation in Curlew Val- 
ley, Idaho. A 12 x 12 grid of Sherman 
live traps, spaced 15 m apart, was used. 
Trapping was on 5 consecutive mornings, 
110 individuals were caught (i.e., Mt+l = 
110) and there were 283 captures in all. 

Fig. 24a shows some summary sta- 
tistics and the Inodel selection procedure 
results. The daily captures increased (37, 
54, 58, 65, 69)> and although the new cap- 
tures tended to decrease, they variecl 
substantially (37, 31, 9, 21, 12). Froln 
these summary statistics, we would judge 
a substantial part of the catchable popu- 

OCCAS I ON Ja I Z 3 4 5 
TOTAL CAUGHT M(J) s 0 37 68 77 98 t 10 
NERLY CAUGHT U(J)- 37 31 9 21 12 

EST I MATEO PR08AB I L I TY OF CAPTURE, P-HAT t . 255222 

EST I MATED PR08AB I L I TY OF RECAPTURE, C-HAT - . 617857 

POF^JLAT I ON EST I MATE I S 142 W I TH STANDARD ERROR l 6 . 4Z 17 

APPROX I FTE 95 PERCENT CONF I DENCE I NTERVALS I 09 TO 175 

H I STOGRA11 OF U ( J ) 

FREaJENcY 37 31 9 Z I I Z 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

EACH * EWALS 4 PO I NTS 

36 v 
32 * v 
Z8 * 
2q * - 
ZO * + 
16 ^ * 
12 * * 
8 * * 
4 * * 

FIG. 24b. Example of population estirnation with 
constant probability removal estimator under Mod- 
el Mb with deer IllOUSt data frolll S. Hoffman (pers. 

comm.). 

lation remains untrapped. Phrased differ- 
ently, there is no evidence here to sug- 
gest Mt+1 is a reliable estimate of N. 

From Fig. 24a, it can be seen that tests 
1, 2, and 3 reject Model NIO overwhelln- 
ingly. We thus conclude there is some 
type of variability in capture probabili- 
ties, and are suspicious that Inore than 
one source is operating. Test 4 also re- 
jects the null hypothesis that Model Mh 

fits. At this point we can be fairly certaill 
there is solne form of tilne variability in 
daily capture probabilities, but it may be 
the often encountered result of behavior- 
al variability. 

The goodness of fit test to Model ,, 
indicates that this Inodel is not a goocl fit 
to the data (P = 0.03562). Test 6 also sug- 
gests Model Mt is not an adequate fit to 
the data. Test 7 again confirlus that solne 
form of behavioral response is present so 
that Model Mh is inadequate. This leaves 
us uncertain as to how time and behavior 
variability are operating. Tests 5a and 5b 

FIG. 24a. Exalnple of model selection procedure based on deer mouse data from S. Hoffillan (pers. 
coIllm.). Appropriate model probably is Mtbh or Mh. Suggested estimator is Zippin. 
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MATR I X OF CAPTURES PER TRAP STAT I ON . 

COLUMNS 1 2 3 4 5 6 7 8 9 10 11 12 

_ _ _ _ _ _ _ 
_ _ _ _ _ _ 

_ 

+ 

__ 
_______________________________________ 

4 3 5 5 5 3 2 0 3 4 3 1 

ROW 

ROW 

ROI*I 

ROR 

RO;J 

ROW 

l I 
I 
2 I 
l 
3 1 
l 
I 
I 

5 1 
I 

6 1 
I 

7 1 
ROW I 

2 0 2 

1 3 

5 5 0 4 1 0 4 3 0 1 3 0 

4 2 0 3 1 0 2 2 1 3 3 1 

1 5 3 4 1 0 2 5 Z 4 2 3 

O 1 4 3 0 1 3 0 0 1 5 2 

3 5 0 1 1 0 3 2 0 0 q 5 

O O l 3 
2 

4 1 4 2 0 0 1 0 0 3 2 0 

1 2 4 2 4 0 0 2 4 4 2 4 

2 0 5 2 0 0 1 0 2 4 4 

8 1 
l 

9 l 
I 

l0 1 
I 

11 l 
l 

RV 

RO>J 

RO;J 

ROW 

12 1 
ROW 

O O O 0 3 4 2 2 2 

4 4 3 0 2 0 0 0 1 4 4 2 

I N THE ABOVE MATR I X, TRAP CO()RO I NATES ARE ROUNOED TO THE NEAREST OLE I NTEGER . 

I 

N THE FOLLOiJ I NG GOOOFESS Of F I T TESTS, TRAP COORD I NAT£S THAT ARE NOT I NTEGER5 

AND NON-RECTALAR 
TR I NG GR I DS W I LL CAUK SPUR I OUS KSULTS . 

CHI-SQUARE TEST OF UNIF DENSITY SY RINGS (tTER RlK IS ER 1 ) . 

3 
4 5 

6 

4 
7.861 RI^JG 

OBSE:RVED 
EXECTED 
CH I -AK 

107 

86, 472 

4.873 

2 

76 
70.750 
.390 

53 
55. 028 
.075 

32 
39.306 
1 . 358 

1 1 

23.583 
6.714 1 .B96 

TOTAL CH I -SQUARE s 15 31 W I TH 5 DEGREES OF FREEDOM . PROBAB I L I TY OF LARGER VALUL z . 0091 

FIG. 24C. Chi-square tests of vIniform density with deer mouse daLta from S. HoSman (pers. comln.). 

The model selection criteria are a sig- 

help to clarify matters somewhat. Test 5a 

is the goodness of fit test to Zippin's 

(1956) constant probability removal mod- 

el, i.e., the null hypothesis here is that 

first capture probability is constant. Test 

5b exalmines the null hypothesis that re- 

capture probabilities are constant. This 

latter test has P = 0.23187 suggesting that 

recapture probabilities may well be con- 

stant over time. By contrast with Test 5a 

(P = 0.02650) we conclude that first cap- 

ture probabilities probably vary. These 7 

tests suggest that behavior is the strong- 

est factor affecting capture probabilities 

and that tilne is the next most significant 

factor. 

nificant aid to interpreting data. In this 

example, the criteria values for models 

Mb, Mbh, Mtb, and Mtbh are 0.99, 0.89, 

0.88, and 1.00, respectively. Recall that 

the luost likely model is always given a 

value of 1, and the other criteria values 

are scaled accordingly, hence, we cannot 

say Model Mtbh actually fits the data. It is 

significant that these 4 models all account 

for behavioral response, thus corroborat- 

ing our contention that there is a strong 

behavioral variation in capture probabil- 

ities. Because Nlodel Mb is the next most 

likely model, one might select it as the 

basis for estimation. But there can be no 
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OVERALL TEST RE:SULTS -- 
Z -VALW 
PF?0f3AB I L I TY OF A SMALLER YALUE 

SU1s1ARY BY FREQUENCY OF CAPTURE OF MAX I MUM D I STANCE 8ETWEEN CAPTURE PO I NTS . 

NUMBER SAMPLE MEAN OF STANDARD 
CAPTURES S l ZE MAX D I ST . ERROR 

-Z. 142 
, O l 6 1 0 

2 20 
3 28 
q 15 
5 13 

TOTAL 76 

I .W6 
2.93 
2.26 
2 .# 
2. 1 4 

.279 

.410 

. 388 

.338 

.W01 

TEST OF CL95 BY FREX31JENCY 9F CAPTUR£. 
tFREaINCIES LES5 THAN 10 ARE NOT CUT£D. ) 

NR w CAPTS Z-YALW PR%AB I L I TY 
________________________________________ 

FIG. 24d. Sumlnary by frequency of capture of 
InSililUIll (listance between eapture points. 

2 

3 
- I . I 18 

-1 .708 
-I .05W 

.13178 

.04383 

. 1959 
strong reliance on Nb or any other esti- 
mator here, because none of the models 
fit the data. From Fig. 24b, the first cap- 
ture probability (p) and the recapture 
probability under Model Mb are estiluat- 
ed to be 

p = 0.26 and c = 0.62. 
These are known to be significantly dif- 
ferent because test 2 rejected Model Mb. 
From Model Mb the estimate of N is Nb = 
142, with an estimated standard error of 
16.4. The approxiluate 95 percent confi- 
dence interval is 109-175. Other alter- 
natives are also basically unsatisfactory. 
Nlodel Mbh could be considered but it 
does not fit the data for any of its specific 
cases. This may be because first capture 
probabilities vary over tilne. Model Mh 
does not fit, and there are strong indica- 
tions that behavior is the dominant source 
of variation. Based on these factors, we 
cannot recomlnend a valid estiluation 
procedure for these data. 

If density estimation is desired here, 
further problems arise. Froln Fig. 24c, 
there is no visual evidence of nonuniforln 
density over the 12 x 12 grid. However, 
the ring test suggests significantly more 
aniluals were caught in the outer traps, 
which could be evidence of the grid "at- 
tracting" animals. This phenozuenon 
does affect density estimation based on 
nested subgrids; in fact, this procedure 
failed for these data as the estiluated W 
value was not significantly different from 
zero. The only recourse is to estiluate W 
from movelnent data, or to use a value of 
W known to be representative for deer 
lnice. 

Fig. 24d shows the sulumary of max- 
imum distances moved for recaptured an- 
imals. The overall average is 2.14 trap 

FIG. 24e. Exalllple (f test fEar poplllati>ll cl)sure 
procedtlre with deer mouse (lata iolll S. Hoffilla 

(persi. t0lilln.). 

units. Converting this to sneters (2.14 x 
15) and dividing by 2 we have 16 ln 
(52.7 feet) as a conservative estimate of 
W. This is typical of such values seen for 
deer luice on livetrapping grids with 15-n 
trap spacing. It is also known to be an un- 
derestimate. Using W = 16 m would give 
a less biased density estimate than W = 0, 
but it would still probably result in an 
overestimate of ID. The matter is further 
complicated if animals were in fact at- 
tracted to the grid. This phenomenon 
cannot be adequately dealt with, except 
by assessment lines (or designing a study 
so that no attraction occurs). Dropping 
the outer ring of traps and reanalyzing 
the data is another possibility, but then 
we are treating this outer ring as an as- 
sessment line. 

Norlually, we should have looked at 
the closure test early on in the model as- 
sessment procedure (see Fig. 24e); the 
results are z= -2.142, P = 0.0161. Be- 
cause there is strong behavioral variation, 
we must discount this test; it cannot be 
relied upon. Thus, the only evidence we 
have of a closure failure is the ring test 
of Fig. 24c. 

We propose the following as a plausi- 
ble explanation of these data. From Hoff- 
man (pers. colum.) we know there was no 
prebaiting of these traps, no time was al- 
lowed for the animals to become used to 
the traps. From the analysis we know 
there was behavioral response, and prob- 
ably time variation in first capture prob- 
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abilities (but not in recapture probabili- 
Tr . . r tzes . ae - ac c ot pre Da1t1ng otten 

recommended in the literature) may have 
resulted in animals either increasing 
their first capture probabilities over time 
as the study progressed, or in an influx 
occurring during (rather than before) the 
study started. Prebaiting may solve the 
first problem. It will not solve the second 
problem of the grid attracting animals 
and thereby creating artificially high den- 

. . . 

slnes. 

COMPREHENSIVE COMPUTER 
ALGORITHM 

The computations necessary to calcu- 
late luany of the estimates described in 
the preceding pages are quite lengthy, 
and in most cases, nearly ilupossible 

. n n 

Wlt out a computer. . aeretore, to pro- 
vide methods of population estimation 
useful to the biologist, a comprehensive 
FORTRAN computer program, CAP- 
TURE, has been written. The input to 
the program has been written in a *ee- 
forln and natural style to make it easy to 
use. 

The program is written in ANSI FOR- 
TRAN IV with several small exceptions 
so that it will function on most brands of 
digital computers. Statements known to 
cause compilation errors on IBM, CDC, 
Burroughs, Univac, Xerox, Honeywell, or 
DEC equip1nent have been flagged with 
comment statements, and the correct 
statelnent for the specific brand of com- 
puter included on a comment statelnent. 
A lmagnetic tape with the FORTRAN 
code and the 13 sets of example data il- 
lustrated in this luonograph are available 
from 

SHARE Program Library Agency 
P. O. Box 12076 
Research Triangle Park, N.C. 27709 

at a cost of $40.00. Specifications for the 
tape (e.g., 7 or 9 track, 800 or 1,600 bpi, 
etc.) should be given when ordering the 
source program (No. 360D-17.5.002). 

The program consists of a main routine 

and 54 subroutines. In addition, there are 
7 common blocks. Included in the source 
code are ample comlLnent statelnents to 
follow program flow. The total code con- 
sists of about 6,000 cards. Core require- 
lnents on an IBM 360 are about 200 K for 
the code without an overlay structure, 
but this can be reduced considerably 
with an overlay structure. 

The dilnensions of the program are 
presently set to allow up to 2,000 indi- 
vidual animals and 31 trapping occasions. 
The product of the number of captured 
animals and the number of trapping occa- 
sions must be less than 4,000. This will 
allow, for example, 30 trapping occasions 
and 80 aniinals, or 120 animals and 20 
trapping occasions. These values can be 
changed by changing DIMENSIO1!; 
statements in the program. 

S UMMARY 

The results of this study provide meth- 
ods for the estimation of animal popula- 
tion size N and density D frolm capture 
experiments. Both capture-recapture and 
reInoval studies to estimate population 
size are treated in detail. The primary fo- 
cus of the work has been to relax the as- 
suluption of equal probability of capture. 
Three basic types of variation in proba- 
bilities of capture were examined: (1) 
capture probabilities vary with tilne, 
Model Mt, (2) capture probabilities vary 
by behavioral response, Model lMb, and 
(3) capture probabilities vary by individ- 
ual animal, Model Mh. Models allowing 
these assumptions and various colubina- 
tions of assumptions (i.e., Models lutb, 

Mth, Mbh, and Mtbh) are treated. Popula- 
tion closure is assumed throughout. 

An integrated approach was followed 
and the result is a hlend of practical 
lnethods, examples of the analysis of real 
data, statistical theory, and results of 
computer silnulation studies revealing 
sozue small sample properties of the 
1nethods. The estiluation and testing 
probleIn has been treated in a standard 
and usually rigorous statistical fraIne- 
work. Above all, the necessity of assump- 
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tionsn their importance and statistical 
tests of their reasonableness have been 
emphasized. Assumptions lnust be care- 
fully evaluated, both biologically and sta- 
tistically, before a particular estimator 
can be used justifiably. 

A sequence of 8 models that incorpo- 
rate various assuluptions has been devel- 
oped. Point and interval estimators have 
been derived for most of the lmodels. Fur- 
therluore a coluprehensive and objective 
(but not optisnal) model selection strate- 
gy is provided. This is crucial because 
use of an incorrect luodel and iluproper 
assuluptions is apt to produce biased es- 
tiluates and incorrect inferences. In ad- 
dition, proper interpretatiors of the test 
statistics and their interrelationships is 
shown to be somesvhat difficult. 

Although the practical analysis of data 
froln capture experiments has been ex- 
tendedn additional research needs are ap- 
parent. Statistical testing within and be- 
tween lmodels will require luore work. 
NIodels alloving other sets of assump- 
tions need to be developed. Alternative 
estiluation schemes (e.g., the generalized 
jackknife as opposed to the standard max- 
imuln likelihood approach) need atten- 
tion, particularly for solne of the luore 
coznplex luodels. Additional work with 
incomplete contingencY tables mav prove 
fruitful (see Fienberg 1972) Interval es- 
timates in general, and particularly inter- 
val estilalates for the removal models re- 
quire additiorlal research. Better tests for 
the iluportallt closure assumption are 
needed. Additiorwal controlled studies are 
needed where population size is known, 
such as that reporteci by Edwards and 
Eberhardt ( 1967). Behavioral studies 
aimed at specific animal-trap interac- 
tions prolllise to provide interestillg in- 
sights. 

Research results indicate that accept- 
able estiIllates can le obtained if ade- 
quate data are collected properly. How- 
ever it is clear that biologists have not 
correctly conceptualized capture experi- 
ments over the past 4 clecades. These 
lilmitations must be corrected if progress 
is expected in biological experilllents in- 

volving capture of animals. Biologists 
have all too often gone into the field with 
only a few traps hoping to obtain mean- 
ingful data. Rarely will this be possible7 
even if only an estiluate of population 
size is the goal. If density estimatiorl is 
a goal, then filrther data requirelllents 
nust be met. 

As a reference point? it probably is ap- 
E)ropriate to think in terlus of 12 x 12) 
16 x 16, or 2() x 20 square or rectangular 
grids and a trapping period of 8-9 days. 
Further guidelines on effort and sample 
size are given irl the text. Our priluary 
contention is that Inost capture experi- 
ments conducted in the past were quite 
inadequate in terlus of design, elifort, and 
saluple size, which virtually prohibits 
justifiable il[ferences to be drawn fro 
such studies. 

Our computer simulation experilnents 
have examined the sluall sample prop- 
erties of the various point arsd iIlterval 
estilnators and the tests of model assump- 
tions. The results have been inforlnative 
and provide solne basis for cautious op- 
timisln. Capture-recapture and reInoval 
met lods zave been overrated in the past 
and this probably has contributed to the 
lack of emphasis on design, sample size 
and analytical methods. Estilmation prob- 
lems related to D and N represent diffi- 
cult subjects. Our results provide hope 
that a rigorous analysis may vften allow 
useful inferences to be drarn if future 
experilllents are well (lesigneci and pro- 
vide adequate capture and recapture or 
removal data for analysis. 
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APPENDIX A 

Notes on Estimation 

Justification for the Use of Maximum Likelihood Estimation 

Our philosophy throughout this work has been to present a variety of 
explicit mathematical models for capture data based upon fully specified 
assumptions. Given these models that incorporate various types of variability 
in capture probabilities (time, behavior, and heterogeneity), we are con- 
cerned with optimal estimation of population size, N, under each model. 
To achieve that optimality, we turn to the field of mathematical statistics. 

A number of very general approaches to optimal statistical inference have 
been developed during the past 50 years. We feel that not all of them are 
suitable for use by biologists for the problem at hand (e.g., decision theoretic, 
or Bayesian approaches would require inputs from the biologist that we doubt 
they would be willing, or able, to supply). We have chosen to use the method 
of luaximum likelihood (ML) estimation and inference; it is one of the best 
developed, omnibus tools of mathematical statistics. 

The properties of ML estimation are well known (see Mood et al. 1974). 
For many practical models, ML estimators are optimal in many desirable 
ways. Because of its general applicability and good properties, ML estimation 
has been the basis for most modern methods of estimating parameters from 
animal marking experiments of all kinds (Seber 1973). 

The only requirement for application of ML estimation is that one have 
a well-defined parametric model with fewer parameters than the dimension 
of the vector of minimal sufficient statistics. Thus, we have been able to use 
ML estimation for Models Mo Mt, Mb, Mbh, and the removal models, but 
not for Model Mh. Only for Model Mh do we hesitate to claim there cannot 
be significant improvements in the estimator. 

It is not necessary to understand the mechanics of how a ML estimate is 
computed; it suffices to understand this is not an ad hoc technique, but 
rather a well-developed inference method. 

For any of the models dealt with here, there is a sampling probability 
distribution for the basic data (the {Xij}) that can be represented as a 
mathematical function of appropriate parameters; symbolically it is 

p{xij | N,p}, 

for N ¢ Mt+1, and with p representing a set of capture probability parameters 
(e.g., p = (p,c) under Model Mb). Given an actual sample, we can substitute 
these data for the Xj variables and treat this formula as strictly a function 
of the parameters N and p. This function (of N,p) is called the likelihood 
function. The ML estimators N and p are those values of N and p which 
maximize the function 

L(N,p) = P{Xij | N,p} 

or, equivalently, which maximize the log of L(N,p). In this way, the probleln 
of deriving parameter estimators is reduced to the classic problem of 
maxiluizing a given function over a set of possible values of specified 
variables. 
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The theory of ML estimation goes much deeper than just deriving point 
estimators of parameters. It also gives methods for deriving approximate 
sampling variances for the estimator and provides justification for the usual 
procedure for confidence interval construction. Also, there is a strong tie be- 
tween ML theory and the theory of minimal sufficient statistics. 

A sufficient statistic is a condensation of the sample into a smaller number 
of statistics that still contain all the information there is about N and p. For 
example, Mt+1 and n. are the minimal sufficient statistics for N and p under 
Model Mo (representing quite a condensation of the entire sample of Xij 
values). The ML estimator is always a function of the sufficient statistic, 
even if one has not explicitly determined the sufficient statistic. Partly be- 
cause ML estimators are functions of the sufficient statistic, they have, for 
large samples, the smallest possible sampling variances in the class of con- 
sistent estimators. Stated differently, ML estimators are (asymptotically) the 
most efficient estimators possible under a sampling theory approach to 
inference. For all the above reasons, we have used likelihood theory as the 
main basis of estimation in this monograph. 

Numerical Methods 
Except for the special case of only 2 Brapping occasions (t= 2), the ML 

estimators described in the preceding chapters do not have explicit mathe- 
matical expressions. Hence numerical methods must be used to maximize 
the likelihood functions and thereby find the population estimates on a case by 
case basis. Conceptually this turns out to be easy for models to which we 
can apply ML estimation. From above, the likelihood function is repre- 
sentable simply as L(Np). In all applicable cases (exclude Model Mh and 
models where estimation is not possible), we find there is a closed form 
expression for the value of the capture probabilities which maximize the 
function L(N,p) for anyfixed N ¢ NIt+l Represent this as p(N). Thus we can 
write 

max max L(N,p) = max L(p(N) | N) 
N p N 

= max A(N), 
N 

where A(N) is a function (analytically expressible) only of N. The maximiza- 
tion of A(N) over N must be done numerically, but this is a simple one- 
dimensional search. 

An algorithm by Brent (1973) (also see Fletcher 1972) that does not require 
analytic derivatives is used by program CAPTURE to maximize A(N). The 
algorithm searches between 2 end points. Those end points are first taken 
as the number of animals captured, Mt+l, for the lower bound and a linear 
approximation to N plus Mt+1 for the upper bound. If the upper bound is 
determined to be the maximum for the range specified, a new set of values 
Iying next to the old values is selected and the search over N continues in 
this fashion until a true maximum is found. The algorithm searches along the 
real line although only integer values are appropriate. Because the search 
is one dimensional, the algorithm is very efficient. 

The algorithm does not require the analytic first derivatives of A(N). This 
means it is not necessary to evaluate the derivative of the log-gamma function 
with respect to N(N! and (N - Mt+l)! appear in all the likelihood functions). 
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Integer N and Confidence Bounds 
The domain of N includes only integer values. Therefore, the integer 

that produces a maximum in the likelihood function is taken as the estimate. 
The numerical search is conducted along the real number line; then the 
value returned is truncated to an integer, and a check is made to see that 
it is the estimate, and not N + 1. A somewhat arbitrary rounding to the 
nearest whole integer is required for the jackknife estimator to maintain 
consistency wit R t ze ot zer estimators. 

For all estimators, the variance is computed on the basis of the value of 
N before it is rounded to an integer. We believe this procedure produces a 
slightly better estimator of Var(N), and at the same time avoids numerical 
problems that would occur when N equals Mt+1 (this situation does occur). 

Confidence intervals of 95 percent are computed as N + 1.96 gE(N). Con- 
fidence intervals (but not standard errors) are computed around the integer 
value of N. The lower bound is then truncated to an integer and the upper 
bound rounded upward to an integer. Those interval end points are thus 
technically outside the true 95 percent confidence interval. When the lower 
bound is less than the number of animals captured, the value could be reset 
to Mt+1, a realistic procedure because we know that N is not less than Mt+1. 
The coverage of the interval is not changed by this procedure of using Mt+l for 
the lower bound when the calculated lower bound is less than Mt+1. 

Admittedly, a confidence interval procedure that can yield a lower bound 
less than the number of distinct animals captured (Mt+1) is not desirable. 
We investigated alternatives that avoid this problem, but we judged them 
even less appropriate than the simple approach described above (see Ap- 
pendix O). 

Estimation of Sampling Variance 
Maximum likelihood theory includes a general method for obtaining the 

large sample (i.e., asymptotic) formula for the true sampling variance of N. 
We have denoted this simply as Var(N), thus suppressing the fact that it 
is an approximation to the "true' sampling variance of N. The approximation 
is generally good for large samples; unfortunately, in the capture-recapture 
context we - rave no good measure of when a sample is sufficiently large. A 
further complication enters because the formula for Var(N) is almost always 
a function of the unknown parameters N and p; symbolically it is generally 
of the form 

Var(N) = Ng(p), 
with the form of the function g known. But because N and p are not known 
we must estimate Alar(N) y 

Var(N)= Ng(p) 
The properties of Var(N) can be different (sometimes quite so) from those 

of Var(N), which itself is only an approximation to the appropriate finite 
sampling variance of N. One particular problem that has been noted in the 
literature concerns the fact that N and gE(N) = war(N) - lNg(p) can be 
substantially correlated. This is not surprising, because, of course, N and /S 
are highly correlated. The effect of this correlation is to cause an under- 
estimate of SE(N) when N is lower than the true N (which it will be much 
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of the time). This, in turn, causes the confidence intervals in such cases to 
be shorter than they should be. An area suitable for further research on 
capture-recapture statistics (both closed and open models) is the question 
of improved estimation of sampling variances and confidence intervals. 

APPENDIX B 

Estimation in Model Mo 

In Model Mo parameterized by the parameters N and p, the relevant part 
of the log-likelihood function is given by 

( (N - Mt+1) ! ) + (n.)ln(p) + (tN - n VInX 1 - ) 

where pe[OSl] and NeX= {Mt+l, Mt+1 + 1, Mt+1 + 2S...}. Given the value 
of N, the ML estimator p(N) of p is given as the solution to 

,98 lnL(p | N,X) = O, 

which reduces to 
n. _ tN-n. 

p(N) 1- p(N) 
This results in the solution 

p(N)= nX 

Now, the ML estimator No of N satisfies 

lnL(Nop(No) | X) = mNa[ma[O InL(p | N,X)] 

= NevY plnL(p(N) | N,X) 1 

NevS Lln ((N - M ) s ) + (n. )ln(n.) 

+ (tN - n.)ln(tN - n.) - tNln(tN)] 

For a given data set, a search over X is performed to locate the ML esti- 
mate No This value is then used in the calculation of the 1NIL estimate 
p(No) - p via 

n. 
P = ^ 

tNo 

The asymptotic variance of NO is (cf. Darroch 1959) 

Var(NO) = N[(1 _ p)-t - t(l - p)-1 + t- 1]-1. 

An estimate of this variance is 

Var(NO) = No[(l - p)-t_ t(l _ p)-l + t l]-l. 
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APPENDIX C 

Estimation in Model Mt 

Model Mt is parameterized by the t + 1 parameters N, P1, P2, . , Pt. The 
relevant log-likelihood function for estimation of the parameters is given by 

InL(N>P I X) = ln ( (N - Mt+1)! ) JE1 

+ E (N - nj)ln( 1 - pj), 
3=1 

where NeX = {Mt+t Mt+1 + 1, Mt+l + 2, }, P = {P1> Ps * ,Pt}7 pieLO,llfor 
j = l, 2, . . ., t. Given the value of N the ML estimators pi(N) of PJ are given 
as the solutions to the system of equations 

,98 lnL(p|NSX) - 0 j- 1s27...,t. 

The jth one of these equations reduces to 
nJ _ N - nj 

pj(N) 1 - pj(N)' 
which results in the solution 

pj(N)- n3 

Now, the ML estimator Nt of N satisfies 
L(N ̂  (N ) ^ (N ) X) _ max rmax InL(pr 1 P2, . . ,Pt | N,X) 

t>P1 t,**,Pt tl -e*NLpje[0ll 

- Ne.hz [InL(p(N)?p2(N) * * *,Pt(N) | N,X)] 

NeX [ ((N - M )!)+ E niln(ni) 

+ (N-n)ln(N-nJ) 
j-l 

- tNln(N)J. 

A search over X is performed in order to locate the ML estimator Nt. It is 
then possible to calculate the ML estimates Pj(St) - Pi ofthe pj forj = 1r2, . . .t 
via 

^ ni 
Pj = Wv 

The asymptotic variance of st iS given by Darroch (1958) as: 

Var(St)-N t 1 + t-1 _ z (l _ p 
Il(1-P;) j=l 

-i-1 
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An estimate of this variance is 
- 1 t --1 

Var(Nt) = Nt t 1 + t-1-E (1 _ pj)- 
Il(l-pj) i=l 

-i=l 

APPENDIX D 

Estitnation in .\lodel lVb 

Model Mb iS ?arameterized by the parameters N,p, and c. The part of the 
log-likelihood necessary for estimation of the parameters is given by 

((N - Mt+l)!) + Mt+lln(p) + (tN - N1 - M )1 (1 

+m.ln(c) + (M. - m.)ln(1 - c), 
where NeX = {Mt+ln Mt+1 + 1, Mt+l + 2, . . .}, pe[O,l], ce[O,l]. The ML estilua- 
tor c of c is produced by the equation 

ad lnL(N,p,c | X) = O, 

which reduces to 
m. _ M. - m. 

A A 

C 1-C 

Solving this equation gives c = m./M.. Thus, we see that estimation of c is 
independent of the estiInation of N and p. Now, the relevant part of the log- 
likelihood function for purposes of estimating N and p is 

rPI ) In((N - NIt+l)! ) + Mt+tln(p) + (tN - M. - 5Flt+l)ln(l _ p) 
Given the value of NS the ML estimator p(N) of p is provided by the equation 

30 InL(p | N,X) = O, 

which reduces to 
Mt+1 = tN - M. - Mt+ 
p(N) 1- p(N) 

The solution to this equation gives 

P( ) tN- M. 

Now, the ML estimator Nb of N satisfies 

( b,P( b) IX) ,NTev&^[pe[0,l] ] 

= NmaXX,[lnL(p(N)|N,X)] 
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Nd[ ((N- Mt+l)t) + Mt+1ln(Mt+l) 
+ (tN - M. - Mt+1)ln(tN - Me - Mt+1) 

(tN - M.)ln(tN - M )] 

A search over X is preformed to locate the ML estimate Nb. It is then possible 
to calculate the ML estimate p(N) = p of p via 

^_ Mt+1 
. )- ^ 
. ' tNb-M. 

The asymptotic variance of Nb is given by Zippin (1956) as: 

Var(Nb) = [1 _ ((1 _ ))t]2_ t2p2(1 _ p)t-l' 

An estimate of this variance is given by 
Var(N ) = Nb(l - p)t[1 - (1 - p)S 

b [ 1 - ( 1 - p)t]2 _ tSp2 ( 1 - p) 

APPENDIX E 

Estimation in Model Mh 

The mathematical details of Model Mh are covered in detail in Burnham 
(unpublished dissertation) and Burnham and Overton (pers. comm.). The 
following gives a few of the basic results for this model and the jackknife 
estimator. 

Under Model Mh we assume 
PiJ = Pi i-1S...7N7 

and we further assume that the Pl ..PN are a random sample from some 
(unknown) probability distribution F(p) pe[O,l]. For any F(p)> the MSS con- 
tains only the capture frequencies fi...,ft, and their distribution is 
multinomial: 

] (N - Mt+lS fi, . . .>ft ) H 

where 

7rj = j (] )pjXl -- p)t-idF(p) j - O, . . .>t. 

If one assumes a parameteric form for F(p), then standard approaches are 
possible (e.g., ML). Burnham (unpublished dissertation) investigated the case 
where F(p) is the class of beta distributions and found that approach basically 
unacceptable. 

The <'jackknife'> estimator used here was developed by application of the 
generalized jackknife statistic (Gray and Schucany 1972) to the naive esti^ 
mator Mt+ly assuming the bias of Mt+ as an estimator of N is expressible 
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TABLE E.1. THE JACKKNIFE ESTIMATORS Nhk OF POPULATION SIZE, FOR K = 1 TO 5 

Nhl = Mt+l + ( t )fl 

Nh2= Mt+l- ( t )fl- (t(t- )) f2 

3t - 6 Vf _ (3t ( 15 1) )f2 + t(t - l)(t - 2) 

( t ) ( t(t 1) ) ( t(t l)(t 2) ) t(t l)(t 2;(t 3) 

h5 Mt+l + ( t )fi- ( lOt ( 70t > 125)f2 + (lOt3-120t2 + 485t-660)f. 

_ t (t- 4)5 - (t- 5)5 j (t - 5)5 f 
\ t(t - l)(t - 2)(t - 3) y 4 t(t - l)(t - 2)(t - 3)(t - 4) 5 

in a power series in l/t. The end result of that application is that for the kth 
order jackknife the estimator is a linear function of the capture frequencies. 
For example, we have 

Nh1 = Mt+1 + ( t )f1-(1 + t )f1 + E fi 

These point estimators of N have been determined for up to the fifth order, 
and are given in Table E.1. 

Because 

Mt+1 = E fj, 
i=l 

any Nhk is expressible as a linear combination of the capture frequencies, 
say as 

Nhk E ajkfj 

i=l 

Using the fact that the fj are multinomial random variables an approximate 
variance estimator of Nhk is 

Var( N hk) = E ( aJk) fj N hk, 
i=l 

and confidence intervals can be constructed on the basis of the asymptotic 
normality of Nhk 

A procedure for selecting one of the estimators has been suggested by 
Burnham and Overton (pers. comm.). It involves testing whether Nhk+1 is 
significantly different from Nhk and stopping when no significant difference 
is found. 
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APPENDIX F 

Discussion of Model Mtb 

The most general model one might assume in the instance where both 
behavioral response to capture and variability among trapping occasions are 
found involves the following set of parameters: 

N - population size 
pj = probability of capture on trapping occasion j of an animal not pre- 

viously captured, j = 12 . . . t 
C*kj = pro a ility of capture on trapping occasion j of an animal first captured 

onoccasionk,j=k+ l,k+2,...,t;k- l,...,t- 1. 
The corresponding probability distribution of {Xfi,} is given by 

P[{Xfi,}] - [ [I pjU,(l - pj)N-Mj+l] 

[llXfi, ! ] (N - Mt+l) ! i=1 

t-l t 

. Il [| c kjRk( 1 - C*kj)Uk-E; S 
k=l j=k+l 

where 
u; = number of animals first caught on occasion j, j = 1,2, . . .,t, 

Mj = number of marked (previously captured) animals in the population at 
the time of the jth sample, j = 2,3, . . .,t, 

Mt+1 = total number of different animals captured in the experiment 
(notice Mt+l - E uj), 

j=l 

Rkj-number of animals caught on occasion j that were first captured on 
occasion k, j = k + 1, k + 2, . . ., t; k = 1, . . ., t - 1. 

A MSS for this distribution is {Ul, U2, * * *, Ut, R12, R13, * * *, Rlt, R23, * , R2t, * *, 
Rt+lst}, that has dimension t(t+ 1)/2. There are t(t+ 1)/2 + 1 parameters 
involved and straightforward ML estimation of 19 is not possible. 

If we restrict the model so that c*kj = Cj, i.e., the probability of recapture 
on occasion j does not depend on the occasion of first capture, then NIodel 
Mtb (as previously defined) results. It is easily verified that, when C*kj= c;, 
P[{XX,,}] given above reduces to the probability distribution given in the sec- 
tion concerning Model Mtb where a discussion of the nonidentifiability of N 
is presented. Thus, for purposes of estimating N, the assumption that C*kj = 
c; has no utility. 

ML estimation of N is theoretically possible if one is willing to further 
restrict the model so that there is some relationship between C*j and pj. There 
is no unique restriction, and as an example we consider C*j = Opj, j = 2, 3, . . ., t, 
where Ospjs 1, j = 1, 2, ..., t and 0S; Apjs 1, j-2, 3, ...> t. With this as- 
sumption, the probability distribution of {X<,} becomes 

llX<>, ! ( N-M t+ l) ! [Ill Pi ( 1-p jV n-Mj+t ] 
0 

* [I1 ( opj) m;( 1 - opj) Mj-mj] 
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= Ilk!(N M )! plUl(l-pl)N-U(m) 
co 

* I1 ( 1 _ pj) N Mj+ ( 1 - op j) M;-mj p n 
i=2 

A sufficient statistic for this distribution is {u1,u2, . . .,ut,m2,m3, . . .,mt}, that has 
dimension 2t - 1. Since there are t+ 2 parameters involved, the model 
allows all parameters, in particular N, to be identified if t ¢ 3. Estimation 
under this model is not considered here, however, due to the questionable 
assumption that recapture probabilities bear a constant relationship to initial 
capture probabilities over all trapping occasions, for all animals. Thus, at 
present we are not able to present an estimator of N that is appropriate 
under the assumptions of Model Mtb. 

APPENDIX G 

Discussion of Model Mth 

In the section concerned with Model Mh, the random variable Xij was stated 
to be distributed according to a Bernoulli distribution with parameter Pij, 
that represents the probability that the ith animal is captured on the jth OC- 

casion. Here, we assume that the elements of the set {Xij} constitute a 
mutually independent collection of random variables, and that Pii = PiPi, 
i= 1,2,...,N, j- 1,2,...,t. Furthermore, we let the Pi, i= 1,2,...,N be a 
random sample of size N from some probability distribution function F(p;o) 
defined on [0, 1], and we restrict the pj, j = 1 2, . . ., t so that 0 S PiPi S 1 for all 
i,j. Under those conditions, the probability distribution of the observed 
sample {Xij}, where i = 1, 2, . . ., Mt+1, j = 1 2, . . ., t can be written as 

P[{Xij}] = P[{Xij} | Mt+l]P[Mt+l], 

where 

P[{Xij} 6 Mt+l] = (l| pjni) ( [I; l o PYi [t| ( 1-ppj)l-X,j] dF(p;(J)), 

Yi = the number of times the ith animal is captured, 
P[Mt+1] = the probability distribution of the number of different animals 

captured in the experiment. This distribution will involve the 
parameters N, P1,P2, . . .,Pt, and the distribution F(p;o). 

Obviously, if the form of F(p;o) is left unspecified, ML estimation of N will 
not be possible. If the form of F(p;(1) is specified, but the vector of parameters 
o is not, likelihood estimation will be possible if the dimension ofthe minimal 
sufficient statistic is sufficiently large to ensure identifiability of N. As 
mentioned in the section on Model Mth, estimation of N will be possible 
if F(p;o) is completely specified. In that case, a MSS of dimension t + 1 
is {nl,n2, . . .,nt,Mt+l}, and the number of parameters to be estimated is also 
t + 1, i.e., Pl,P2, . . .,Pt,N. Therefore, unless the experimenter is willing to 
make the doubtful assumption that at least the form of F(p;o) is known, we 
can present no satisfactory estimation procedure appropriate under the 
assumptions of Model Mth 
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APPENDIX H 

Estimation in Model Mbh 

Pollock (unpublished dissertation) considered Model Mbh and found the 
distribution of the set of possible capture histories {Xfi,} under the assumption 
that (pi,ci), which represents the pair of initial and recapture probabilities, 
respectively, of the ith animal, is the ith member of a random sample of size 
N from some bivariate distribution function G(p,c,@). Let us consider 
rewriting the distribution P[{X} |G(PEC;o)] as P[{ul,u2, . . .,ut} |G(P>C;0)] 
P[{Xfi,} |{ul,u2, . . .,ut}, G(p,c;8)]. The distribution of the removals P[{u,, 
u2,...,utElG(p,c;o)] will be multinomial, with parameter N and cell prob- 
abilities that are functions of the moments of G(p,c;o). The conditional dis- 
tribution P[{XXO}I{ul, u2, . . ., ut}, G(p, c; @)] will also depend orl the moments 
of G(p,c;o) but not on the parameter N. Therefore, the multinomial dis- 
tribution 

P[{Ul,U2, * * *,Ut} |6(p,c;8)] = t N! (Hri ')(Tt+l) , 

[n uj!] (N - Mt+l)! j I 

where rj is a function of the moments of G(p,c;o) and 

Xt+l - 1 - E rj 
i=l 

is the relevant distribution for purposes of estimating N. Pollock (unpub- 
lished dissertation) showed that if G(p,c;0) - Gl(p;01) G2(c;82), then 7rj - E[p 
(1 _ p)j-l] and the conditional distribution P[{X,,,} | {ul,u2, . . .,ut}, C(p,c;o)] de- 
pends only upon G(c;82). Regardless of whether p and c are independent, once 
we agree to base estimation of N solely on the first capture "removal" type 
of data, then the problem can be reformulated. The behavioral response is 
then irrelevant and all we need to consider is the probability distribution 
of first captures. That is, we assume that P1, . *,PN are a random sample from 
some distribution G1(p;o). 

Consider transforming the parameters 71,X2 ,Vt into the set of parameters 
P1, P2, , Pt by using the relationship 7rj - (1 - pl)(l - p2)...(1 - Pi-l)Pi, 

j = 1, 2, . . ., t. Thus, pj is a conditional probability that represents the average 
first capture probability of those members of the population that have not 
yet been captured at the time of the jth trapping occasion. Given this inter- 
pretation, it is not unreasonable to assume that P1 > P2 > > Pt. Further- 
more, we assume that (P1 - P2) > (P2 - P3) > > (Pt-1 - Pt), so that larger 
differences in average first capture probability occur initially. (Note: if G1(p;o) 
is the class of beta distributions both assumptions are easily shown to be true.) 
The assumptions and the distribution P[{ul,u2, . . .,Ut} |G(PEC;Ø)] which we 
abbreviate P[u1,u2, . . .,ut], form the basis of the generalized removal method 
outlined below. 

Fork- 12 t-2 

_ , . 

(i) Assume Pk = Pkil = * * * - Pt - p and that P1,P2, . . .,Pk-l differ. This 
reduces the number of parameters involved in the estimation of N 
to k + 1. 

(ii) Estimate N by the ML method. This task is greatly simplified by 
. . 

rewrl :lng 
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P[ul,u2, . . .,Ut] as II P[uj | ul,u2, . . .,uj-l], where P[uj | ul,u2, . . .,uj_l] 
j=l 

is the conditional distribution of the jth removal, given the values of 
the previolls removals. 

Then 
(iii) Choose the smallest value of k that produces a sufficient fit to the data, 

and take as the estimate of N the estimate associated with this value 
of k. The fit of the data u1, u2, ...., ut can he measured by the usual 
size ce chi-square goodness of fit test. We have used (x = 0.20 because 
of the seriousness of Type II errors. If significance levels of all the 
tests (one for each value of k) are less than 0.20 we have chosen the 
value of k corresponding to the largest achieved significance level. 

For a given value of k7 the asymptotic sampling variance of Nbh is 
t 

Var(Nbh) = N / '=1 kel p 2 (t - k + 1)2p2 _l 

l-Erii=,vj Pi el-P)t(l-Pj)+Eri-ll 
. 

J-I - i=l j=l - 

An estimate Var(Nbh) of Var(Nbh) is obtained by replacing N,p,p,,p2, . ,Pk-lS 
71,1J2, * * *,tt by their respective ML estimates. 

Finally, we mention that for a given value of k, it is possible that the 
experiment <'fails," i.e., valid estimation of N is not possible. Recall that 
Seber and Whale ( 1970) provided a failure criterion for the estimator 
associated with Model Mb. (This model corresponds to the case k- 1.) 
Following their method of proof, it is easily shown that the failure criterion 
for any value of k is 

t 
(t+ k- 2j)uj<0. 
i=k 

If the experiment fails for a value of k, the corresponding model is clearly 
excluded from those eligible for selection as the appropriate model for 
estimating N. 

APPENDIX I 

Disc1lssion of Model Mtbh 

In Model Mtbh, it is assumed that the ith animal in the population has, on 
the jth trapping occasion, both a unique probability of first capture Pij and 
a unique probability of recapture cij. The model therefore requires tN 
parameters concerning first capture, (t-1)N parameters concerning re- 
capture (because C11=C21=...=CN1=0), and the parameter N for its com- 
plete specification. This totals (2t-l)N + 1 parameters and obviously all 
parameters are not identifiable for estimation purposes. 

The assumption can be made that the 2t- 1 dimensional vectors (Pll, 
P 12, * * * ,P 1t,C 12,C 13, * * *,C 1t), (P21,P22, * * * ,P2t,C22,C23, * * * ,C2t), * * *, (PN1,PN2, * * * ,PNt,C N2, 

...,cNt) are a random sample of size N from some probability distriblltion 
function F(pl,p2,...,pt,c2,c3,...,ct;o) paralneterized by the vector o and de- 
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fined on [0,1]2t-l. The probability distribution function of {Xh,} can then be 
written as 

P[{X@]} = n[E[v@]] 

[tt Xfi,!](N - Mt+l)! @ 
ct) 

where greO- a scalar random variable that is a function of the 2t- 1 dimen- 
sional random variable (p1,p2,...7ptc2,c3,...,ct) corresponding 
to the capture history , and 

E[X(O] = t t 7r,, dF(p1, . . .,pt,c2, . . .,ct;o) 
o o 

For instance, if t= 4 and ct) = {1,1,0,1}, then rfi, - plc2(1- C3)C4. If one is 
willing to make certain assumptions concerning the family of distributions 
to which F( ;0) belongs, the dependence structure among the variables 
{Pl,P2, . . .,pt,c2,c3, . . .,ct} and the vector of parameters @, then ML estimation 
of N will theoretically be possible. However, it is not unreasonable to 
suspect that the amount of numerical computation and the number of assump- 
tions required will prohibit such estimates from being useful in practice. 

APPENDIX J 

Estimation in Removal Models 

For the removal experiment, it is assumed there may be heterogeneity 
among the capture probabilities of the N members of the population subject 
to removal. Moreover, the N capture (removal) probabilities Pi,i = 1,2,. . .,N, 
are a random sample from some probability distribution function G(p;@) 
defined on [0,1] and parameterized by the vector @. Under those assump- 
tions, the distribution of the vector of removals {u1,u2,...,ut} is given by 

P[ul U2, . . *> Ut] = t N! (n Xi ) Xt+l t+l 

[tI uj! ] (N - Mt+l) ! i=1 
j-l 

where 
rl 

7rj = E[p(1 - p)j-l] - J p(1 - p)i-1 dG(p;@), j = 1,2, . . .,t, 
o 

rl 

Xt+l = E[(1 _ p)t] = J (1 - p)t dG(p;@) 
o 

=l-E[p(l-p)i-l]. 
3=1 

Notice that this distribution of {u1,u2, . . .ut} is of the form, and the param- 
eters of the same nature as the distribution of {ul,u21. . .,ut} in Model Mbh. 
Therefore, the generalized removal method developed for Model Mbh is also 
applicable to removal experiments where estimation of N is desired. Al- 
though the experimental situations associated with those 2 models are quite 
different, the fact that the removals are the only statistics relevant for pur- 
poses of estimating N, and the nature of the parameters 7rj combine to make 
the generalized removal method appropriate in both cases. 
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APPENDIX K 

Tests of Model Assumptions 

The details of the statistical tests described in the section entitled TESTS 
OF NIODEL ASSUMPTIC)NS are given here. Tests have been numerically iden- 
tified and correspond to the identification nulubers used in program CAP- 
TURE. 

Test 1 
Since Model Mo is a special case of Model Mh, a likelihood ratio test of 

Ho: Pi= p, i= 1,...,N versus HA: all Pi are not equal, seems plausible. 
However, due to the nonidentifiability of parameters in Nlodel Mh a valid 
likelihood ratio procedure is not possible. 

An alternative approach is taken by examining the fit of the observed 
frequencies f1,. .,ft (recall these are the elements of the MSS for Mh) to 
their expected values under Model MO. The resulting test statistic is intended 
to be sensitive to departures from Model MO in the direction of Model Nlh. 

If Ho is true, we would expect the test statistic Tl to be approximately 
distributed as a chi-square random variable with t - 2 degrees of freedozn, 
where 

T _ t (fj _ fj)2 
I E A 

i=l j 

fj = No(J ) pi( 1 _ p)t i, 

and No and p are the ML estimates of N and p under Model M 

Test 2 
Testing the null hypothesis of Model Mo versus the alternative of Model 

Mb is equivalent to testing the null hypothesis Ho p = c versus the alterna- 
tive HA: P # C. If it is assumed that the bivariate random variable {p c} 
is distributed as a bivariate normal with mean vector {p c} and covariance 
matrix 

rVar(p) O 1, 

L 0 Var(c) j 

then, under Ho the quantity T2' = (p-c)2/[Var(p) + Var(c)] is distributed 
as a chi-square random variable with 1 degree of freedom (cf. Theorem 
4.4.5 in Graybill 1976). Here, p and c are the ML estimates of p and c under 
Model Mb (cf. Appendix D), and we use Var(p) = p2q2(1 - qt)/N[q(1 _ qt)2 _ 

p2t2qt], where q= 1 - p (cf. Seber 1973:312). Furthermore, we approximate 
Var(c) by treating c as a binomial variable with M. fixed so that Var(c)= 
c(l - c)/M.. Obviously, both Var(p) and Var(c) will have to be estimated by 
substituting the ML estimates of N, p, and c under Model Mb, so that the 
actual test statistic becomes 

T2- (p- c)2 
Var(p) + Var(c) 

It follows that T2 has an approximate chi-square distribution with 1 degree 
of freedom under Ho. 
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If Ho is false, T2 has an approximate noncentral chi-square distribution 
with 1 degree of freedom and noncentrality parameter A = (p - c)2/2[Var(p) + 
Var(c)] (cf. Theorem 4.4.5 in Graybill 1976). Thus, theoretical approximations 
to the power of the above test can be found for fixed values of N, p, and c. 
These approximations, obtained by the use of the noncentral chi-square 
tables of Haynam et al. (1970), are given for the alternatives involved in 
Table 8, Appendix N. Finally, it should be mentioned that, due to the con- 
ditional nature of Var(c), it was necessary to substitute 

t k-2 

E[M ] = Np E E qe 
k=l e=o 

for M. to enable evaluation of the noncentrality parameter A. 

Test 3 

Testing the null hypothesis of Model Mo versus the alternative of Model Mt 
is equivalent to testing HO: Pj= P, j- 1,2,...,t, against HA: Not all the p 
are equal. We assume that the t-variate random variable (P1,P2, ,Pt) is 
distributed as a t-variate normal distribution with mean vector (P>P2, ,Pt) 
and covariance matrix 

Var(pl) O 
, where 

O Var(pt) 

Pi = nJNt - ML estimator of Pi under Model Mt, and 

Var(pj) = pj/N, q = 1-pj, j-1,2,...,t. 

Now, using Theorem 4.4.5 in Graybill (1976), the random variable 

T3' = E pj2/Var(pi) - ( pi/Var(pi)) / Var(pi)-l 

has a chi-square distribution with t - 1 degrees of freedom under Ho As in 
test 2, the quantities Var(pj) will have to be estimated using the ML estimates 
pj and Nt. Upon making these substitutions the test statistic T3' reduces to 

t / t \2 / 

T3 = z nj/qj-tE nj/pjqj) / E nj/pj2q . 
j=l i=l i=l 

Under HoS T3 has an approximate chi-square distribution with t- 1 degrees 
of freedom. 

An approximation to the power of this test given any alternative is provided 
by the knowledge that, under HA, T3 has an approximate noncentral chi- 
square distribution with t - 1 degrees of freedom and noncentrality param- 
eter 

A = (N/2) [ pj/%-( 1/%) / (pjqi) 1]. 
j=l i=l j=l 

Utilizing the tables of Haynam et al. (1970), these approximations were 
calculated for the alternatives involved in Table 9 of Appendix N, and the 
results are contained therein. 
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Test 4 
An overall goodness of fit test of Model Mh can be thought of as equivalent 

to testing Ho: PU - Pi versus HA: not all pu = Pi, i-1,2, . . .7Mtl, j - 17 * * * t. 
Thus7 the null hypothesis assumes heterogeneous individual capture prob- 
abilities that do not change over time, and the alternative states that, given 
heterogeneity capture probabilities also change over time. Notice that HA 
does not state how probabilities change over time, i.e., whether the change 
is due to behavioral response, variation in trapping occasions or a com- 
bination of both. Thuss if Ho is rejected, it is not rejected in favor of an 
alternative Model; rather it is the goodness of fit of Model Mh that is being 
rejecte . 

Burnham (unpublished dissertation) has shown that under Ho the test 
statistic 

t 

2 (n-nlt)2 t 1 T4_ i=1 

JE jft)( t) 
has an approximate chi-square distribution with t- 1 degrees of freedom 
and is appropriate for testing H<, vs. HA. The test is conditional on the fre- 
quency of capture statistics fi,f2,...,ft. Burnham also recommended that if 

- 

tk is arge enough, a statistic appropriate for testing Ho: Pii = Pi versus HA: 
not all PiJ - Pi for all i such that Yi = k, is given by 

t k 2 

= X ZkJ t fk t - 1 
T4a= kf t-k' 

t k 

where z,; - number of animals caught on day j that were captured exactly 
k times and 

Yi = number of times the ith animal was captured. 
Under HO, T4a has an approximate chi-square distribution with t - 1 degrees 
of freedom, conditional on the value of fk. Notice that a test statistic of the 
form of T4a can be constructed for any k = 1,21 . . .7t 1 as long as fk is large 
enough. We have used the criterion that fk must be larger than t before the 
test is performed. 

Test 5 
An overal1 goodness of fit test of Model Mb can be constructed by com- 

bining the results of 2 independent tests. The first of these tests was intro- 
duced by Zippin (1956) fior testing HQ: Pj = P versus HA. Not all PJ- P, 
j- 1,2,...>t. In the context of Model M pj represents the probability of 
first capture on the jth trapping occasion, and thus ZippinXs test attempts 
to determine the constancy of first capture probability over time. The test 
statistic5 which has an approximate chi-square distribution with t - 2 degrees 

r r 1 ot treeclom w zen .01S true 1S glven as 
T _ E (uj- Nbpqi t)2 + (lqb - Mt+ - Nl,qt)2 j=l Nhpq N qt s 
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where Nb and p are the ML estimates of N and p under Model Mb, and 
q = 1 - pe (Note: we have used the following 4pooling>7 strategy for this chi- 
square test. If Nbpqr-1 < 2 and NbpqS-l ¢ 2 for s = 1,2, . . .>r - 1, then the 
'cells>> corresponding to r,r + 1, . . .,t are pooled into 1 cell. This will reduce 
the degrees of freedom associated with T5a to r-2.) 

A test (independent of the above procedure) for the constancy of recapture 
probability over time can be constructed using the so-called variance test 
for homogeneity of binomial proportions (cf. Snedecor and Cochran 1967: 
240). That is a test statistic appropriate for testing Ho Cj - c versus HA: 
not all Cj - c, j = 2S3, . . .,t, is given by 

T5b = E Mi(cj - c)2/c(l - c), 
j_S 

where 
CJ - mj/Mj, 

c - ML estimate of c under Mb - m./M.. 

The statistic Tia has an approximate chi-square distribution with t - 2 degrees 
r P . OS treec om wnen nQ 1S true. 
Because T5a and T5b are independent and have chi-square distributions 

when Model Mb is true, an overall test statistic for the goodness of fit of 
Model Mb is given by T5 - T5a + Tsb This test statistic has an approximate 
chi-square distribution with 2t- 4 degrees of freedom under Model Mb. 

Test 6 

Testing the goodness of fit of Model Mt can be interpreted as being 
equivalent to testing HO: PU- Pj versus HA: not all Pu= pj, i - 1>2>...,Mtel 
and j= 1+2,...,t. Thus, the null hypothesis assumes variation in capture 
probabilities among trapping occasions while assefling that on a given QC- 

casion all animals have the same probability of capture. The alternative 
HA allows capture probabilities to differ among members of the population 
on a given occasion, as well as allowing trapping occasions to affect capture 
probabilities. Notice that HA does not specify why capture probabilities differ 
among animals on a given occasion. That is, this difference may be due to 
behavioral response individual heterogeneity or a combination of both. 
Thus when Ho is rejected, it is not in favor of a specific alternative model; 
rather it is the goodness of fit of Mt that is being rejected. We have chosen 
to adopt the test procedure proposed by Leslie (1958) for the purpose of 
testing Ho versus HA The proper test statistic is given by 

T _ E3 [t-l fk(fl (k - 1 _ y )2 ] I 
J_1 k=l y._ E R2j{/UJS 

{=j+l 

where 
fkfi) - number of animals captured exactly k times that were first captured 

on the jth occasion, 
u, = number of animals first captured on the jth oCCaSiOn 

Rjt - number of animals recaptured on the {th occasion that were first 
caught on the jth occasion, 
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^ = t-E+,lfk(j) (k - l)/uj, and 
k=l 

I _Jlifuj¢20 i l 0 otherwise. 
Notice that we have followed Leslie's recommendations that a "cohort>' of 
newly identified animals first captured on the jth occasion not be included 
in the overall test unless it consists of more than 20 individuals, i.e., u; must 
be greater than 20. Furthermore, a new cohort is not included unless it is 
subject to at least 3 subsequent trapping occasions, i.e., j= 1,2,...,t- 3. 
Under the null hypothesis of"equicatchability," T6 has an approximate chi- 
square distribution with 

t-3 

E (Uj - l)Ij 
i=l 

degrees of freedom. 
It should be mentioned that Carothers (1971) proposed an improved version 

of Leslie's test. However, practical use of the procedure requires some 
arbitrary trimming of the data and therefore is difficult to use for simulation 
purposes. 

Test 7 

Pollock (unpublished dissertation) developed a procedure designed to test 
Ho Model Mh fits the data versus HA: Model Mbh should be used. The test 
statistic depends on the 2 vectors of statistics 

f* = {fl(1,fl<2,...,flit,...,ft-lel,ft-l2>,ftel)} where fki) is the number of ani- 
mals captured exactly k times that were first captured on the jth OC- 

casion, 

f= {f1,f2,...,ft}, where fj is the number of animals captured exactly j 
times. 

This is a chi-square goodness of fit test formed by pooling t - 1 indepen- 
dent chi-square tests. The kth of these tests is conditional on the value of fk 
and has t - k degrees of freedom. The overall test statistic is given by 

t-1 t-k+l {fk [(t - k -g + l)/(k)] } 

k=l i=l [(t k - J + 1 )/(k) fk 

Under Ho T7 has an approximate chi-square distribution with 
t-l 
E (t - k) = t(t - 1)/2 
k=l 

degrees of freedom. (Note: for each of the t - 1 distributions we have used 
the same pooling strategy described for the test involving T5a. In this case, 
the quantity checked for sufficiently large expectation is 

[(t k -J + l)/(k)] fk 
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Therefore it may be that in a given case degrees of freedom will not be t(t - 1)/2, but rather this quantity less the appropriate number of degrees of freedom lost by pooling.) 

A Test for Closure 
An approach to a closure test suggested by Burnham and Overton (pers. comm.) can be conceptualized by first considering the null hypothesis HO: Pij = Pi, j = 1, 2, . . ., t for only those animals captured 2 or more times. Es- 

sentially, HO merely asserts that individual capture probabilites are invariant over time. Now consider, however, an alternative hypothesis HA that states that for at least some i, i.e., for some animals that were captured at least twice, Pil - Pi2 - = Pir = O and/or Pis - = Pit = 0, where 1 S r < s S t. HA states that some members of the population were not present in the pop- ulation for some initial or terminal part of the study, or both. If that alterna- tive is true, one might expect that the time between first and last capture for animals is, on the average, shorter than one could expect under HO. That conjecture is the rationale for the test procedure given below. Note that the test is designed to detect birth-death or immigration-emigration phenomena, or both, that occur only during the initial and latter stages of the study, not phenomena occurring toward the middle of the study. For example, the test would not be appropriate when some animals are present 
during the initial stages of the study, leave the study area for a time, and then return prior to the termination of the study. 

Given that the ith animal was captured exactly Yi times, and that Yi ¢ 2, let Qi = Wi - Vi, where Wi is the occasion of last capture and Vi is the occasion of first capture. Thus, Qi is merely the time between first and last capture for the ith animal. Conditional upon the value of Yi, the expectation and variance of Qi are: 

E(Qi|yi = k) - (k - l)(t + l)/(k + 1), 
Var(Qi|yi = k) = 2(t - k)(k - l)(t + l)/(k + 2)(k + 1)2. 

Under HoX the statistic 

t(Q J k) - fl E QiI 
k i=l 

has the conditional expectation given above 
where I _ {1 if the ith animal was captured exactly k times 

O otherwise. 

If fk is largeS the test statistic, 

C _ E(Q|k) - (k - l)(t + l)/(k + 1) k - 2 1 k p2(t - k)(k - l)(t + 1)11/2 ' _ ,. . .,t - 
L (k + 2)(k + 1)2fk g 

can be assumed to be approximately distributed as a standard normal. (We have required that fk ¢ 10.) An overall test statistic appropriate for testing 
HO versus HA is given as 
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tE1 [E(Q|k) - (k - l)(t + l)/(k + 1)] 
C -k=2 

ptz 2(t - k)(k - l)(t + 1)11/2 
Lk=2 (k + 2)(k + 1) fk 2 

The test statistic C is also approximately distributed as a standard normal 
if HO is true and the number of animals captured at least twice is large 
(greater than 10). Tests of HO versus HA calculated by using either Ck or C 
should be one-sided tests since the alternative specifies that the E(Q|k) 
should be smaller than E(Qi|yi= k). Thus, closure is rejected only if the 
test statistic is small. Finally, we emphasize that the test involving Ck is 
conditional on the value of fk, and the test using C is conditional on the 
values of f2,f3, . . .,ft-1 

APPENDIX L 

Density Estimation Based on Subgrids 

The density estimation procedure using nested subgrids is based on 
Dice's (1938) boundary strip idea. The fundamental aspect of this approach 
was proposed by MacLulich (1951). Let the trapping grid have area Ag and 
a perimeter length of P. Then for any convex grid (that includes all rectangular 
grids) the effective trapping area A(W) is 

A(W) = Ag + PW/c + rW2/c, 

where c is a conversion factor to express PW and w2 in the units of A. 
From that equation, we derive the expected population size at risk of capture 
as 

E(N)= DA(W), 

where D is the true density of animals. Dividing through by the known 
area Ag we derive 

E(N) = D[1 + aW + bW2], 
Ag 

where 
P b= v 

Ag(c) Ag(c) 

Note that the unknown parameters are D and W and that E(N) is estimable 
from the trapping study. 

Given at least 2 grids of different sizes, we can estimate the parameters 
D and W. Assume there are k different grids (these may be subgrids of 1 
overall study). The relevant equations can be written as 

ANi = D[1 + aiW + biW2] + si, i = 1, . . ., k. 
g 

By assumption, E(e) = O. Let the variance covariance matrix of e be Qi. 
We are assuming the same density (D) and strip width (W) apply to all grids. 
This seems especially reasonable when the grids are nested (see section on 
DENSITY ESTIMATION). 
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Given estimates Ni, the above equations put estimation of D and W in the 
framework of generalized nonlinear regression. All we need to carry out the 
estimation is a knowledge of the variance-covariance matrix $. Letting Yi = 
NIAg) we have 

Var(Yi) = Var(Ni)/Ag2, 

which is estimable. Also we know that 
Cov(Yi,Yi) = rijSE(ti)SE(Yj), 

where rij is the correlation of Si and NJ. This correlation is not known. Burn- 
ham and Cushwa (pers. comm.) suggested the following way of approxi- 

. e 

matlng riJ 
The correlation of lCTi and Nj will depend in large part on the overlap of 

the 2 populations of size Ni and Nj that in turn depends on the overlap of the 
areas Ai(W) and Aj(W). Thus let 

ru = corr(Ni,Nj) = Ai(W) U AA(W)' 

that is, rij is the area of the intersection of Ai(W) and Aj(W) divided by the 
area of their union. 

Using this formula, we can arrive at an estimator of $ that seems reasonable; 
hence, from the live trapping data we can compute Y1, . . .,Yk and $. 

We are now in a position to obtain weighted nonlinear least squares 

r 1 YY A Y§T * r . 

estlmators ot Ls ane w as Ls, w satlstylng 
min (y _ tt $-1 (y _ f), where 

fi = D[1 + aiW + biW2], i - 1>. . .,k 

An approximate variance-covariance matrix for the estimators f) and W is 
given by the 2 x 2 matrix V't-1V where V is the Jacobian matrix 

V= F af af 1 
LdD' AW] 

The elements of the columns of the matrix V are, respectively, 

aft = 1 + aW+ bW2 
AD 6 1 , 

a fi = D[ai + bi2W], i = 17 . . .t. 

Because t depends upon W (but not D) an iterative procedure is needed 
wherein an initial value of WO is chosen, t is computed based on it, and the 
new f)1> 911 obtained. Iteration is continued until stable estimates of D and 
W are obtained. 
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APPENDIX M 

General Simulation Methods 

The various estimators and tests described in this monograph were simu- 
lated to study their small sample properties and operating characteristics. 
The asymptotic properties of the tests and estimators are known in most 
cases, but not the finite sample properties. Monte Garlo simulations provide 
a method by which our estimation procedures may be evaluated under the 
exact model from which they were derived. Because we would not expect 
real data to fit any model exactly, by simulating data, we can study the prop- 
erties of the procedures without interference due to the data not fitting the 
model. 

Pseudo-random uniform (0,1) variables were generated using the Burroughs 
6700 FORTRAN intrinsic function RANDOM. The mixed congruential 
method is used by this function (Anonymous 1971). 

Beta variables for the simulation of heterogeneous probabilities of first 
capture were generated using subroutine GGBTA from the IMSL (1976) 
package, with the required uniform variables furnished by RANDOM. That 
routine uses a rejection method (Fishman 1973). 

In the most general simulationsn the trapping process is simulated for each 
animal in the population for each trapping occasion. The probability of 
capture for a particular animal on a particular day is compared against a 
uniform (0,1) variable. If the value of the random variable is less than the 
probability of capture, then the animal is assumed captured, and that ele- 
ment of the X matrix is set to unity. Otherwise, the value in the X matrix 
is set to zero, indicating no capture. When the X matrix is completely filled, 
the necessary MSS are computed and the tests and estimation completed. 

APPENDIX N 

Simutation Results 

Simulation Results Regarding Estimation Procedures 
In developing this material, we used 6 different models to generate simu- 

lated data: all capture-recapture models except Mtb and Mtbh. For each of the 
data sets various estimation procedures considered here were applied to gain 
insight into the operating characteristics of such procedures. The results 
of this simulation study are presented here in tabular form. 

For each model there are 2 corresponding tables. Obviously, for any given 
model one may choose any number of sets of parameter values needed to 
completely specify the model. Thus the first table for each model lists all 
the different sets of parameter values (each of which is called a Trial) used 
in the simulation study. For example, Trial 1 in Table N.l.a indicates that 
there were 400 animals in the population and that every animal had a 0.30 
probability of capture on each trapping occasion. That information is all that 
is required to specify an example of Model Mo 

The second table for each model presents the simulation results for each 
estimation procedure used on data generated from the Trials of that model. 
Column headings in the tables are: 
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Estimator identifies the estimation procedure used; e.g., "&b indicates that the estimation procedure described in Appendix C for Model Mb was applied to the data. 
R-the number of replications (data sets). t-the number of trapping occasions. 
Ave(N) - the average value of N taken over all replications, i.e., 

Ave(N) = R E EJk 

a(s) the '<sample'> standard error of ACJ taken over all replications, i.e., 
(9) 4 (&k Ave(9))2/(R - 1). 

k=l 

Ave+/Var(N)- -the average value of +/Var(N) taken over all replications, i.e., 
Ave/Var(N)- R E jVar(N k) ) 

k=l 

Coverage-the proportion of replications in which the constructed 95% confidence interval contained the true population size N. Trial identifies which population (set of parameter values) generated the data. 
Two points concerning (N) and Ave|Var(N) should be mentioned. First the value of s;r(N) estimates the true standard error of the estimator N in any given Trial and Model so that a measure of the relative bias of the estimator A/Var(N) is given by |Ave+ar(N) - (r(N) |/C(N). Second the average confidence interval width in a given Trial and Model is given by 2 (1.96) ls. :e v Ave/lar N). 
As an xamples consider the first line of Table N.l.b. We see that 200 data sets, each consisting of 5 trapping occasions were generated according to Model Mo Trial 1 and that the estimation procedure associated with Model Mo was applied to eaeh set. For those 2Q0 data setsS No was essentially unbiased (Ave(N,)-N --0.7), as was the estimator of the standard error - - of No (Avewar(NO) - (N) = 0.05). Moreover, 95 percent of the constructed confidence intervals covered the true value of N. This achieved confidence coefficient of 0.95 corresponds exactly with the stated level of the intervalS namely 0.95. Such excellent performance of the confidence interval pro- cedure is due in large part to the fact that lto and war(N) appear to be essentially unbiased. Finally, note that the average width of the 200 con- structed confidence intervals is given by 2(1.96)(11.96) = 46.88. 

Simulation Results Regarding the Size and Power of Testing Procedures 
Because the testing of assumptions plays a vital role in the analysis of - capture-reeapture data it is important to have some insight into the operating characteristics of such tests. Simulation studies of the tests T1 through T7 defined in Appendix K were carried out on data simulated from all 8 models to provide such insight, and the results are presented in Tables N.7 through N.13. In addition, Tables N.8 and N.9 give results of an approximation to the power of tests T2 and T3 based on theoretical results in Appendix K. 



TABLE N. l.a. lDEscRIprIoN ON THE TR1ALS OF 
MODEL MO 

N p Trial 

400 0.30 1 
400 0.10 2 
400 0.05 3 
200 0.25 4 
100 0.20 5 
100 0.15 6 

Estimator N Ave(N) (r(N) Ave) Coverage R t Trial 

No 400 399.30 11.91 11.96 0.950 200 5 1 
No 400 456.93 219.31 160.25 0.922 500 5 3 
No 400 405.97 52.84 55.54 0.930 200 5 2 
No 100 101.70 19.43 - - 200 5 6 
No 400 397.34 46.56 - - 200 5 2 
No 400 453.82 203.75 - - 372 5 3 
No 400 405.73 52.54 - - 200 5 2 
No 200 199.60 6.58 - - 100 7 4 
Nh 100 113.46 17.25 13.74 0.830 200 5 6 
Nh 400 386.89 27.65 27.93 0.920 200 5 2 
Nh 400 389.12 29.56 28.02 0.898 400 5 2 
Nh 200 226.38 10.77 10.07 0.260 100 7 4 
Nb 400 319.25 204.51 - - 372 5 3 
Nb 400 485.90 387.42 - - 198 5 2 
Nb 200 198.59 11.66 10.47 0.880 100 7 4 
Nt 400 407.71 61.81 57.45 0.940 400 5 2 
Nt 400 439.96 161.42 148.13 0.940 500 5 3 
Nt 200 199.37 6.51 6.85 0.950 100 7 4 
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The column headings of the tables are: 
ct indicates the nominal size of the test. 
Data Model indicates the Trial and Model that were used to generate the 

data. 
R indicates number of replications (data sets). 
t indicates number of trapping occasions. 

The reader will note that in some instances the number of replications R 
appears to be strange. The explanation is that a few of the estimators and 
tests simulated are subject to "failure,>' i.e., a particular data set may have 
characteristics that do not allow calculation of the desired statistics. In those 
cases, the data sets are excluded from the reported simulation results. 

Finally, in Table N. 14 we give a deseription of the Trials of Models Mtb and 
Mtbh. Those Trials were involved in the simulation of some of the tests of 
model assumptions. 

TABLE: N.l.b.-SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON r}ATA GENERATED ACCORD- 
ING TO MODEL MO 



TABLE N.2.a. DESCRIPrION OF THE TRIALS OF MODEL Mt 

N (Pl,P2,--,PJ Trial 

400 (0.55, 0.55, 0.50, 0.45, 0.45) 1 
400 (0.05, 0.10, 0.15, 0.15, 0.05) 2 
400 (0.10, 0.10, 0.10, 0.10, 0.01) 3 
400 (0.01, 0.01, 0.02, 0.03, 0.03) 4 
400 (0.04, 0.0S, 0.03, 0.07, 0.06) 5 
400 (0.60,0.40,0.20,0.10,0.10,0.10,0.10,0.10,0.10,0.10) 6 
400 (0.50, 0.20, 0.10, 0.10 0.10, 0.10, 0.10) 7 
400 (0.60 0.40, 0.20, 0.10, 0.10) 8 
400 (0.20, 0.40, 0.30, 0.10, 0.20, 0.30, 0.20) 9 
200 (0.30, 0.40, 0.10, 0.40, 0.30) 10 
800 (0.02, 0.01, 0.03, 0.03, 0.01) 11 
100 (0.05, 0.05, 0.10, 0.15, 0.15) 12 

TABLE N.2.b. SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD- 
ING TO MODEL Mt 

Estimator N Ave(N) cr(N) Ave ) Coverage R t Trial 

Nt 400 399.30 202.39 348.63 0.839 155 5 4 
Nt 400 408.57 73.91 74.19 0.949 198 5 3 
Nt 100 108.44 37.18 35.77 0.942 989 5 12 
Nt 800 1,015.62 630.46 748.23 0.902 194 5 11 
Nt 400 400.33 54.50 56.00 0.955 200 5 2 
Nt 400 399.28 3.55 3.86 0.960 200 5 1 
Nt 400 442.66 187.00 151.93 0.930 200 5 5 
Nt 400 397.14 206.97 341.61 0.880 292 5 4 
Nt 400 398.59 15.64 16.45 0.940 100 7 7 
Nt 400 398.81 8.03 7.57 0.950 100 10 6 
Nt 200 198.70 8.98 7.98 0.880 100 5 10 
Nt 400 399.41 lQ.16 9.96 0.930 100 7 9 
Nt 400 399.45 12.80 11.94 0.940 100 5 8 
Nh 400 349.17 27.27 26.54 0.515 200 5 3 
Nh 400 100.83 27.37 12.93 0.000 200 5 4 
Nh 100 98.70 14.43 13.77 0.924 1,000 5 12 
Nh 800 219.60 27.94 20.79 0.000 200 5 11 
Nh 400 244.46 24.04 22.17 0.000 200 5 5 
Nh 400 98.56 30.27 12.43 0.000 400 5 4 
Nh 400 506.72 27.76 22.00 0.000 100 5 8 
Nh 400 516.22 31.59 26.91 0.000 100 7 7 
Nh 200 456.68 50.28 15.91 0.000 100 10 6 
Nh 400 235.94 15.78 12.54 0.170 100 5 10 
Nh 200 459.60 18.32 15.30 0.010 100 7 9 
Nbhl 400 199.70 21.08 18.08 0.810 100 5 10 
Nbhl 400 410.30 54.16 70.10 0.860 100 7 9 
Nbh 400 387.07 21.14 27.63 0.540 100 10 6 
Nbhl 400 364.06 55.82 65.24 0.510 100 7 7 
Nbh 400 342.56 9.48 5.72 0.040 100 5 7 

I Note, we use Nbh and NR as equivalent notation. 
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TABLE N.3.a. DESCRIPrION OF THE TRIALS OF 
MODEL Mb 

N P C Trial 

400 0.30 0.10 1 
400 0.20 0.50 1 1 
400 0.20 0.05 2 
400 Q. 10 0.30 3 
400 0.10 0.15 4 
200 0.30 0.50 5 
200 0.25 0.25 6 
200 0.20 0.10 7 
100 0.20 0.05 8 
100 0.20 0.50 9 
100 0.10 0.30 10 
100 0.40 0.20 12 

TABLE N.3.b.-SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD- 
ING TO MODEL Mb 

Estimator N Ave(N) a(N) Ave) Coverage R t Trial 
A 

Nb 100 82.00 36.73 64.76 0.708 161 5 10 
Nb 200 208.09 38.53 40.27 0.930 100 5 7 
Nb 200 198.36 13.32 13.13 0.900 100 5 5 
Nb 400 401.23 25.43 19.91 0.920 100 5 1 
Nh 100 109.83 48.05 - - 199 5 8 
Nh 400 400.22 22.38 - - 200 5 1 
Nb 400 511.04 408.42 - - 193 5 3 
Nb 400 403.56 58.70 - - 200 5 2 
Nb 200 lD7.88 13.32 - - 200 5 5 
Nb 400 461.48 269.25 - - 196 5 4 
Nb 200 206.99 37.11 - - 200 5 7 
Nb 200 198.59 11.66 10.47 0.880 100 7 6 

A 

Nh 100 82.39 6.75 5.09 0.140 100 5 9 
Nh 100 176.49 14.40 18.82 0.000 100 5 8 
Nh 400 347.67 29.55 26.16 0.495 200 5 4 
Nt 100 71.75 4.80 2.43 0.000 100 5 9 
Nt 100 299.25 193.37 115.92 0.630 100 5 8 
No 100 51.38 7.06 - - 161 5 10 
No 100 293.88 109.76 - - 199 5 8 
No 400 720.39 57.05 - - 200 5 1 
No 400 212.48 13.56 - - 193 5 3 
No 400 1,070.94 176.01 - - 200 5 2 
No 200 175.18 5.80 - - 200 5 5 
No 400 305.73 33.32 - - 196 5 4 
No 200 311.67 48.50 - - 200 5 7 
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TABLE N.4.a.-DESCRIPTION OF THE TRIALS OF MODEL Mh 

Pl, i = 1,2,. . .,N 

TABLE N.4.b.-SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD- 
ING TO MODEL Mh 

400 100 
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Trial 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

N 

400 Pi= O.05, i = 1,200; Pi = 0.15, i = 201,300; Pi = 0.50, i = 301,400. 
400 Pi= 0.01, i = 1,100; Pi= 0.05, i = 101,200; Pi= 0.10, i = 201,300; 

Pi= 0-20, i = 301,400. 
400 Pi= 0.10, i = 1,100; Pi= 0.20, i = 101,200; Pi = 0.25, i = 201,300; 

Pi= 0.30, i = 301,400. 
400 Pi= 0.01, i = 1,50; Pi= 0.15, i = S1,200; Pi= 0.25, i = 201,300; 

Pi = 0.30, i = 301,400. 
400 Pi= 0-20, i = 1,100; Pi = 0.30, i = 101,200; Pi = 0.40, i = 201,300; 

Pi= 0.50, i = 301,400. 
200 Pi= 0.05, i = 1,50; Pi= 0.15, i = 51,150; Pi= 0.25, i = 151,200. 

200 Pi= 0-15, i = 1,50; Pi= 0.20, i = 51,100; Pi= 0.25, i = 101,150; 
Pi= 0.30, i= 151,200. 

100 Pi = 0.05, i = 1,40; Pi = 0.10, i = 41,80; Pi = 0.30, i = 81,100. 

100 Pi :(3,22), i = 1,100. 

100 Pi (1,22/3), i = 1,100. 

100 Pi (3/22,1), i = 1,100.1 

100 Pi = 0.10, i = 1,40; Pi = 0.20, i = 41,80; Pi = 0.30, i = 81,100. 

400 Pi= 0.05, i = 1,50; Pi= 0.10, i = 51,200; Pi= 0.15, i = 201,300; 
Pi = 0-25, i = 301,400 

200 Pi= 0.05, i = 1,50; Pi= 0.10, i = 51,150; Pi= 0.25, i = 151,200. 

l Indicates that the probabilities pj were a random sample of size 100 from a beta probability distribution with the indicated parameter 

14 
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N^h 
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Nh 

Nh 
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100 

200 

100 
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100 
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400 

100 

400 

200 

400 

400 

400 

100 

200 

Ave(N) 

35.41 
79.46 
84.66 

331.06 
298.06 
100.17 
460.10 
226.78 
443.9S 
461.22 
417.08 
107.57 
207.34 

26.83 
62.68 
68.90 

227.83 
260.29 

73.72 
365.12 
193.61 
376.18 
364.31 
333.17 

87.87 
173.64 
228.02 

a(N) 

9.36 
_ _ 

5. 1b 

14.32 

23.99 

24.52 

21.15 

32.31 

9.82 

19.71 

32.64 

30.91 

6.80 

6.14 

4.79 

2.39 

2.43 

10.97 

30.93 

7.28 

7.15 

9.70 

10.00 

6.44 

7.92 

2.07 

8.68 

0.73 

Ave ) 

4.38 
10.91 
11.56 
22.69 
24.22 
10.54 
26.77 
11.94 
152* U 
26.92 
24.92 
12.01 
11.59 

7.69 
7.67 

17.01 
16.19 
10.19 
6.83 
7.40 

Coverage 

0.000 
0.545 
0.675 
0.180 
0.000 
0.675 
0.395 
0.440 
0.170 
0.410 
0.850 
0.810 
0.870 

0.770 
0.240 
0.460 
0.060 
0.690 
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TABLE N.5.a. DESCRIPrION OF THE TRIALS OF MODEL Mth. THE PROBABILITY THAT THE ith ANIMAL 
IS GAUGHT ON THE Jth TRAPPING OCCASION IS EQUAL TQ PiPj j = 1, . . ., t AND i-17 . . . N 

N pX, i = 1,S, . . .,N PJ,i = I,2,. . .,t Trial 

4()0 Pi= 0 15, i = 1,10(); Pi - 0.33, i = 1()1,200; Pl = 0-30, P2 = 0.60, p3 = 0.10, p4= ()*30 

Pi= 0-67, i = 201n300; Pi= 1.00, p5= 0.60 
i = 301,400. 

400 Pi - Q.40, i = l,lOQ, Pi= 0.60> i = 101,200; P1 - P2= 0.25, p3= 0.50 p4- 0.15, 2 
Pi= 0.80, i = 2017300; PX- 1.00, p5 = 0.25. 
i = 301,400. 

40() Pi - 0.30, i = 1,150; Pi= 0.40, i = 151,250; Pl - 0.15, P2 = 0.257 p3 - 0.057 p4= (:).10, 3 
Pi = 1.007 Pi = 251,400. p5 = 0 3Q 

4()0 Pi = (}.03, i = 1,100; Pi = 0.35, i = 101,2()0, P1 = P2 = P3 = 0.35, p4 = o.40, p5 = 0.60. 4 
Pi= 0.55, i = 201,300; Pi= 1.00, 
i= 301,400. 

200 Pi = 0.4Q, i = 1,50; Pi - 0.6Q7 i = 51,100; P1 - () 5°7 P2 = P3 = 0-30, P4 - ° 6() 5 
Pi = 0.80, i = 101,1$0; Pi = 1.00, p5 = o-2o, P6 = 0 40, P7 = 0.30. 
i= 151,200. 

200 Pi- 0.25, i = 1,50; Pi 0.50, i - 51,150; P1 = 0.15, P2 = 0.25 p3= 0.05, p4 = Q.1()7 6 

Pi = 1.00, i = 151,200. PS = 0 30 

400 Pi = 0.45, i = 1i100; Pi - 0.5S, i - 101,200; Pl = 0.65, P2 = 0 75, P3 = 0 55, P4 - 0 35 7 
Pi - 0.65, 1 - 2017300; Pi = 0.75, p5 = 0.60> P6 = 0-50, p7 = 0.80. 
i = 301,400. 

100 Pi - ° 351 i = 1?25; Pi _ 0.45 i = 26750, P1 0.657 I)2 0.75 PS 0-55, P4 = () 35 8 

P1= 0-55; i = 51,75; Pi= O.65, Ps= 0.60 
i = 7G,100. 

TABLE N.5.b. SIMULATION RE:SULTS OF ESTIMATION PROCEDURES APPLIED TO r)ATA GENERATED 
ACCORDING TO MODEL Mth 

Estimator N Ave(N) <7,(T) Ave ) Gowerage R t Trial 

Nt 400 303.60 14.13 11.74 0.000 100 5 1 
Nt 400 369.90 21.69 19.69 0.600 100 5 2 
Nt 400 309.04 37.46 35.66 0.340 100 5 3 
Nt 400 272.77 12.53 10.32 O.Q00 100 5 4 
191; 200 187.93 5.68 5.29 0.360 100 7 5 
Nt 2Q0 164.17 34.05 29.11 0.590 10() 5 6 

Nh 400 402.88 31.42 23*46 0.850 100 5 
Nh 400 478.73 33*55 29 20 0.220 100 S 2 
Nh 400 353.9() 25.02 26.62 0.590 100 5 3 
Nh 4Q0 352.78 29.38 20.68 0.430 100 5 4 
Nh 20Q 217.72 8.42 9.46 ().560 100 7 5 
Nh 200 178.21 21.29 18.67 0.760 1()0 5 6 
Nbh 400 Failed in all 100 replications 100 5 1 
Nbh 400 272.56 11.65 6.27 0.000 100 5 2 
Nbh 400 Failed in aI1 100 replicatiolls 100 5 3 
Nbh 400 489.06 275.72 319.02 0.840 100 o 4 
Nbh 200 179.41 9.27 9.16 0.34() 100 7 5 
Nbh 200 23$.91 156.90 337.63 0.793 92 5 6 
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TABLE N.6.a. DESCRIPrION OF THE TRIALS OF MODEL Mbh 

N P,,C,; i = 1, 2, . . ., N TrjAl 

400 Pi= 0.05, i = 1,200; Pi= 0.15, i = 201,300; Pi = 0.50, i = 301,400. 

400 Pi = 0.01, i = 1,50; Pi = 0.15, i = 51,200; Pi = 0.25, i = 201,300; Pi = 030' 2 
i = 301,400. 

400 Pi = 0.10, i = 1,100; Pi = 0.20, i = 101,200; Pi = 0.25, i = 201,300; Pi = 030' 3 
i = 301,400. 

4°° Pi = 0 20, i = 1,100; Pi = 0.30, i = 101,200; Pi = 0.40, i = 201,300; Pj - 0 50' 4 
i = 301,400. 

200 pj= 0.05, i = 1,50; Pi= 0.15, i = 51,150; Pi= 0.25, i = 151,200. 5 

200 Pi = 0.15, i = 1,50; Pi = 0.20, i = 51,100; Pi = 0.25, i = 101,150; Pi = 030' 6 
i= 151,200. 

100 Pi = 0.10, i = 1,40; Pi = 0.20, i = 41,80; Pi= 0.30, i = 81,100. 7 

400 Pi = 0.10, i = 1,50; Pi = 0.25, i = 51,200; Pi = 0.35, i = 201,300; Pi = 045' 82 
i = 301,400; ci= max[(pi- ran(i)/4),0]. 

400 Pi= 0.05, i = 1,50; Pi= 0.10, i = 51,200; Pi = 0.15, i = 201,300; Pi= 0.25, 92 
i = 301,400; ci = min[(pi + ran(i)/4),1]. 

400 Pi= 0.05, i = 1,50; Pi= 0.10, i = 51,200; Pi= 0.15, i = 201,300; Pi= 0.25, lO2 
i = 301,400; ci= max[(pi- ran(i)/4),0]. 

100 Pi p(1,22/3), i = 1,1003; ci = min[(pi + ran(i)/2,1)] ll2 

100 Pi p(1,22/3), i = 1,1003; ci = max[(pi - ran(i)/2),0] l22 

100 pj :(1,22/3), i = 1,1003; ci = min{max[pi + (ran(i) - 0.5)/2,0],1} l32 

400 Pi = 0.15, i = 1,100, pl = 0.25, i = 101,300; Pi = 0.35, i = 301,400 ci = 0.5 Pi 14 

100 Pi = 0.15, i = 1,33; Pi = 0.25, i = 34,66; Pi = 0.35, i = 67,100. ci = 0.5 Pi 15 

' Indicates the trial was used for estimation purposes only. Because the performance of the estimator associated with Model Mbh 
depends only upon N and the probabilities of first capture pi, recapture probabilities; cl need not be specified. 

2 The function ran(i) produces a random value of a variable distributed uniformly over the interval [0,1]. 
3 Pl (1,22/3) indicates that the random variable pi has a beta distribution with parameters 1 and 22/3. 

TABLE N.6.b. SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD- 
ING TO MODEL Mbh 

Estimator N Ave(N) a(N) Ave ) Coverage R t Trial 

Nbhl 400 246.59 38.04 32.26 0.120 100 5 1 
Nbh1 400 340.83 57.57 47.90 0.360 100 5 2 
Nbh1 400 366.43 41.87 35.63 0.600 100 5 3 
Nbh 400 383.00 21.30 15.89 0.560 100 5 4 
Nbh1 200 175.51 16.26 13.52 0.380 100 10 5 
Nbh1 200 193.72 13.90 13.72 0.780 100 7 6 
Nbhl 100 94.14 43.26 41.48 0.620 100 5 7 

I Note, we use Nbh and NR as equivalent notations. 
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TABLE N.7. SIMULATION RESULTS CONCERNING 
THE SIZE AND POWER OF THE TEST T1 OF MODEL 

MO VS. MODEL Mh 

0.01 0.05 0.10 Data model R t 

0.0100 0.0300 0.0550 Mov Trial 2 200 5 
0.0100 0.0150 0.0450 MO, Trial 6 200 5 
0.9900 0.9900 0.9900 Mh, Trial 1 200 5 
0.0900 0.1150 0.1400 Mh, Trial 2 200 5 
0.0850 0.1350 0.1900 Mh, Trial 3 200 5 
0.1350 0.1650 0.1950 Mh, Trial 8 200 5 
0.3950 0.5650 0.6250 Mh, Trial 8 200 10 
0.1700 0.1750 0.2500 Mh, Trial 10 200 5 
0.7450 0.7750 0.8400 Mh, Trial 11 200 5 

TABLE N.8. SIMULATED AND THEORETICAL RESULTS CONCERNING THE SIZE AND POWER OF THE TEST 
T2 OF MODEL MO VS. MODEL Mb 

a 

Method 0.01 0.05 0.10 Data model R t 

Simulation 0.0100 0.0550 0.086Q MO Trial 2 198 5 
Theoretical 0.0100 0.0500 0.1000 M,,, Trial 2 198 5 

Simulation 0.0280 0.0830 0.1240 MO, Trial 3 372 5 
Theoretical 0.0100 0.0500 0.1000 MO, Trial 3 372 5 

Simulation 0.0600 0.1300 0.1400 MO, Trial 4 100 7 
Theoretical 0.0100 0.0500 0.1000 Mo Trial 4 100 7 

Simulation 1.0000 1.0000 1.0000 Mb, Trial 1 200 5 
Theoretical 0.9990 0.9990 0.9940 Mb, Trial 1 200 5 

Simulation 0.9150 0.9700 0.9800 Mb, Trial 2 200 5 
Theoretical 0.9480 0.9880 0.9947 Mb, Trial 2 200 5 

Simulation 0.8800 0.9640 0.9790 Mb, Trial 3 193 5 
Theoretical 0.8480 0.9500 0.9750 Mb, Trial 3 193 5 

Simulation 0.0050 0.0660 0.1890 Mb, Trial 4 200 5 
Theoretical 0.0510 0.1550 0.2450 Mb, Trial 4 200 5 

Simulation 0.9700 0.9900 1.0000 Mb, Trial 5 200 5 
Theoretical 0.9460 0.9870 0.9980 Mb, Trial 5 200 5 

Simulation 0.2800 0.5100 0.6350 Mb, Trial 7 200 5 
Theoretical 0.2610 0.4900 0.6140 Mb, Trial 7 200 5 

Simulation 0.4220 0.6280 0.7140 Mb, Trial 8 199 5 
Theoretical 0.4570 0.6940 0.7950 Mb, Trial 8 199 5 

Simulation 0.0190 0.1990 0.3230 Mb, Trial 10 161 5 
Theoretical 0.2200 0.4370 0.5620 Mb, Trial 10 161 5 
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TABLE N.9.-SIMULATED AND THEORETICAL RESULTS CONCERNING THE SIZE AND POWER OF THE TEST 
T3 OF MODEL MO VS. MODEL Mt 

a 

Method 0.01 0.05 0.10 Data model R t 

Simulation 0.0150 0.0525 0.1100 MoX Trial 2 400 5 
Theoretical 0.0100 0.0500 0.1000 Mo Trial 2 400 5 
Simulation 0.0120 0.0500 0.1060 Mo Trial 3 500 5 
Theoretical 0.0100 0.0500 0.1000 Mo Trial 3 500 5 
Simulation 1.0000 1.0000 1.0000 Mt, Trial 2 200 5 
Theoretical 0.9998 0.9999 0.9999 Mt, Trial 2 200 5 
Simulation 0.3800 0.6550 0.7350 Mt, Trial 5 200 5 
Theoretical 0.4269 0.6635 0.7703 Mt, Trial 5 200 5 
Simulation 0.6138 0.8028 0.7984 Mt, Trial 12 989 5 
Theoretical 0.5925 0.7984 0.8751 Mtn Trial 12 989 5 

TABLE N. 10.-SIMULATION RESULTS CONCERNING 
THE SIZE AND POWER OF THE GOODNESS OF FIT 

TEST T4 OF MODEL Mh 

0.01 0.05 0.10 Data model R t 

0.0200 0.0500 0.0900 Mo Trial 2 100 5 
0.0000 0.0400 0.0900 Mh, Trial 3 100 5 
0.0000 0.0500 0.1000 Mh, Trial 8 100 10 
0.0000 0.0800 0.1300 Mh, Trial 10 100 5 
1.0000 1.0000 1.0000 Mbh, Trial 14 100 7 
0.0900 0.2300 0.3700 Mbh, Trial 15 100 5 
1.0000 1.0000 1.0000 Mth, Trial 7 100 7 
0.5400 0.7900 0.8800 Mth, Trial 8 100 5 
1.0000 1.0000 1.0000 Mtbh, Trial 1 100 7 
0.1600 0.3300 0.4200 Mtbh, Trial 2 100 5 

TABLE N. 12. SIMULATION RESULTS CONCERNING 
THE SIZE AND POWER OF THE GOODNESS OF FIT 

TEST T6 OF MODEL Mt 

0 01 0.05 0.10 Data model R t 

0.0000 0.0200 0.1100 Mt, Trial 13 100 7 
0.0000 0.0300 0.0600 Mt, Trial 14 100 5 
0.0000 0.0100 0.0900 Mtb, Trial 1 100 7 
0.0100 0.0700 0.1200 Mtb, Trial 2 100 5 
0.0600 0.2800 0.3600 Mth, Trial 7 100 7 
0.0300 0.0700 0.2000 Mth, Trial 8 100 5 
0.9300 0.9800 0.9900 Mtbh, Trial 1 100 7 
0.0200 0.0600 0.1000 Mtbh, Trial 2 100 5 

TABLE N. 13.-SIMULATION RESULTS CONCERNING 
THE SIZE AND POWER OF THE TEST T7 OF MODEL 

Mh VS. MODEL Mbh 

0.01 0.05 0.10 Data model R t 

0.0100 0.0800 0.1500 Mh, Trial 10 100 S 
0.0100 0.0300 0.0800 Mh, Trial 13 100 5 
0.0600 0.0700 0.0800 Mh, Trial 14 100 10 
0.4000 0.6700 0.7600 Mbh, Trial 8 100 S 
0.1500 0.4000 O.S100 Mbh, Trial 9 100 5 
0.0900 0.2300 0.3300 Mbh, Trial 10 100 5 
0.2800 0.5000 0.6100 Mbh, Trial 11 100 5 
0.0200 0.1400 0.1800 Mbh, Trial 12 100 5 
0.0100 O.OS00 0.1100 Mbh, Trial 13 lOQ 5 

TABLE N. 1 1. SIMULATION RESULTS CONCERNING 
THE; SIZE AND POWER OF THE GOODNESS OF FIT 

TEST T5 OF MODEL Mb 

cx 

0.01 0.05 0.10 Data model R t 

0.0000 0.0200 0.0200 Mb, Trial 11 100 7 
0.0000 0.0500 0.1200 Mb, Trial 12 100 5 
0.0000 ().0600 0.1000 Mbh, Trial 14 100 7 
0.0000 0.1000 0.1600 Mbh Trial 15 100 5 
1.0000 1.0000 1.0000 Mtb, Trial 1 100 7 
0.3300 0.5700 0.7100 Mtb, Trial 2 100 5 
1.0000 1.0000 1.0000 Mtbh, Trial 1 100 7 
0.0600 0.1800 0.3000 Mtbh, Trial 2 100 5 



TABLE N.14. DESCRIPTION OF THE TRIALS OF MODELS Mtb AND MtBh 

Mtbl 

N Pj, j = 1,2, . . .,t c Trial 

400 P1 = ° °S, P2 = 0.35, p3 = 0.25, p4 = 0.15, 2.5 1 
P5 = 0.20, P6= 0.10, p7 = 0.30. 

100 P1 = 0 35, P2 = 0.25, p3 = 0.15, p4 = 0.20, 0.5 2 
P5= 0.30. 

M tbh 

N P,, i = 1,2, . . .,N Pj,j = 1,2, . . .,t c Trial 

400 Pj = 0.15, i = 1,100; Pj = 0.25, Pl = 0.65, P2 = 0 75, P3 = 0.55, p4 = 0.45, 2.5 1 
i = 101,200; Pi = 0.35, i = 201,300; p5 = 0.60, P6 = 0 50, p7 = 0.70. 
Pi= 0.45, i = 301,400. 

00 Pi = 0.15, i = 1,25; Pi = 0.25, i = 26,50; P1 = 0.65, P2 = 0 75, P3 = 0.55, p4 = 0.45, 0.75 2 
Pi= 0.35, i = 51,75; Pi= 0.45, P5= 0.60. 
i = 76,100. 

' The probability of any animal being captured on the jth occasion, j = 1,2, . . .,t, is pj if the animal has not previously been caught and 
cpj if the animal is being recaptured. 

2 The probability of the ith animal being captured on the jth occasion is PiPi if the animal has not previously been caught and pjpjc if the 
animal is being recaptured. 

APPENDIX O 

Interval Estimation 

Use of the Central Limit Theorem (cf. Mood et al. 1974:195) in setting 
so-called "normal theory" confidence intervals for parameters is widespread. 
The theorem usually is cited as justification for asserting that, for "large 
samples," a 95 percent confidence interval for the parameter of interest 0 is 
given by P{0 - 1.96(T(0) S 0 S 0 + 1.96ff(0)} = 0.95, where (0) represents 
an estimate of the standard deviation of 0 (also see Seber 1973:134 for an 
example of an indirectly constructed confidence interval based on asymptotic 
normality). Further impetus is given to this argument when ML estimators 
are involved by the knowledge that, under certain regularity conditions, 
those estimators are BAN (Best Asymptotically Normal). Furthermore, large 
sample (normal theory) confidence intervals based on ML estimators are 
known to have smaller expected width than intervals constructed using any 
other estimator (cf. Mood et al. 1974:393). 

Unfortunately, it is generally true that assertions concerning the operating 
characteristics of large sample intervals cannot be made if sample sizes 
are small or regularity conditions are not met or both. Even more un- 
fortunate is the fact that small or moderate sample sizes are more often the 
rule than the exception in capture-recapture experiments. Therefore, it was 
not unexpected that initial simulation of capture-recapture experilnents re- 
vealed that "normal theory" confidence intervals often exhibit undesirable 
properties. For example, the lower limit of a given interval for population 
size N may be less than the number of different animals captured in the 
experiment. Also, coverage of the confidence interval, i.e., the percentage 
of simulated intervals that contain the true value N, is often significantly 
less than the nominal level of 0.95. Because of such problems, 2 alternative 
interval estimation procedures were investigated in the hope that a more 
satisfactory procedure could be suggested for practical use. 
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The first procedure is based upon the supposition that the distribution of 
the estimator &-1 is more symmetric (hence closer to normality) than the 
distribution of N (cf. Cormack 1968). Thus, the following procedure was 
proposed. First, calculate the ML estimates N and Var(N). Construct a 95 
percent confidence interval for N-1 of the form P{N-t - 1.96N-2v/Var(N) S 
N-1 < N-1 + 1.96N-2+Var(N)}. Finally, invert the interval in the obvious 
manner to arrive at a confidence interval for N. Simulation results involving 
Model Mt showed that, although the distribution of 19-1 was nearly normal, 
the above procedure did not represent a significant improvement over the 
usual large sample interval. Coverage of the 2 procedures was roughly the 
same, but the (4reciprocal>' procedure had, on the average, greater width 
than the usual large sample procedure. Moreover, lower confidence limits 
for N-1 sometimes were less than zero and thus upon inversion, the upper 
limit for s was negative. 

The second alternative method for interval estimation involved the use of 
only the likelihcsod function of the sample and is based largely upon the 
likelihood principle (cf. Kendall and Stuart 1973:226). That principle asserts 
that the likelihood function provides all the information necessary for 
making statistical inferences concerning the data and has been subjected 
to serious theoretical questioning (Stein 1962, Birnbaum 1968> Kendall and 
Stuart 1973). Nevertheless we felt that it would be beneficial to simulate 
the operating characteristics of these 4'likelihood intervals" in capture- 
recapture experiments to evaluate their practical utility. 

Briefly, the mechanics of constructing a likelihood interval are as follows. 
(The reader is referred to Hudson [19711 for a thorough explanation.) For 
a given data set X form the log-likelihood function InL(8|X). (Assume 8 is 
a scalar for simplicity of presentation.) Under the assumption that @, the ML 
estimator of @ is unique, and that the likelihood function is unimodal, the 
likelihood interval I(8) is defined as I(0) - {0:lnL(0|X) > InL(0|X) - 2}. I(0) 
consists of all those 0 for which InL(@ & X) (the log-likelihood function 
evaluated at #) is no more than 2 units away from the maximum value of the 
likelihood function InL(o|X). The assumption is that these values of o are 
<'plausible>> values of @> in view of the data observed. That is, these values 
of 8 produce values of the likelihood function that are not 4far2' from its 
maximumS and thus they cannot be discounted. The use of the value 2 may 
seem arbitrary but Hudson (1971) argued that this value leads to asymptotic 
95 percent confidence intervals. 

Likelihood intervals for population size N were constructed from data 
simulated according to the 2-sample removal experiment treated by Seber 
and Whale (1970). Varying the values of N and p (probability of removal) 
did not appear to significantly affect coverage probability of the intervals 
although it is theoretically true that the coverage probability varies at least 
slightly with the true values of the parameters. Moreover lower limits of 
the intervals did not extend below the number of animals seen. Average 
coverage of the likelihood intervals (95.5%) was approximately the same as 
that of the "normal theory" confidence intervals (92.2%) constructed from the 
same data. However, average interval width for the likelihood intervals was 
consistently greater than that of the normal confidence intervals; on the 
average they were approximately 10 percent greater. In view of these some- 
what mixed results, a second simulation study was performed cyn data from 
Moc e Mt T lat stuc y revea ec * similar results, in that coverage of the 2 
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procedures was on the average approximately the same (96.0% for likelihood 
vs. 93.2No for "normal" intervals), and the average width for the likelihood 
intervals was always greater than that of the normal confidence intervals. 
In one case, the average width of the likelihood interval was more than 3 
times the average width of the normal confidence interval. Finally, in 
virtually every simulation involving likelihood intervals, we noted that 
approximately half of those intervals that did not contain N were too low 
(i.e., the upper limit of the interval was less than N) and half were too high 
(i.e., the lower limit of the interval was greater than N). This is in sharp 
contrast to the results of simulating normal confidence intervals, where we 
have found that the large majority of intervals that do not contain N are 
too low. 

On the basis of the results described above, we recommend continued use 
of the usual large sample confidence interval procedure rather than either 
of the 2 alternative procedures discussed. All 3 procedures possess both 
attractive and unattractive operating characteristics, and the choice therefore 
cannot be clear-cut. The decision to continue the use of large sample con- 
fidence intervals was made for 2 basic reasons. First, biologists in general 
tend to be more familiar with the computation and use of that procedure. 
Second, and more important, is the fact that more is known about the theoreti- 
cal properties of the large sample procedure than is known about the 2 al- 
ternatives, and, therefore, it may be possible to assess theoretically the small 
sample behavior of the procedure in certain capture-recapture situations. 
Finally, we wish to reemphasize that large sample "normal" confidence 
intervals should be used with great caution in many capture-recapture 
experiments, and that much more theoretical work appears necessary before 
more adequate procedures are available. 
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