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FRONTISPIECE. Capture-recapture studies are frequently conducted on small mammal populations such
as snowshoe hares Lepus americanus. (Photograph by Leta Burnham.)
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INTRODUCTION

The estimation of animal abundance is
an important problem in both the theo-
retical and applied biological sciences.
Serious work to develop estimation meth-
ods began during the 1950s, with a
few attempts before that time. The liter-
ature on estimation methods has in-
creased tremendously during the past 25
years (Cormack 1968, Seber 1973).

However, in large part, the problem re-
mains unsolved. Past efforts toward com-
prehensive and systematic estimation of
density (D) or population size (N) have
been inadequate, in general. While more
than 200 papers have been published on
the subject, one is generally left without
a unified approach to the estimation of
abundance of an animal population.

This situation is unfortunate because a
number of pressing research problems
require such information. In addition, a
wide array of environmental assessment
studies and biological inventory pro-
grams require the estimation of animal
abundance. These needs have been fur-
ther emphasized by the requirement for
the preparation of Environmental Impact
Statements imposed by the National En-
vironmental Protection Act in 1970.

This publication treats inference pro-
cedures for certain types of capture data
on closed animal populations. This in-
cludes multiple capture-recapture stud-
ies (variously called capture-mark-re-
capture, mark-recapture, or tag-recapture
studies) involving livetrapping tech-
niques and removal studies involving kill
traps or at least temporary removal of cap-
tured individuals during the study. Ani-
mals do not necessarily need to be phys-
ically trapped; visual sightings of marked
animals and electrofishing studies also
produce data suitable for the methods
described in this monograph.

To provide a frame of reference for
what follows, we give an example of a
capture-recapture experiment to esti-
mate population size of small animals us-
ing live traps. The general field experi-
ment is similar for all capture-recapture

studies (a removal study is, of course,
slightly different). A typical field experi-
ment is the following: a number of traps
are positioned in the area to be studied,
say 144 traps in a 12 x 12 grid, 7 m apart.
At the beginning of the study G =1) a
sample size of n, is taken from the pop-
ulation, the animals are marked or tagged
for future identification, and then re-
turned to the population, usually at the
same point where they were trapped. Af-
ter allowing time for the marked and un-
marked animals to mix, a second sample
(j = 2, often the following day) of n, ani-
mals is then taken. The second sample
normally contains both marked and un-
marked animals. The unmarked animals
are marked and all captured animals are
released back into the population. This
procedure continues for t periods where
t = 2. The animals should be marked in
such a way that the capture-recapture
history of each animal caught during the
study is known. In practice, toes are often
clipped to uniquely identify individual
animals (Taber and Cowan 1969) or se-
rially numbered tags are sometimes used
on larger animals.

Such capture studies are classified by
2 schemes that are directly related to
what class of models are appropriate and
what parameters can be estimated. The
first classification addresses the subject of
closure. Closure usually means the size
of the population is constant over the pe-
riod of investigation, i.e., no recruitment
(birth or immigration) or losses (death or
emigration). This is a strong assumption
and, of course, never completely true in
a natural biological population. For great-
er generality, we define closure to mean
there are no unknown changes to the ini-
tial population. In practice, this means
known losses (trap death, or deliberate
removals) do not violate our definition of
closure. If the study is properly designed,
closure can be met at least approximate-
ly. Open or nonclosed populations ex-
plicitly allow for one or more types of re-
cruitment or losses to operate during the
course of the experiment (Jolly 1965, Se-
ber 1965, Robson 1969, Pollock 1975).
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Only closed populations will be consid-
ered in this monograph.

The second classification depends on
the type of data collected with 2 possi-
bilities occurring (Pollock 1974, unpub-
lished doctoral dissertation, Cornell Uni-
versity, Ithaca, New York):

(1) only information on the recovery of
marked animals is available for each
sampling occasion, j, j=1,2, ...t
information on both marked and un-
marked animals is available for each
sampling occasion, j,j=1,2, ..., t.

(2)

In case (1), population size (N) is not
identifiable, however, other parameters
can be estimated (Brownie et al. 1978).
In case (2), N can be estimated using a
wide variety of approaches depending
upon what we wish to assume. Only case
(2) will be dealt with here.

Objectives

The objectives of this publication are
twofold:

(1) to give a thorough treatment of the
estimation of population size given
multiple capture occasions (t> 2)
assuming
a. population closure,

b. there may exist 3 major types of
variation in capture probabilities;

(2) to extend and make available a pro-
cedure for estimating density (num-
ber of animals per unit area) from grid
trapping studies.

This monograph is specifically orient-
ed to the commonly done grid trapping
and removal studies where closure can
reasonably be assumed. Specifically, we
do not treat the case of 2 livetrapping oc-
casions (t = 2). This subject (i.e., the Pe-
tersen or Lincoln estimators and varia-
tions thereof) is adequately covered in
the literature (see Seber 1973). In fact, to
use the methods presented here for anal-
ysis of grid trapping data we suggest the
study have 5 or more trapping occasions.

There are some types of study designs

and analysis methods we do not cover
here. We do not treat sequential sam-
pling studies (e.g., Samuel 1968), strati-
fied populations (e.g., Darroch 1961, Ar-
nason 1973), Bayesian schemes (e.g.,
Gaskell and George 1972), or change in
ratio estimation (e.g., Paulik and Robson
1969). The subject of stratifying the data
after the fact on such variables as sex,
age, or species is not discussed primarily
because there rarely are enough data for
such a stratification. The contingency ta-
ble approach to estimation from multiple
capture studies is a promising new de-
velopment (see Fienberg 1972), but cur-
rently it is relatively unexplored or de-
veloped; we do not discuss it. Finally, we
do not treat studies or analysis methods
for which the goal is to compute only an
index to abundance (e.g., captures per
100 trap nights); standard statistical tech-
niques are adequate for those types of
studies.

Although our objective is to present
comprehensive methods of analysis, the
scientist must realize that no amount of
sophisticated statistical analysis can com-
pensate for poor study design or field
technique (such as high trap losses). The
experimenter can do far more to ensure
valid estimates by having a properly
planned and conducted study than he can
by sophisticated analysis after the exper-
iment. We have therefore included a sec-
tion on statistical aspects of study design.
That section includes comments on how
to deal with anomalies such as trap losses.

This publication is intended for use by
biologists. Such a goal is difficult to attain
due to the generally technical and math-
ematically complex nature of the subject
matter. We have developed a compre-
hensive computer program to compute
estimates and test statistics for the var-
ious methods covered in subsequent sec-
tions (program CAPTURE). Biologists
who wish to analyze data are urged to use
the computer program rather than to try
to compute the various estimates and test
statistics by hand. Also, most of the math-
ematical and statistical details are con-
tained in appendixes to this monograph.



STATISTICAL INFERENCE FROM CAPTURE DATA—OVtis et al. 9

We hope this publication and the asso-
ciated computer program will be useful
within the framework of the assumptions
considered.

We undertook the theory development
and the writing of this report for a variety
of reasons. Several important advances
have been made but are available only as
unpublished dissertations (Burnham
1972, unpublished doctoral dissertation,
Oregon State University, Corvallis, Ore-
gon; Pollock). New methods have empha-
sized nonparametric approaches that are
robust to the failure of certain assump-
tions. Further, the use of a sequence of
statistical models seems appropriate. It is
unreasonable to expect a single method
to perform well on studies of various spe-
cies in different habitats, or the same spe-
cies at different times. Pollock (unpub-
lished dissertation) treated 4 models, each
based on specific assumptions, and sug-
gested a statistical testing sequence. That
general strategy, followed in this publi-
cation, allows models (assumptions) that
are inadequate to be rejected for a par-
ticular data set. A method inappropriate
for field mice Peromyscus spp. may work
well for voles Microtus spp.

There exists a large body of standard
statistical theory that is directly relevant
and applicable to the estimation problem
in capture-recapture and removal stud-
ies. Biologists need not, however, learn
the theory to be able to use the results of
these advanced methods. The methods
employed here are often beyond the for-
mal training of most biologists, although
they should be able to make proper use
of the results. We stress that we have ex-
amined the estimation and inference
problems in a rigorous statistical frame-
work as opposed to various ad hoc pro-
cedures.

Another objective of this monograph is
to bring to the biologists’ and statisti-
cians’ attention the computer program
written to implement the complex anal-
yses described here. Without the aid of
a computer to do the calculations, devel-
opment of sophisticated analyses is just
an academic exercise. Our philosophy in
this matter has been summed up by

Overton and Davis (1969:404): “Com-
puters will soon prove of very great value
in the routine processing of census and
survey data. When they become gener-
ally available, it will be desirable to ad-
vance to even more realistic and complex
solutions to the problems; there will be
no premium on simplicity, so long as the
users understand the principles and are
able to comprehend the constraints and
limitations of the models on which the
computer solutions are based.”

Assumptions

Every estimation method is based on
a set of assumptions. The general as-
sumptions for the capture-recapture
methods we present here are listed and
discussed below. The assumptions for
the removal experiment are given in the
section on removal studies. Four assump-
tions are necessary for the most restric-
tive experimental situations:

(1) the population is closed,

(2) animals do not lose their marks dur-
ing the experiment,

(3) all marks are correctly noted and re-
corded at each trapping occasion j, and

(4) each animal has a constant and equal
probability of capture on each trap-
ping occasion. This also implies that
capture and marking do not affect the
catchability of the animal.

Before discussing the above, we must
emphasize that the focal point of our
work has been to relax Assumption 4.
That assumption is not met in most cap-
ture-recapture studies, and a large per-
centage of past efforts have been directed
at relaxing it. Assumptions 1-3 must be
made for all models considered here. We
briefly discuss the first 3 and then elab-
orate on the last in the following section.

(1) Population closure.—This assump-
tion arises because population estimation
models were initially conceptualized as
extensions of urn models (Feller 1950).
Such models are basically intended to
provide a “snapshot” of the population
size at a given point in space and time.
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In that context, open and closed models
become essentially noncompeting, since
open models are more frequently used
for purposes of monitoring populations
over a longer period of time and obtain-
ing information concerning such proper-
ties as survival and recruitment rates. If
estimates of population size at a given
time are also desired, however, compe-
tition between the 2 types of models does
arise. In general, open models require
more data than closed models due to the
fact that assumptions are more rigorous
and more parameters are involved.
Therefore, feasibility often prohibits the
use of very general stochastic models for
estimating population size of open pop-
ulations (Jolly 1965; Seber 1965; Robson
1969; Arnason 1972a, 1972b, 1973; Pol-
lock 1975). If, for example, a 10-day ex-
periment is considered, 17 basic param-
eters would have to be estimated using
Jolly’s (1965) model. Hence, data from
many population estimation experiments
are inadequate for obtaining estimates
with acceptable precision and small bias
using models for open populations.
Moreover, unlike the models treated
here, none of those open population
models allows for unequal capture prob-
abilities of individual animals. Let it be
clear, we believe that well-developed,
general models for capture data from
open populations are essential in some
studies. However, we also believe that
for many populations of interest, the clo-
sure assumption can be met approximate-
ly and the models discussed in this
monograph will be useful. For example,
closure might be assumed for an 8-day
study of cottontails Sylvilagus spp. dur-
ing a nonbreeding period in a well-de-
fined (sampled) area.

A number of tests for closure have been
derived (Robson and Flick 1965, Robson
and Regier 1968, Pollock et al. 1974), but
they generally have little chance of re-
jecting closure unless the sample is large
and there is a marked departure from clo-
sure. In addition, closure tests are often
confounded with behavioral response to
capture, e.g., an animal that becomes un-
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catchable, or nearly so, is indistinguish-
able from one that dies or emigrates. Pol-
lock (1972, unpublished master’s thesis,
Cornell University, Ithaca, New York)
discussed a test for mortality in some de-
tail. The tests for recruitment are more
difficult. Thus, the biologist is forced to
consider carefully the design of such
studies in an effort to assure that the clo-
sure assumption is met. Finally, we note
that the tests for closure implicitly as-
sume equal capture probabilities; there-
fore, such tests can reject closure when
in fact closure is true but equal capture
probability is false. This greatly lessens
the value and power of such tests. We
believe closure will have to be assessed
largely from a biological basis rather than
from any definitive statistical tests.

The closure assumption can be relaxed
in some cases. Seber (1973:70-71) showed
that natural mortality will not bias some
estimators if it acts equally on marked
and unmarked segments of the popula-
tion. In such cases, the population esti-
mate then relates to the size of the pop-
ulation at the beginning of the study.
However, if recruitment and mortality
occur during the experiment, the esti-
mate of N will be too high, on the aver-
age, for both initial and final population
size (Robson and Regier 1968).

(2) Permanency of marks.—Loss of marks
(tags) violates the closure assumption and
will result in an overestimate of N. If the
study is of short duration (to help assure
the closure assumption), it seems that
loss of marks will generally be a minor
problem. Some exceptions, such as radio-
active isotopes with a very short half-life,
undoubtedly occur (cf. Seber 1973:93-
100).

(3) Reporting and recording marks
(tags).—This assumption can be easily
assured by working carefully. Field re-
ports and keypunched cards should be
edited and verified. Often, a pilot study
may be beneficial to train personnel and
identify any problems with the marking
method.
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Unequal Capture Probabilities

The fourth assumption is particularly
important and, for this reason, we focus
on it here. It is now widely recognized
that this assumption is commonly not met
(e.g., Young et al. 1952, Geis 1955a, Hub-
er 1962, Swinebroad 1964). Edwards and
Eberhardt (1967), Nixon et al. (1967), and
Carothers (1973a) provided clear evi-
dence that accurate population estima-
tion usually will require models that pro-
vide for unequal probabilities of capture.
The effects of unequal capture proba-
bilities on estimates derived from models
that assume equal catchabilities have
been studied by computer simulation by
Burnham and Overton (1969), Manly
(1970), Gilbert (1973), and Carothers
(1973b). Estimators studied were gener-
ally found to be significantly biased
when this assumption was violated.

This monograph presents a number of
models and estimators developed to relax
the critical assumption of equal catch-
ability. We have drawn heavily from the
work of Pollock (unpublished disserta-
tion, pers. comm.) and Burnham (unpub-
lished dissertation). Following Pollock
(unpublished dissertation), we consider
a sequence of models each allowing for
different combinations of up to 3 types of
unequal capture probabilities:

(1) capture probabilities vary with time
or trapping occasion—Model M,

(2) capture probabilities vary due to be-
havioral responses—Model My,

(3) capture probabilities vary by individ-
ual animal—Model M, (h = hetero-
geneity among animals).

The assumptions regarding unequal cap-
ture probabilities are to be explicitly em-
bodied in probability models that de-
scribe capture studies.

We agree with Carothers (1973b:146)
that equal catchability is an unattainable
ideal in natural populations (cf. Seber
1973:81-84). We discuss the 3 simplest
ways to relax this assumption.

Model M, allows capture probabilities
to vary by time (e.g., each trapping oc-

casion). This situation may be common
even though the number of traps might
be fixed during the course of the study.
For example, a cold rainy day during the
study might reduce activity of the ani-
mals and reduce the probability of cap-
ture. Also, if different capture methods
are used on each occasion, this model
could be appropriate.

Model M, allows capture probabilities
to vary by behavioral response or “cap-
ture history,” and deals with situations in
which animals become trap happy or trap
shy. Carothers (1973a) referred to this as
a contagion of catchability. This implies
that an animal’s behavior tends to be al-
tered after its initial capture (e.g., per-
haps the animal was frightened or hurt
during initial capture and marking and
thereafter it will not likely enter another
trap).

Model M,, allows capture probabilities
to vary by individual animal. This situa-
tion has been modeled only with great
difficulty and requires that additional dis-
tributional assumptions be made. Indi-
vidual heterogeneity of capture may arise
in many ways. Perhaps accessibility to
traps (as influenced by individual home
ranges), social dominance, or differences
in age or sex can cause such an unequal
probability structure. This is an impor-
tant type of variation and has been rig-
orously treated by Burnham (unpub-
lished dissertation), whose nonparametric
approach is presented in a later section.

In addition to these 3 simple models,
we consider all possibile combinations of
the 3 types of unequal capture probabil-
ities (i.e., Models M, M, My, and
Mun). We also treat the “null” case in
which capture probability is constant
with respect to all factors (Model M,).
Model M, corresponds to the 4 assump-
tions listed earlier. For simplicity, we de-
note estimators of population size for a
specific model using the same subscript
notation. For example N, denotes the es-
timator derived from Model M,; N, de-
notes_the estimator derived from Model
M;; Npn denotes the estimator derived
from Model M,,, and so on.
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Perspectives

We wish to emphasize that a specific
set of assumptions is the basis for a spe-
cific model. The assumptions and model
then represent a tentative hypothesis
when analyzing the results of a particular
capture experiment conducted to esti-
mate population size or density. Cormack
(1968:456) stated, “In all cases every iota
of information, both biological and statis-
tical, must be gathered to check and
countercheck the unavoidable assump-
tions.” Statistical testing within and be-
tween models (assumptions) is empha-
sized here. In spite of this, more work in
this direction is clearly indicated. Our
approach is to derive models for an array
of types of unequal probabilities of cap-
ture. We conducted statistical tests to en-
able selection of an appropriate model for
the analysis of a particular data set (cf.
Pollock unpublished dissertation). Some
models are very sensitive to small depar-
tures from the underlying assumptions;
therefore, testing between models and
investigating the robustness of each es-
timator are essential.

The importance of such testing is re-
flected in the fact that use of an inade-
quate model will often lead to a highly
biased estimate of population size. This
is perhaps to be expected, if not obvious.
More subtle is that estimates of the sam-
pling variance (a measure of precision)
are quite dependent on the correct mod-
el. Bias of the estimator may be small, but
the estimate of variance may be very
poor, even with large samples. This can
cause, for instance, associated confidence
intervals to have very poor properties.
The importance of assumptions and their
testing cannot be overemphasized. Pau-
lik (1963) noted that an approximately
correct estimate with low precision is al-
ways better than a highly precise incor-
rect estimate. Tests of assumptions con-
cerning equal capture probabilities are
especially important because estimators
based on given sets of assumptions are
usually not robust to departures from
those assumptions (Seber 1970, Gilbert
1973).
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We believe rigorous probability models
explicitly incorporating various tentative
assumptions represent the best approach
toward estimating population size N, or
density D. The tentative nature of the as-
sumptions and the general uncertainty
about biological processes make testing
a key concern. As Seber (1973) pointed
out, statistical models should be used
with caution, due to lack of control over
natural populations. All models depend
on the validity of various underlying as-
sumptions—that are often difficult to
evaluate rigorously.

Finally, we believe that theory and ap-
plication must be integrated. Either in
the absence of the other will stifle prog-
ress. For this reason we have tried to in-
tegrate the statistical theory with the bi-
ological application. We have, however,
tried to separate the more complex sub-
jects and include them as a series of tech-
nical appendixes. We urge biologists to
try to consider and understand the ap-
pendixes, and we ask statisticians to con-
tinue to be concerned with the biological
complications and realities before at-
tempting additional theory development.
Through an integrated team approach
we can expect further progress on this
series of estimation problems.

Comments on the Use of
This Monograph

We cover several topics here, and pre-
sent mathematical as well as applied re-
sults. Topics covered include data anal-
ysis of short-term livetrapping and
constant effort removal studies, design of
such live trapping studies, and simula-
tion results on inference procedures. Nu-
merous examples are also given. A vari-
ety of uses of this monograph are
anticipated by: (1) biologists who must
analyze actual data, (2) biologists (and
statisticians) faced with designing capture
studies, (3) persons interested in perfor-
mance of estimators presented here, (4)
statisticians interested in developing
more advanced models, and (5) educators
who seek to teach courses on the subject
of population size estimation.
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Biologists who have data from closed
population livetrapping studies will have
to read quite a bit of this monograph be-
fore they can understand the methods.
They do not need to read the appendixes.
They would have to understand all sec-
tions through TESTS OF MODEL ASSUMP-
TIONS, except REMOVAL MODELS. We
believe this can be done by anyone hav-
ing had a solid course in college level
algebra and beginning statistics. In order
to understand the essence of what we
present, the reader does not have to fol-
low all the mathematical descriptions of
models nor discussions of model prop-
erties. We have included numerous ex-
amples. In particular, the reader should
benefit greatly from the section on Coum-
PREHENSIVE EXAMPLES.

If the reader intends to do, say, data
analysis according to these methods, it is
virtually necessary to use program CAP-
TURE (see COMPREHENSIVE COMPUTER
ALGORITHM). This program is available
and there is a user’s manual for it. Per-
sons with many data sets to be ana-
lyzed should get the program. Con-
versely, we do not recommend trying to
implement this computer program if one
has only a few (or one) data sets to ana-
lyze. In this latter case, it is better to have
the data run for you. The authors are will-
ing to assist in running such data provid-
ed the user arranges his own keypunch-
ing of the data in the necessary format
(we can supply this format).

If one’s goal is to analyze some removal
data, the relevant sections are those on
Models My, My, and the removal models
(plus the introductory sections). Again,
the authors would try to help users ana-
lyze removal data; within reasonable lim-
its we may be able to run the data anal-
yses or assist in setting them up.

Many readers will sometimes be faced
with designing a capture study. The sec-
tion on STUDY DESIGN covers some fun-
damental design aspects of livetrapping
studies for closed populations. If your
goal is to design a study, read that section
at a minimum; to get full advantage of
this monograph in terms of design, you

will need to read most sections, excep-
tions being HISTORICAL OVERVIEW, RE-
MOVAL MODELS, and material following
the STUDY DESIGN section.

If you are interested in obtaining in-
sights into the performance of various es-
timators, you should put special effort
into studying the numerous simulation
results presented here. This would re-
quire reading almost all the text and care-
ful study of Appendix N.

Persons interested in doing further re-
search along the lines of the models and
approach of this monograph will have to
carefully study almost everything here,
especially the appendixes.

Finally, this monograph and program
CAPTURE have value for teaching and
learning about population size estima-
tion. The simulation feature of CAP-
TURE can be especially valuable in
teaching the concepts of sampling varia-
tion and properties of estimators. Persons
interested in performing such simulation
of the methods presented here (either for
design of studies, evaluation of esti-
mators, or teaching purposes) will need
to implement the program for their own
use.

ACKNOWLEDGMENTS

Dr. K. H. Pollock, University of Read-
ing, provided several ideas and criticisms
through correspondence; in addition, we
have drawn on the results of his doctoral
program. Drs. M. H. Smith and J. B. Gen-
try, Savannah River Ecology Laboratory,
contributed to this work through discus-
sion and provided samples of their re-
search to be used for program testing.
Data to be used as examples were pro-
vided by A. D. Carothers, H. N. Cou-
lombe, C. T. Cushwa, W. R. Edwards, S.
W. Hoffman, E. C. Larsen, R. F. Raleigh,
and V. H. Reid.

We appreciate extensive comments
made by A. N. Arnason, A. D. Carothers,
W. R. Clark, S. W. Hoffman, and R. P.
Davison on an earlier draft of the manu-
script. The comments by A. N. Arnason
and G. A. F. Seber on the final version of



14 WILDLIFE MONOGRAPHS

the manuscript are also much appreci-
ated.

Dr. R. G. Streeter, U.S. Fish and Wild-
life Service, provided encouragement
during the investigations.

This work was performed under Con-
tract 14-16-0008-1224 of the Coal Pro-
gram, Office of Biological Services, U.S.
Fish and Wildlife Service, to the Utah
Cooperative Wildlife Research Unit.
Funds for this work were made available
to the Fish and Wildlife Service as part
of the Federal Interagency Energy/En-
vironment Research and Development
Program, Office of Research and Devel-
opment, U.S. Environmental Protection
Agency (IAG-EPA-D5-E385). Publica-
tion costs were paid by the Oil Shale Pro-
gram, Office of Biological Services, U.S.
Fish and Wildlife Service, contract 14-16-
0008-1197. Final debugging of the com-
puter program, and preparation of exam-
ples were performed under the auspices
of the U.S. Energy Research and Devel-
opment Administration.

FUNDAMENTAL CONCEPTS

This section presents notation and dis-
cusses the statistical techniques used in
this monograph. The subject matter is
basically technical in nature, but we have
tried to keep the presentation simple and
refer the reader to appendixes for more
complex details. We believe it is impor-
tant for users of the methods described in
this publication to understand the mate-
rial presented in this section.

Data and Parameters

All the models discussed here assume
population closure (except for known re-
movals). Therefore, the parameter we
wish to estimate is population size N
which is constant. Moreover, because the
same individual animals compose the
population on each trapping occasion, j =
1,2, ..., t,we can conceive of the individ-
uals as being numbered i=1,2, ..., N.

The basic capture data are convenient-
ly expressed in matrix form as

X Xp oo Xy
[X;l = )gzl X_zz ces )szt
Xni Xie Xt

where

1 if the i animal is caught on the
j™ occasion
0 otherwise.

Xy =

The X matrix is a simple way to record
the capture or noncapture of each animal
in the population on each trapping occa-
sion. Row i gives the trapping results for
individual i, while column j gives the re-
sults of the j™ trapping occasion. Note
that the matrix X may not be observed in
its entirety because some animals may
never be captured; therefore, those rows
of X are all zeros.

A series of specific models for capture
data can be derived if we define the fol-
lowing general structural model:

pi; = the capture probability of the i
individual in the population on
the j™ trapping occasion, where i
=1,2,..,N,and j=1,2, ... t

For example, if we assume the restric-
tions py = p for all i and j we get Model
M,, the simplest possible model. All oth-
er models we introduce may be thought
of as generalizations of Model M,.
Hence, in the following sections, models
are developed based upon capture prob-
abilities being time specific, behaviorally
related, or differing among individual an-
imals. Therefore, capture probabilities
are the crucial element of the series of
models we discuss.

The above structure and assumptions
suffice to specify the marginal distribu-
tion of each individual X (i.e., they are
Bernoulli random variables); however,
they do not specify the joint distribution
of all Xj;. Therefore, we have assumed
joint independence of the variables in
order to have a completely specified gen-
eral model structure. Specifically, we as-
sume that given the correct model (i.e.,
the correct specification of capture prob-
abilities py), then the elements of X;; are
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mutually independent random variables.
This assumption is not testable unless one
first knows what the correct model is
(which we never will for real data). It is
our opinion this is not a restrictive as-
sumption and it need not be a source of
concern.

Statistics and Notation

Probability models from which esti-
mators of population size N may be de-
veloped are discussed in following sec-
tions. A few simple statistics are needed
for these models. They are defined and
discussed below.

n; = the number of animals captured
in the j* sample,j=1,2, ..., t,

N
=3 Xy,
i=1

n. = the total number of captures dur-

t
ing the study = ) n;,
=

u; = the number of new (unmarked)
animals captured in the j* sam-
ple,j=1,2, ...t

f; = the captures frequencies = the
number of individuals captured
exactly j times in t days of trap-
ping,j=1,2, ..., t.f, will be used
for the number of individuals
never captured (obviously, f, is
not observable).

M., = the number of distinct individuals
caught during the experiment (re-
call that t is fixed for a given
experiment),

t t
=3f=Su,
=1 j=1

M; = the number of marked animals
in the population at the time of
the j**sample,j= 2,3, ..., t.(Note
that M, = 0),

M. = sum of the M; [does not include

t
Mt+1] = E Mj,
=1

m; = the number of marked animals
captured in the j sample, j =

2, ..., t. Note that u;= n;— m;and
that m, = 0,

t
m. = sum of the m; = ) m;.
=1

The statistics u;, f;, M;, and m; may also
be computed directly from the X matrix.
However, the computation is not as
straightforward as that of n; and is not giv-
en here. We denote X, as the number of
animals with a specific capture history w.
For example X, represents those in-
dividuals caught on trapping occasions 1,
4, and 5. The set of all the possible capture
histories will be symbolized as {X,}. In
general, with t capture occasions there are
2! possible capture histories.

Two other terms used frequently in this
monograph are:

Robustness (of an estimator).—A robust
estimator is one that is not sensitive to the
breakdown of a particular assumption. A
specific measure of robustness is difficult
to define. Therefore, a somewhat subjec-
tive determination regarding the robust-
ness of an estimator is made relative to
the general performance of the estimator.
Performance is evaluated with respect to
the essential criteria of bias, precision,
and confidence interval coverage. For ex-
ample, the estimator developed under
Model M, performs very poorly with re-
spect to all criteria if individual hetero-
geneity to capture is present in the pop-
ulation. We say that this estimator is not
robust to a particular assumption. In con-
trast, the jackknife estimator for Model M,,
appears to be fairly robust for a number
of specific assumptions.

Bias (of an estimator).—Bias is the differ-
ence between the expected value of an
estimator and the true parameter being
estimated, e.g., B = E(N) — N. Percent
relative bias, 100{[E(N) — NI/N} is de-
noted as RB. Overton and Davis (1969)
gave a good discussion of these and other
related terms.

A final note concerns the differences
between parameters (true values) and es-
timates. We are concerned chiefly with



16 WILDLIFE MONOGRAPHS

making estimates of the parameters N and
D, population size and density, respec-
tlvely We denote our sample estimators
of these parameters as N and D. Biologists
are referred to Kendall and Buckland
(1971) for definitions of standard statisti-
cal terms.

Parameter Estimation

The data from capture-recapture or re-
moval studies are samples. This imposes
the need for a probabilistic treatment of
the data to derive correct estimation and
inference procedures. The models we
consider here are termed stochastic
models. Unlike the models for open pop-
ulations, the only stochastic component
for models under population closure re-
lates to the sampling process: i.e., the cap-
ture probabilities. Model formulation in
this context begins with a set of explicit
assumptions. A probability model for the
sampling distribution of the X matrix (the
basic data) is derived to quantitatively
express the assumptions. A probability
function is a form of mathematical rep-
resentation of the observed data under a
specific set of assumptions. It provides a
basis for quantitatively and explicitly in-
corporating the specific assumptions
about capture probabilities and for de-
veloping the point and interval estimators
by rigorous statistical estimation tech-
niques.

Most parameter estimators in this pub-
lication were derived using the method
of maximum likelihood (ML). Several
models and their corresponding esti-
mators were taken from existing literature
(e.g., Zippin 1956, Darroch 1958), often
with some modification. Other models
and estimators were derived during the
course of this study.

Estimators found by the ML, method are
optimal, at least for large samples. (For a
discussion of optimality, refer to Appen-
dix A). This is a generally accepted tenet
of statistical estimation theory (Mood et
al. 1974). In general, ML estimators of
unknown parameters (e.g., N) are found
by application of results from simple cal-

culus, using the likelihood function de-
rived from the probability model. In some
cases, the estimator may take a simple,
easy to use form. For example, the ML
estimator of N for Model M, for 2 sample
occasions (t = 2) is the Petersen estimator

J o M Ny
N, =
my

where n;, n,, and m, have already been
defined.

However, in capture-recapture models
we rarely find that the exact ML estima-
tors exist as a simple formula as above. To
illustrate this, consider the model devel-
oped by Darroch (1958) when 4 sampling
occasions are considered (t = 4) and the
capture probabilities are assumed to vary
Only by time (i'e', Pi1, P2 Ps, and p4)'
The approximate ML estimator of N for
this model (see Darroch 1958) is the
unique solution of the equation

)- 0-8)01- %)
(-2)0-%)

In general, for Model M, the ML esti-
mator is the solution of the equation

(1-%)-110-%)

_ M
(=%

For t greater than 2, this equation cannot
be solved algebraically for N. In other
words, it is not possible to arrange the
symbols algebraically in such a way that
only N appears on one side of the equation
and all other terms appear on the other
side. The equation can be solved, but only
on a case by case basis using a numerical
procedure. We say the equation does not
have a simple, “closed form” solution.
Complex probability models often do not
have simple estimators and tests of as-
sumptions; nonetheless, complex models
appear necessary to describe many cap-
ture-recapture studies adequately.

Our work has shown that several of the
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approximations of N suggested for this
model in the past are fairly poor. Fur-
thermore, some of the iterative solutions
given (e.g., Darroch 1958) produce only
approximate ML estimates. We have ob-
tained exact ML estimators for all the
models in this publication (except Models
My, My, My, and My, by employing nu-
merical procedures on a digital computer
(in fact no estimators can be derived for
the latter 3 models). We have found the
maximum of the likelihood function in
such a way as to obtain exact integer val-
ued ML estimators of N. The disadvan-
tage here, of course, is that we cannot
show simple closed form estimators. This
subject is discussed further in Appendix
A.

We find that the estimator of N under
each model involves only simple statistics
computed from the X matrix. Individual
captures are not employed —only various
sums (linear combinations) derived from
the X matrix. Those sums are statistics
such as nj, n., u;, and M;;. For any model
we consider, there exists a set of simple
statistics, called minimal sufficient statis-
tics (MSS). Estimators should be based on
only MSS. The use of the ML method
results in estimators that are always func-
tions of the MSS. This is a desired prop-
erty because it can be shown that the MSS
contains all the information available
from the experiment for estimating the
parameter(s) of interest (in our case N).
An estimator based on statistics other than
MSS is not using all available information
and is, therefore, not optimal. Some sta-
tistical tests of assumptions will depend
on information other than MSS.

The number of parameters that can be
identified (estimated) is less than or equal
to the number of elements in the MSS
(regardless of the estimation method
used). The subject of “identifiability” of
parameters is important in the material
that follows and, therefore, we place some
emphasis on MSS. For example, under
Model M,, the MSS is n. and M, ,, where-
as under Model My, the MSS is f;, j = 1,
2, ..., t. We make frequent use of the
MSS in the following sections.

Interval Estimation

One of the several advantages of the
probability model/ML approach is that
estimates of sampling variance and co-
variances can be computed as part of the
ML method. These measures of precision
are essential in making inferences from
the sample results of the experiment. The
variance and covariance estimators are
derived from “large sample” theory and
usually are of unknown value as measures
of precision in “smaller” samples. We
have performed a large number of Monte
Carlo simulation experiments (Appendix-
es M and N) to examine the small sample
properties of such variance estimators and
the confidence intervals that depend on
them. Interval estimation is an old subject
in the statistical literature, and we refer
the interested reader to the text by Mood
et al. (1974) for details. Seber (1973) also
gave numerous examples.

Typically, the ML estimator of N is not
normally distributed unless large samples
are taken. Because confidence intervals
commonly used depend upon an assump-
tion of normality, we explored alternative
interval estimation techniques (Appendix
0). The alternative procedures were not
totally satisfactory and we will use the
standard procedure as follows to construct
an approximate 95 percent confidence in-
terval on N:

N + 1.96/Var(N).

This procedure has its limitations but, all
things considered, appears to be best at
present.

HiSTORICAL OVERVIEW

Although the basic concept of obtain-
ing information about an animal popula-
tion by marking some of its members may
be traced as far back as the 17th century
(Chapman 1948) and to Petersen’s (1896)
expression of the fundamental principle,
one may argue that the practical begin-
nings of the literature concerning the
marking method can be associated with
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Lincoln’s (1930) use of band returns to
estimate the size of the North American
waterfowl population. In the nearly 50
years since Lincoln’s (1930) initial work,
a voluminous literature has resulted from
efforts directed toward deriving and re-
fining techniques based on the capture—
recapture method. In the past decade, 2
notable attempts to summarize the exist-
ing literature have been made. The first
is by Cormack (1968) who provided a sur-
vey of mathematical models proposed for
use in capture-recapture experiments.
The second is an extensive text by Seber
(1973) that attempted to bring together all
the proposed techniques for estimating
population abundance and related pa-
rameters. Included as a subset of those
techniques are those concerned with the
capture-recapture method. In the pre-
sentation of those techniques, a substan-
tial amount of mathematical detail is
provided, as are numerical examples.
Furthermore, assumptions that must be
met to ensure validity of a particular tech-
nique are presented; methods for testing
the validity of some of the assumptions
are given.

Because of the existence and quality of
the cited works, no attempt is made here
to present specific methods associated
with the theory of capture-recapture and
related experiments. Rather, we present
a review that follows the chronological
development of conceptual approaches
in the literature.

The initial state of the art is well char-
acterized by Lincoln’s (1930:2) statement
of the solution to his population estima-
tion problem: “Given a fairly accurate
statement showing the number of wild
ducks killed in North America in any one
season, then the total number of ducks
present on the continent for that season
may be estimated by a percentage com-
putation, based upon the relation that the
total number of banded ducks killed dur-
ing their first season as band carriers
bears to the total number banded.” As
one might expect, no mention is made of
the statistical properties such an esti-
mator might possess or of the underlying
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assumptions, such as random sampling,
that influence the validity of the method.
Such considerations were at least hinted
at, however, in Schnabel’s (1938) paper
that extended the method to the situation
in which members of the population
were marked and released back into the
population on more than 1 occasion.
Mention is made of the percentage rela-
tive bias of the estimators in an experi-
ment in which the population size is
known, and the reader is cautioned that
“none of the solutions can be expected to
provide more than an estimate of the gen-
eral order of magnitude of the total pop-
ulation” (Schnabel 1938:352). Presum-
ably, some caution is generated by the
fact that “assumptions of random sam-
pling and constant population are only
rough approximations to the actual situ-
ation” (Schnabel 1938:352). More consid-
eration was given to the uses of the cap-
ture-recapture technique in a sequence
of papers by Jackson (1933, 1937, 1939,
1940), who was concerned not only with
estimating population size but also with
birth-immigration and death—emigration
parameters. Contained in the considera-
tion of those parameters is the concept
that the population is not “closed,” i.e.,
population size is not constant through-
out the sampling period. Those methods
were then being applied mainly to fish
and insect populations and not to terres-
trial wildlife populations, although some
exceptions did exist (e.g., Green and Ev-
ans 1940). Scepticism as to the worth of
the method with respect to wildlife pop-
ulations was expressed by Dice
(1941:402), who stated that “the applica-
tion of the proportional method of cal-
culating mammalian populations may
often require as much effort as the com-
plete trapping or counting of the whole
sample population.” Nonetheless, effort
continued in development of the theory.
Schumacher and Eschmeyer (1943) pro-
vided an alternative solution to that of
Schnabel (1938) by the use of regression
techniques. Evidently, their work was
spurred by the desire to develop an es-
timator that would be more robust to de-



STATISTICAL INFERENCE FROM CAPTURE DATA—OVtis et al.

partures from the underlying assump-
tions of the Schnabel method. Moreover,
unlike Schnabel, they provided an esti-
mator for the standard error of the esti-
mate. Similar regression techniques were
also investigated by Hayne (1949a) and
DeLury (1958).

A significant change in both the quality
and quantity of work in the field of cap-
ture-recapture theory occurred with the
appearance of several important papers
of the early 1950s. Those papers sig-
naled the beginning of a more rigorous
mathematical treatment of the theory in
terms of both estimation and testing of
assumptions. Bailey (1951), for example,
proposed a binomial model for the single
mark-release situation. He used the ML
theory to develop an estimator of the pre-
cision of the population size estimator,
the latter estimator being the same as
Lincoln’s (1930). Chapman (1952) con-
sidered a hypergeometric model for the
multiple capture-recapture experiment
and derived an approximate expression
for the resulting ML estimator. He also
gave a test for determining whether the
probability of capture is independent of
tagging. Alternative sampling schemes
were proposed by such authors as Chap-
man (1952, 1954) and Goodman (1953).
Such schemes were designed to avoid
undesirable statistical properties associ-
ated with the direct sampling method
that considers the total number of ani-
mals caught on each occasion as a fixed
parameter. For instance, Chapman (1952)
pointed out that an estimator of popula-
tion size obtained via inverse sampling
(i.e., considering the number of marked
animals caught on each occasion as fixed)
is unbiased, whereas the estimator asso-
ciated with direct sampling is biased. In
addition, removal data, similar to the type
of data used in marking experiments, was
used in alternative methods proposed by
Moran (1951) and DeLury (1951). Also at
that time, progress was made in the the-
ory of estimation in open populations
through a sequence of papers by Leslie
and Chitty (1951), Leslie (1952), and Les-
lie et al. (1953). Those authors used ML
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theory for estimating such parameters as
death rate and population size, and de-
voted much effort to the examination of
assumptions.

The appearance of such mathematical
treatments generated most of the impor-
tant immediately succeeding work on the
development of the theory. As an exam-
ple, one can consider the work of Zippin
(1956), who provided a more complete
statistical treatment of the removal meth-
od first suggested by Moran (1951). An
important example is the work of Darroch
(1958), who was responsible for the cor-
rect derivation of the probability model
for the multiple capture-recapture exper-
iment first treated by Schnabel (1938).
Moreover, Darroch presented expres-
sions for the asymptotic bias and approx-
imate variance for his approximate ML
estimator and a method for constructing
confidence intervals. Darroch’s (1958,
1959) work on the closed model, the birth
only and death only models stands as a
cornerstone in the development of the
theory.

Given the methods available, it was
now possible for researchers to direct ef-
fort toward the development of statistical
tests of assumptions underlying the
methods of estimation. One of the most
generally invoked assumptions of pro-
posed estimation techniques was (and
still is) that all animals in the population,
regardless of capture history and other
individual characteristics, are equally at
risk to capture on each trapping occasion.
Leslie (1958) devised a test directed to-
ward that hypothesis, which was later ex-
tended by Carothers (1971). Cormack
(1966) made the important point that fail-
ure of the above assumption may be
caused either by each animal in the pop-
ulation possessing an “innate catchabil-
ity” which varies among individuals over
the population, or by an individual’s
probability of capture being affected by
its capture history, or both. Cormack
(1966) provided a test for the former as-
suming the latter is false. Seber (1962,
1965) and Robson and Youngs (1971) con-
sidered the problem of testing whether
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marking an animal affects its probability
of capture on subsequent trapping occa-
sions, and Manly (1971) provided a meth-
od for estimating the effect of marking on
survival of the animal. During that peri-
od, Seber (1965) and Jolly (1965) inde-
pendently developed what is now known
as the Jolly-Seber method of estimating
open population parameters from multi-
ple capture-recapture experiments. That
model, aspects of which were later gen-
eralized by Robson (1969) and Pollock
(1975), allows the population to be ex-
periencing death, recruitment, immigra-
tion, and permanent emigration. Arnason
and Baniuk (1977) provided a compre-
hensive computer algorithm to compute
estimates for various models for open
populations. Existence of such open pop-
ulation models points out the need for
tests for closure of the population under
study. Unfortunately, good tests of that
assumption are still not available.

The importance of developing and us-
ing valid tests of model assumptions was
further emphasized by results appearing
simultaneously in the literature concern-
ing the operating characteristics of exist-
ing estimation techniques. Edwards and
Eberhardt’s (1967) study on a confined
rabbit population of known size revealed
large biases in both the Schnabel (1938)
and Schumacher-Eschmeyer (1943)
methods of estimation. The authors con-
jectured that those biases were due to
“individual animals having different or
changing probabilities of capture.” A
simulation study by Braaten (1969) indi-
cated serious bias in the estimators de-
rived from DeLury’s (1947) catch—effort
model if the assumption of “constant
catchability” is violated. A similar lack of
robustness to unequal capture probabili-
ties among animals was exhibited by es-
timators examined in a computer simu-
lation study by Burnham and Overton
(1969), who generated “populations’ us-
ing the family of beta distributions. More
recently, Carothers (1973b) sampled a
population of known size, the members
of which were the taxicabs of the city of
Edinburgh. The assumption of popula-
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tion closure was reasonable, and non-
homogeneous individual capture proba-
bilities were caused by the sampling
schemes used. Various “Schnabel type”
estimators, that assume equal capture
probabilities, were reported as having
substantial bias. In addition, 2 regression
type estimators proposed by Tanaka and
Kanamori (1967) and Marten (1970), each
of which assumed a certain form of un-
equal capture probabilities, failed to re-
duce significantly the magnitude of the
bias of the “Schnabel” estimators.

The appearance in 1965 of the Jolly—
Seber method of estimating parameters
of open populations did not preclude the
development of additional estimation
techniques in the literature, in spite of
the fact that Cormack (1968:487) be-
lieved the method to be “an extremely
powerful general formulation™ of the cap-
ture-recapture experiment. Although the
method is general in the sense that it al-
lows for such processes as recruitment
and mortality, it is restricted by the as-
sumption that all animals have the same
probability of capture on a given trapping
occasion. In many experimental situa-
tions, the assumptions of population clo-
sure and unequal capture probabilities
constitute a more realistic set of assump-
tions than the set required for the Jolly-
Seber model. Hence, parameter es-
timators derived from models based on
different sets of assumptions than the Jol-
ly-Seber models continued to be devel-
oped by researchers such as Tanaka and
Kanamori (1967), Eberhardt (1969a), and
Marten (1970). The jackknife technique
for bias reduction proposed by Quen-
ouille (1949, 1956) was used by Burnham
(unpublished dissertation) to derive an
estimator for the situation in which each
member of the population has an “in-
nate” probability of capture that varies
among individuals. That effort represents
a unique attempt to develop a robust es-
timator of population size that is non-
parametric, i.e., one that does not need to
assume how capture probabilities are dis-
tributed over the population. Such non-
parametric approaches are appealing
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because they are robust to specific
assumptions regarding the experiment
and tend not to suffer from breakdown of
specific assumptions used to parameter-
ize the model. Pollock (unpublished dis-
sertation) also considered estimation of
population size under the assumption of
heterogeneity of capture probabilities,
but with the added complication that an
animal’s probability of capture may be
altered by its capture history. However,
no specific estimation procedure for that
model had been proposed in the litera-
ture until the appearance of the general-
ized removal method described in this
monograph.

This overview would not be complete
without making some observations con-
cerning methods of density estimation in
capture-recapture experiments. The no-
tion that the effective area of trapping is
greater than the actual area of the trap-
ping grid (i.e., the so-called edge effect)
has long been recognized. Dice (1938,
1941) corrected for the effect by adding
to the grid area a strip of one-half the
home range of the animal, and that re-
mains the most common practice at pre-
sent. Other authors (Stickel 1954, Mohr
and Stumpf 1966, Smith et al. 1975) have
used recapture radii to correct for edge
effect bias. Assessment lines have also
been used to estimate density (Kaufman
et al. 1971, Smith et al. 1971). More re-
cently, Burnham and Cushwa (pers.
comm.) have formalized MacLulich’s
(1951) technique for estimating density
that involves using concentric trap grids
to allow simultaneous estimation of den-
sity and edge width.

An underlying theme of this historical
overview is that any capture-recapture
experiment requires that the researcher
make specific assumptions concerning
the many factors that affect the results of
the experiment. The assumptions that are
chosen determine which statistical esti-
mation procedures should produce the
best results available from the data. Many
estimation procedures have been pro-
posed because several different assump-
tions can often be made for a given factor.
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Unfortunately, it has been shown that
misinformation results if, for a given ex-
periment, assumptions are not valid or
statistical estimators are not appropriate
or both. Thus, it should be obvious that
a rigorous approach to parameter esti-
mation in capture-recapture experiments
will include a statistical testing algorithm
that allows the data to aid in selection of
the “best” set of assumptions for the ex-
periment. Although some tests of specific
assumptions have been introduced, uni-
fied approaches to the problem have not,
for the most part, received attention in
the literature (an exception is the work of
Pollock, unpublished dissertation). The
concept of a unified approach is the basis
for the development of this monograph.
We believe an approach based on such a
concept is a step in the direction of im-
proved analyses of data from capture-re-
capture experiments. Furthermore, we
hope that future research will be directed
to that same objective.

MODEL M. CAPTURE
PROBABILITIES ARE CONSTANT

Structure and Use of the Model
Assumptions and Parameters

The simplest of all models under con-
sideration results from the assumption
that all members of the population are
equally at risk to capture on every trap-
ping occasion. Moreover, the occasions
themselves do not affect capture proba-
bilities. We thus have a model in which
there is no heterogeneity of capture prob-
ability, no behavioral response to cap-
ture, and no variation in the experimental
situation over time. This model is desig-
nated Model My, and involves only 2 pa-
rameters: N, the population size, and p,
the probability that an animal is captured
on any given trapping occasion.

Statistical Treatment

The probability distribution of the set
of possible capture histories {X,} is given
by (cf. Darroch 1958):
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PI{X,}] = N
[T N = M
pn(l —_ p)tN—n.,
where n. = i n; = total number of cap-
j=1

tures in the experi-
ment, and

M,;, = number of different animals
captured in the experiment.

An algorithm for producing ML esti-
mators of N and p is derived in Appendix
B. (When t = 2, a closed form ML esti-
mator of N exists and is given by N, = (n,

+ n,)%4m,, where m, is the number of re-
captures in the second sample.) These
estimators are necessarily functions of
the minimal sufficient statistic {n., M }.
Thus, all the information relevant for es-
timation purposes is contained in the
number of different animals captured and
the total number of animals captured dur-
ing the course of the experiment. Appen-
dix B also gives an estimator for the
asymptotic variance of N, that we used in
the construction of confidence intervals
for N.

Simulation Results
Bias

A computer was used to simulate ex-
periments from populations satisfying
the assumptions of Model M,. By varying
the population parameters N and p, some
insight into the small sample bias of N
was obtained. Results indicate that the
bias of N is negligible for values of p at
least as large as 0.10 and t = 5. For small-
er probabilities of capture, however, pos-
itive relative biases of 15-20 percent are
realized. For example, from Appendix N,
Table N.1.b, for a population of size N =
400, one simulation consisting of 200 rep-
lications with p = 0.10 and t= 5 pro-
duced an average value of N, of 406.0
(Trial 2), while another, based on 500
replications, produced an average value
of N, of 456.9 with p = 0.05 (Trial 3).
Complete results of the simulation of N,
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for Model M, are given in Table N.1.b of
Appendix N.

Confidence Intervals

Achieved confidence coefficients of the
confidence interval procedure simulated
were consistently at or above the 0.90
level and hence were close to the
claimed 0.95 coverage. However, the
width of an average interval is so large
for small values of p that not much infor-
mation concerning true population size

isprovided. Forinstance,for N = 400,t =
5, and p = 0.05 (Trial 3) expected width

[= 2-1.96- Ave,/Var(N)] is 628.2; and for
N =400, t =5, p = 0.10 (Trial 2) this val-
ue is 217.7. However, with p = 0.30
(Trial 1) expected width drops to an av-
erage of 46.9, indicating that the model
provides useful information concerning
N when p is reasonably large. The num-
ber of replications for these 3 examples
were 500, 200, and 200, respectively.
One should keep in mind that extremely
wide confidence intervals tend to reveal
poor experimental conditions, i.e., low
values of p, and thus can be of use in
providing the experimenter with infor-
mation concerning the success or failure
of the experiment. See Table N.1.b of
Appendix N for further details of the sim-
ulation results.

Robustness

Because Model M, is built from the as-
sumption that no factors that affect cap-
ture probabilities are present in the ex-
periment, it is not surprising that
simulation results reveal that the esti-
mator derived from this model is not ro-
bust to any type of variability in the cap-
ture probabilities. In particular, if capture
probabilities vary by animal N, exhibits
significant negative bias. This property
has been documented in the literature
(Robson and Regier 1964, Gilbert 1973,
Carothers 1973b). Common sense and
some reflection on the nature of the ex-
periment should tell us not only that be-
havioral response will cause bias in the
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estimator, but will also indicate the di-
rection of that bias. That is, animals be-
coming trap shy will cause N, to overes-
timate N, and vice versa when animals
become trap addicted. These assertions
are supported by the simulation results
given in Tables N.3.b and N.4.b of Ap-
pendix N. Results also reveal that the es-
timator is somewhat robust to changes in
capture probabilities over time. How-
ever, Seber (1973) recommended, on the
basis of Darroch’s (1959) work, that the
estimator associated with Model M, not
be used even if the capture probabilities
are suspected of not varying with time.
This is good advice if large numbers of
animals are being caught but such a rule
could result in some loss of efficiency for
small sample sizes.

Example

A capture-recapture experiment that
satisfies the conditions of Model M, can
be analogous to an urn experiment, a
sampling experiment conducted in order
to estimate the number of marbles in a
cylinder when all marbles are the same
size. We may visualize a cylinder con-
taining N white marbles (individuals),
each of which has an equal probability
(p) of being picked from the cylinder on
any given occasion. On each of t occa-
sions, the following sampling scheme is
carried out. A “sampling cylinder,” with
a diameter that is 100 percent of the di-
ameter of the cylinder containing the
marbles, is inserted into the container
and a random sample of marbles re-
moved. The numbers of white (individ-
uals not previously ““captured”) and
black (“recaptures”) marbles in the sam-
ple are recorded. All white marbles are
painted black and returned to the con-
tainer along with the black marbles, and
all the marbles are randomly mixed. The
number of white and black marbles in the
sample is recorded. Using the data from
these t samples, the estimation procedure
associated with Model M, provides the
appropriate estimator of N, the number
of marbles in the cylinder. Notice that all

NUMBER OF TRAPPING OCCASIONS WAS 5

NUMBER OF ANIMALS CAPTURED, M(T+l), HAS 98

TOTAL NUMBER OF CAPTURES, N., WAS 238

ESTIMATED PROBABILITY OF CAPTURE, P-HAT =  .4672

POPULATION ESTIMATE IS 102 WITH STANDARD ERROR 2.3856

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 97 10 107

FiG. 1. Example of population estimation with con-

stant probability of capture under Model M, with

simulated data based on N =100, t=15, and
p =05

the assumptions of Model M, are fulfilled
for this cylinder model. That is, the pop-
ulation is closed because marbles may
not enter or leave the container, and
every individual has the same probability
of capture on every trapping occasion be-
cause (1) all marbles are the same size
and thus are not “heterogeneous,” (2)
white and black marbles have the same
capture probability and thus there is no
“behavioral response to capture,” and (3)
the same “sampling cylinder” is used in
the same manner on all t occasions and
thus there is no “time variation.”

The fact that an analogy can be drawn
between a capture-recapture experiment
modeled by Model M, and the simple
urn experiment illustrates the point that
it is not reasonable to expect that many
capture-recapture studies can be ade-
quately represented by Model M,.
Therefore, to present an example of the
estimation procedure of Model M,, we
simulated capture-recapture sampling
for 5 occasions on a population of 100 in-
dividuals, each of which had a 0.5 prob-
ability of capture. As Fig. 1 shows, the
value of the minimal sufficient statistic
{n., M} is {238, 98}. These values, and
the value of t, are used to produce the
population estimate of 102. Because N =
100, this estimate is only 2 percent great-
er than the true value of N. Note also that
the lower limit of the large sample 95
percent confidence interval extends be-
low the number of different marbles
seen. This undesirable operating char-
acteristic is revealed throughout the re-
sults of this study, and is discussed in
Appendix O. When this happens, the
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NUMBER OF TRAPPING OCCASIONS WAS S
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 106
TOTAL NUMBER OF CAPTURES, N., WAS 149

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = L1726

POPULATION ESTIMATE IS 173 WITH STANDARD ERROR 17.9418

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 137 10 209

F1G. 2. Example of population estimation with con-
stant probability of capture under Model M, with
meadow vole data from E. Larsen (pers. comm.).

lower limit should be increased to the
number of distinct individuals seen. Fi-
nally, we mention that one would not ex-
pect the estimator N, to be robust to de-
partures from the assumptions of the urn
experiment. For instance, if black
(marked) marbles were larger than white
(unmarked) ones, and thus had a higher
probability of selection, we could expect
N, to exhibit significant negative bias.

Example

E. Larsen (pers. comm.) used live-
trapping to estimate the population size
of meadow voles Microtus ochrogaster
on a grid near the Flint Hills of Kansas
in June 1974. A 10 x 10 grid of live traps,
spaced 40 feet (12.2 m) apart, was laid out
in a tall-grass prairie that had been un-
burned and ungrazed for 3 years. On the
first 2 nights of trapping, traps were
placed on top of the deep, dense litter
that uniformly covered the substrate, and
as a result almost no animals were cap-
tured. On the third night, holes were dug
in the litter and the traps were placed in
the holes. That trapping occasion yielded
only 12 animals captured, perhaps due to
the adverse effect that disturbance of the
environment may have had on the ani-
mals. On the last 5 nights of trapping,
however, relatively large numbers of an-
imals were captured consistently. Thus,
we have chosen to analyze the data from
only those occasions. When applied to
those data, the discrimination procedure
described in the section entitled TESTS
OF MODEL ASSUMPTIONS chose Model
M, as the appropriate model for the data.
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The estimation procedure associated
with this model produced the results pre-
sented in Fig. 2. Notice that the calculat-
ed 95 percent confidence interval is rel-
atively narrow, probably due to the fact
that the estimate of capture probability p
is nearly 0.2.

Discussion

Model M, represents what might be
called the “best” of all possible experi-
mental situations considered here in that
a minimum number of “nuisance” pa-
rameters is involved (one) if one is con-
cerned only with estimation of popula-
tion size N. This lack of nuisance
parameters results of course from the re-
strictive assumptions on which the model
is based. We believe that those assump-
tions are in most cases unrealistic, and,
therefore, the estimator based on the
model is, in general, of limited use. The
case against the model is strengthened by
the fact that its associated estimator N,
appears extremely nonrobust to variation
in capture probabilities caused by behav-
ioral response or heterogeneity. More-
over, it appears true in general that little
is gained by using Model M, instead of
Model M; when only time specific
changes in probabilities are present.
Therefore, the greatest utility of Model
M, lies in providing a “null” model use-
ful in testing for sources of variation, and
in providing a basic model that can be
generalized in a number of different
ways. Such generalizations are the sub-
ject of concern in the following 7 sec-
tions.

MODEL M;: CAPTURE PROBABILITIES
VARY WITH TIME

Structure and Use of the Model
Assumptions and Parameters

The set of assumptions used as a basis
for Model M, is the same set associated
with the classical multiple capture-re-
capture experiment. It is assumed that all
members of the population are equally at
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risk to capture on the j* trapping occa-
sion. Thus, all animals have the same
probability of capture on any particular
trapping occasion, but that probability
can change from one occasion to the next.
The set of parameters involved in this
model contains N, the population size,
and the p;, j=1, ...,t, where p; is the
probability of capture on the j™ occasion.

Statistical Treatment

Model M, has received more statistical
attention than any other in the literature
(see Cormack 1968). Schnabel (1938) first
used the above set of assumptions to de-
velop a model from which the well-
known Schnabel estimator was derived.
Her model, however, assumed that the
values of the M;, the number of marked
animals in the population at time j, are
known a priori, for j=1, ..., t. It re-
mained for Darroch (1958) to derive the
correct model for the situation. Using his
results, we may write the probability dis-
tribution of the set of possible capture
histories {X,} as:

N!
[1;[&!](1\1 - M)

P{X.}] =

t
. H pjn,(]_ _ pj)N—n,,
=1
where

n; = number of animals caught on the
j™ occasion, and
M;;; = number of different animals cap-
tured in the experiment.

When t = 2, a closed form expression for
the maximum likelihood estimator of N
exists and is given by N;= n;ny/m,,
where m, is the number of recaptures in
the second sample. This is the familiar
Lincoln Index. Darroch (1958) derived
an expression that may be solved itera-
tively to give an estimator of population
size for t > 2. One is led to believe that
this estimator produces estimates within
unity of the true ML estimate of N, but
this is not in fact the case. Details of the

algorithm necessary to produce the true
ML estimate for a given set of data are
given in Appendix C. The estimate will
depend only on the value of the minimal
sufficient statistic for the model, namely
{n,, n,, ..., n,, M;,}. Note that the model
involves t + 1 parameters and that the
dimension of the MSS is also t + 1. This
assures identifiability of all the parame-
ters of the model. Darroch (1958) also de-
veloped an estimator of the asymptotic
variance of the ML estimator that can be
used in the construction of a confidence
interval for N (see Appendix C).

Simulation Results
Bias

If the experimental situation is well
represented by Model M,, it is important
to know what biases may be expected
from the estimator of N discussed in the
preceding section. Computer simulations
of experiments on populations satisfying
the assumptions of Model M, produce the
same general conclusions concerning the
bias of N, as those produced in Model M,
That is, if the probabilities of capture p;
are, on the average, close to 0.1 or larger,
the bias of N, is not significant. Again,
however, if the p;'s become smaller than
0.1, significant bias results. Some exam-
ples are given in Table 1 for experiments
conducted for 5 and 7 trapping occasions
(additional results are presented in Table
N.2.b of Appendix N). In Table 1, as in
all tables in this publication Ave[-] rep-
resents the average value of the quantity
in brackets over all simulated replica-
tions. R represents the number of repli-
cations performed and RB represents
percent relative bias.

Confidence Intervals

Confidence intervals were constructed
from simulated experiments to compare
achieved confidence coefficients to the
stated value of 0.95. Those achieved
levels depend on a number of factors of
which the most important are the accu-
racy of the variance estimator of N,, the
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TABLE 1.—RESULTS OF COMPUTER SIMULATION STUDIES OF THE BIAS OF N, (ALSO SEE APPENDIX

TABLE N.2.b)
Percent Average of True Model M, Number Number
relative bias  estimates population Probabilities of capture of reps of occasions

RB Ave[Ny N pi=12, ...t R Trial
22.0 1,015.6 800 0.01, 0.01, 0.02, 0.03, 0.03 200 5 11
10.7 442.7 400 0.03, 0.04, 0.05, 0.06, 0.07 200 5 5
2.2 408.6 400 0.10, 0.10, 0.10, 0.10, 0.01 200 5 3
-0.7 198.7 200 0.30, 0.40, 0.10, 0.40, 0.30 100 5 11
-0.4 398.6 400 0.50, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10 100 7 7
-0.2 399.4 400 0.20, 0.40, 0.30, 0.10, 0.20, 0.30, 0.20 100 7 9

degree to which N is normally distrib-
uted, and the accuracy of N, itself. Re-
sults indicated that the achieved confi-
dence level was in most cases at least
0.90. Those results are encouraging be-
cause in many of the experimental situ-
ations investigated the assumptions nec-
essary for the strict validity of the
confidence interval used are not met (cf.
Appendix O for a discussion of the as-
sumptions). However, the amount and
the kind of information contained in such
an interval varies from one situation to
the next depending on the values of the
capture probabilities p;, j=12,...t. If
those probabilities are on the average as
large as 0.20 or 0.30, confidence interval
coverage is good and interval width is
small. Thus, very useful and reliable in-
formation concerning N can be obtained
under such experimental conditions. As
the capture probabilites p; decrease,
however, so does the information about
population size provided by the confi-
dence interval. That is, interval width
tends to be so large as to not provide any
useful information with respect to N.
This result agrees with Chapman’s (1951)
argument, for the case t = 2, that variance

estimates tend to be prohibitively large
when probabilities are small. In cases
where capture probabilities are ex-
tremely low, lower confidence interval
limits are negative, thus providing no in-
formation about N. As pointed out in the
discussion of Model M,, however, such
experimental results do inform the re-
searcher that his data have been able to
tell him essentially nothing about popu-
lation size. In that respect, therefore, the
calculated confidence interval is provid-
ing relevant information, not about pop-
ulation size but about the failure of the
experiment itself.

To illustrate these points, Table 2 has
been constructed, giving selected simu-
lation results taken from Table N.2.b of
Appendix N regarding confidence inter-
val coverage (the proportion of replica-
tions R in which the confidence interval
contained N), and average confidence in-
terval width (Ave [C.I. width]).

Robustness

Because the maximum likelihood esti-
mator (or approximations thereof) of pop-
ulation size N has been so frequently

TABLE 2.—SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING N, (ALSO SEE APPENDIX

TABLE N.2.b)
Model M
Population Probabilities of capture Number Number of
Avera%e size of reps occasions
[C.L. width] Coverage N Ny P: Ps Ps Ps R t Trial
1,348.3 0.89 400 0.01 0.01 0.02 0.03 0.03 1,000 5
140.2 0.94 100 0.05 0.05 0.10 0.15 0.15 1,000 5 12
31.3 0.88 200 0.40 0.30 0.10 0.30 0.40 100 5 10
15.1 0.96 400 0.45 0.45 0.50 0.55 0.55 200 5 1
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used in practice over the last 40 years,
questions of robustness of those esti-
mators with respect to departures from
the assumptions of Model M; are partic-
ularly relevant. Simulation results indi-
cate that N, under Model M, is nonrobust
to failure of the assumption that all ani-
mals, regardless of capture history, are
equally catchable on the j*™ trapping oc-
casion. As previously emphasized, depar-
tures from that assumption may be due to
capture probabilities varying with the an-
imal, or the animal’s probability of cap-
ture being altered after first capture, or
both. Although both departures may
create significant bias in N,, the nature of
the bias differs. That is, departure from
equal catchablhty caused by heteroge-
neity results in N, being negatively
biased, with the magnitude of the bias
proportional to the amount of heteroge-
neity present in the population. This ob-
servation corresponds with the results of
the study by Edwards and Eberhardt
(1967) on a rabbit population of known
size. Bias of N, that is a manifestation of
animals exhibiting a behavorial response
to capture, however, may be either posi-
tive or negative, according to whether the
animals become trap shy or trap addicted,
respectively. This is the same result not-
ed for the estimator of N associated with
Model M,. The magnitude of the bias de-
pends on the degree to which the ani-
mal’s behavior is changed. Table 3 illus-
trates the bias of N; when it is used in
simulated experiments conducted on
populations satisfying the assumptions of
Model M,, in which animals exhibit be-

OCCASION J= 1 2 3 “ 5 6
ANIMALS CAUGHT N(J)= 7 15 18 2 19 7
TOTAL ANIMALS CAPTURED 45
P-HAT(W1= .14 .30 .32 .48 .38 .14
POPULATION ESTIMATE IS 50 WITH STANDARD ERROR 2.9964

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 44 TO 56

HISTOGRAM OF N(J)

FREQUENCY T 15 16 A 19 7
EACH * EQUALS 3 POINTS

]

21

18

15

12

9

6

3
Fic. 3. Example of population estimation with

time specific changes in probability of capture
under Model M, with least chipmunk data from
V. Reid (pers. comm.).

havioral response to first capture, and
Model M;, in which heterogeneity of
capture probabilities occurs. In Table 3,
2 examples of Model M, are considered:
Trial 8, where animals that have not been
captured previously have a probability of
capture of 0.2 on every trapping occasion
and a probability of capture 0.05 after
first capture, and Trial 9, where the prob-
ability of capture for previously captured
animals changes from 0.2 to 0.5. Three
examples of Model M, are considered;
for example Trial 1, in which 200 animals
have a 0.05 probability of capture, 100
animals have a 0.15 probability of cap-
ture, and 100 animals have a 0.50 proba-
blllty of capture. When the estimator N,
was computed from the data generated

TABLE 3.—COMPUTER SIMULATION RESULTS ILLUSTRATING THE NONROBUSTNESS OF THE DARROCH
ESTIMATOR N; USING DATA GENERATED UNDER OTHER MODELS. DATA MODELS ARE DESCRIBED IN TABLES
N.3.a AND N.4.a OF APPENDIX N (ALSO SEE APPENDIX TABLES N.3.b AND N.4.b)

Percent Population Number Number of
relative bias . size of reps occasions

RB Ave[N] R t Data model
199.3 299.3 100 100 5 M,, Trial 8!
-28.3 71.8 100 100 5 M,, Trial 9
-43.0 228.0 400 100 5 M,, Trial 1
-13.2 173.6 200 100 10 M,, Trial 6
-12.1 87.9 100 100 5 M,, Trial 12

! For example, data generated under Model M, were used to estimate N using estimator N,.
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under this trial of Model My, an average
percent bias of —43.0 resulted (Table 3).

Example

In the summer of 1975, V. Reid (pers.
comm.) laid out a 9 x 11 livetrapping
grid with traps spaced 50 feet (15.2 m)
apart at a Colorado location in a bottom
area dominated by sagebrush and snow-
berry and peripherally by gambel oak,
serviceberry, and juniper. Least chip-
munk Eutamias minimus were trapped
for 6 consecutive days (t = 6). The dis-
crimination procedure described in the
TESTS OF MODEL ASSUMPTIONS section
chose Model M, as the most appropriate
model for the data. Although that choice
is subject to some suspicion (the good-
ness of fit test of Model M; could not be
performed because of insufficient data),
the data were analyzed using the esti-
mation procedure associated with Model
M, for purposes of illustration. Results
(Fig. 3) indicate that estimates of the p;
are large enough for one to expect valid
and useful confidence intervals, and such
an interval does appear to result. The
point estimate of 50 animals also seems
to be in line with the observed data, i.e.,
the fact that ug was 0 (no new animals
caught on day 6) leads us to believe that
the value of N, should not be much larger
than the number of different animals cap-
tured. A histogram of the n; values is in-
cluded to help the researcher to visually
examine the data.

Discussion

Given the simulation results of this
section, one might conjecture that fre-
quent use of the “Schnabel method,” i.e.,
Model M;, in practice has been unfortu-
nate unless tests of the assumptions of
Model M, have indicated the model may
be appropriate. Moreover, if Model M,
appears to be an adequate representation
of the experimental situation, relatively
large values (at least 0.2 on the average)
of the parameters p; usually are necessary
to produce useful information with re-
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spect to population size. As Cormack
(1968) noted, “the higher the proportion
of the population marked the more statis-
tically precise will be the estimate of
population size.” If the capture probabil-
ities are small, the variance estimate of
N,, and hence the confidence interval for
N, tends to be quite large, telling the ex-
perimenter that the estimate of popula-
tion size N is unreliable. Because of the
apparent positive correlation between
average capture probability and the
amount of useful information about N
contained in the experiment, it is wise for
the experimenter to calculate the maxi-
mum likelihood estimates of the p;,j = 1,
2,....t, from the data at hand. (Formulas
for these ML estimators are given in Ap-
pendix C.) Such calculations should pro-
vide more feel for both the quantity and
quality of information contained in the
data.

MoDEL M,: CAPTURE
PROBABILITIES VARY BY
BEHAVIORAL RESPONSE TO
CAPTURE

Structure and Use of the Model

Assumptions and Parameters

This model deals with the failure of the
assumption that initial capture does not
affect the probability of capture on sub-
sequent occasions. That is, the model al-
lows an animal to exhibit a behavioral re-
sponse to capture and become either
“trap addicted” or “trap shy.” Overton
and Davis (1969) pointed out that “it is
well known that so-called trap-happy an-
imals are often encountered.” Moreover,
the existence of trap response has been
well documented (Geis 1955a, 1955 un-
published doctoral dissertation, Michi-
gan State University, East Lansing,
Michigan; Tanaka 1956, 1963; Flyger
1959; Bailey 1968; Pucek 1969). Formal-
ly, Model M, assumes that on any given
trapping occasion, all unmarked animals
have one probability of capture, and all
marked animals have another probability
of capture. It is assumed that there is no
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difference between trapping occasions,
i.e., that capture probabilities do not vary
with time. An implication of those as-
sumptions is that all members of the pop-
ulation have the same probability of cap-
ture at the beginning of the experiment.
Note also that the assumption is made
that an animal’s capture probability is al-
tered only once, after first capture. Al-
though one might think it more realistic
to allow the capture probability to be
changed more than once (e.g., after both
first and second capture) this more gen-
eral assumption turns out to have no ef-
fect on the estimation of population size
N. Therefore, for simplicity of presenta-
tion the assumption is made that all
marked animals, regardless of the num-
ber of times they might have been cap-
tured, have the same capture probability.

The assumptions of Model My, result in
3 model parameters: N, population size;
p, the probability of capture of an un-
marked animal on any trapping occa-
sion; and c, the probability that an animal
is captured on any trapping occasion
subsequent to the occasion on which it
was first captured.

Statistical Treatment

The probability distribution of the set
of possible capture histories {X,} from a
multiple capture-recapture experiment
on a population satisfying the assump-
tions of Model M, may be written as (Pol-
lock unpublished dissertation):

NI
. |
I = s = v

. le+|(1 —_ p)N_MH,l—M.

. cm.(l — C)M.—m.’

t

where M. = 3 M; = sum (over j) of the
=1
number of marked animals
in the population at the time
of the jt* trapping occasion,

t
m. = Y m; = total number of
=1
marked animals, caught,

and
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M;;; = number of different animals
caught during the entire ex-
periment.

A MSS for this probability distribution
is given by {M;;,, m., M.}. Notice that
this is a 3-dimensional vector of statis-
tics, and because the model involves
3 parameters, each of those parameters
is identifiable. What is most noteworthy
concerning the above distribution is the
fact that the estimation of ¢ is indepen-
dent of the estimation of the parameters
N and p. That is, in Model M,, once
an animal has been captured, subsequent
recaptures of the animal provide no in-
formation with respect to the estimation
of N and p. The recapture information of
the experiment is used only in the estima-
tion of the nuisance parameter c, the prob-
ability of recapture. The reader is referred
to Appendix D for details of the above ar-
gument and for the derivation of the maxi-
mum likelihood estimators of N and p.
Those estimators are essentially equiva-
lent to those given by Zippin (1956, 1958),
who provided a basic statistical analysis
of the removal experiment first proposed
by Moran (1951). In Zippin’s discussion,
however, animals usually are physically
removed by killtrapping or electrofish-
ing, whereas in Model M,, animals are
“removed” from the population by being
marked; in both, estimators and N and p
depend only upon first captures.

Since estimation of population size
under the conditions of Model M, is
equivalent to estimation in Zippin’s re-
moval model, the “failure criterion” as-
sociated with the removal method
applies. Seber and Whale (1970) showed
that valid ML estimators for N and p are
obtained from the data when the cri-
terion

i(u 1 - 2i)(n, — m;) > 0

is satisfied. If that condition, which tests
whether the population is being suffi-
ciently “depleted” by the “removal” of
new animals, is satisfied, a confidence
interval for N may be constructed using
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TABLE 4.—RESULTS OF COMPUTER SIMULATION STUDIES OF THE BIAS OF N, (ALSO SEE APPENDIX N,

TABLE N.3.b)
Percent Average of True Probability Number Number of
relative bias estimates population of capture of reps occasions
RB Ave[N,] N P R t Trial
-18.0 82.0 100 0.10 161 5 10
15.4 461.5 400 0.10 196 5 4
9.8 109.8 100 0.20 199 5 8
-0.7 198.6 200 0.25 100 7 6
-1.1 197.9 200 0.30 200 5 5

the asymptotic variance estimator of N,
given by Zippin (Appendix D).

Simulation Results
Bias

Because behavioral response to cap-
ture is common in practice, an estimator
of population size that exhibits relatively
small biases in populations that satisfy
the assumptions of Model M, would
prove useful in practice. Simulation re-
sults of experiments conducted on such
populations indicate that Ny, the ML es-
timator of N, is a good estimator if the
probability of capture for an unmarked
animal (p) is at least 0.2. Frequency of
“failure” of the experiment is substantial
(20%) with p values <0.1, and when the
experiment does succeed in these cases,
Ny tends to be significantly biased. A few
examples taken from Table N.3.b of Ap-
pendix N of the simulated bias of Ny, are
given in Table 4 which illustrates that
biases on the order of 15-20 percent oc-
cur when p = 0.10, but that such bias
gradually decreases as probability of first
capture increases to reasonable levels
greater than 0.20. Although the first 2
simulations included in Table 4 have the
same probability of first capture, the case
for N = 100 is negatively biased, whereas
the case for N = 400 is positively biased.
These seemingly contradictory results
are caused by the estimator failing more
often for the N = 100 case. When the es-
timator is close to failing (i.e., the failure
criterion is close to zero), the estimates
tend to be biased high. Because actual
failure of the method occurs much more

frequently in cases where N is small, a
relatively large number of potentially
large estimates of N are “lost.” This phe-
nomenon therefore effects a significant
reduction in the value of Ave[N].

Confidence Intervals

Confidence intervals were simulated
for various populations satisfying the as-
sumptions of Model M;, (Table 5). A high
correlation between the values of p and
adequate performance of confidence in-
tervals is indicated by Table 5. Evidence
indicates that high confidence levels and
small (hence informative) interval widths
can be expected from experiments in
which the probability of first capture is at
least 0.30. On the other hand, in an ex-
periment with N = 100 and p = 0.10 low-
er limits of confidence intervals were
negative in more than 40 percent of those
simulated experiments that succeeded.
Such results illustrate the point that, in
general, confidence intervals constructed
from experiments with an insufficiently
large value of p serve only to inform the
researcher that his data cannot provide
any real information with respect to pop-
ulation size.

Robustness

If one examines the failure criterion for
estimation in Model M,, it becomes clear
that the number of new animals captured
(removed) should decrease for each suc-
cessive trapping occasion. Simulation re-
sults seem to indicate that steep declines
in new captures over time produce good
estimates of and informative confidence
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TABLE 5.—SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING N, (ALSO SEE APPENDIX N,

TABLE N.3.b)
Population Probability Number Number of
Average size of capture of reps occasions
[C.I. width] Coverage N P R t Trial
253.9 0.71 100 0.10 161 5 10
145.0 0.95 200 0.20 98 5
51.5 0.90 200 0.30 100 5 5
78.0 0.92 400 0.30 100 5 1

intervals for the parameter N. (This re-
lates directly to the previous observation
that larger values of the parameter p pro-
duce estimators with better properties.)
One can see that if capture probabilities
vary from one trapping occasion to the
next, the vector of “removals” represent-
ed by (uj,u,,...,u;) may be perturbed in
such a way as to prevent the desired
monotone decrease in the removals over
time. This results in N}, exhibiting a large
bias and confidence intervals for N hav-
ing large expected width. These obser-
vations support the conjecture that esti-
mation of N based on Model M, will be
sensitive to significant changes in cap-
ture probabilities over time. Moreover, if
capture probability varies among individ-
uals, independently of the animal’s cap-
ture history, N, tends to underestimate
N. The magnitude of the bias depends
directly on the number of animals in the
population that are essentially untrappa-
ble, i.e., those that have small (<0.1) “in-
nate” probabilities of capture. This non-
robustness to heterogeneity of capture
probability is of the same nature as that
exhibited by N, and N,. These remarks
are based on results obtained from sim-
ulation experiments on populations that
satisfy the assumptions of Model M, (see
following section for a complete descrip-
tion of this model). A few examples fol-
low concerning the bias of Ny, in experi-
ments on Model M, populations. In a
population of size 100, with 40 animals
that have a 0.05 probability of capture, 40
animals with a 0.10 probability, and 20
animals with a 0.30 probability (Trial 8),
an experiment with t = 10 trapping oc-
casions was simulated resulting in an av-
erage Ny, estimate of 78 for N. In a pop-

ulation of size 400, with 200 animals that
have a 0.05 probability of capture, 100
with a 0.15 probability, and 100 with a
0.50 probability (Trial 1), an experiment
with t = 5 trapping occasions produced
an average estimate of 258 animals.

Example

E. Larsen (pers. comm.) reported the
results of a livetrapping experiment con-
ducted in the summer of 1976 as part of
a study on community succession. A total
of 55 live traps, spaced 15 m apart and
covering 0.81 ha, were set out in a field
in which vegetation was dominated by a
mixture of sagebrush Artemesia triden-
tata and rabbitbrush Chrysothamnus
spp. Trapping was conducted for 10 con-
secutive nights. Data collected on the
deer mouse Peromyscus maniculatus
from those 10 occasions (Fig. 4) were ana-
lyzed by the discrimination procedure
described in the section entitled TESTS
OF MODEL ASSUMPTIONS and it was de-
termined that Model M, would be an ap-
propriate model for the data (the signifi-
cance level of a goodness of fit test of
Model M, was approximately 0.47).
Therefore, the estimation procedure as-
sociated with Model My, was used to pro-
duce point and interval estimates for N.
Two aspects of those estimates (Fig. 4)
are worth noting: animals tend to become
trap happy since recapture probability (¢)
is more than twice the value of initial
capture probability (p) and the small val-
ue of p = 0.09 is the major reason why the
95 percent confidence interval for N is
wide and the lower limit of the computed
interval extends far below the number of
animals actually seen (as mentioned be-
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OCCASION J= 1 2 3 “ 5 3 7 8 9 10
TOTAL CAUGHT HiJ)= o 14 18 30 37 42 48 5 57 &1 69
NEHLY CAUGHT Utdy= 14 5 [} 7 5 6 3 6 4 8
ESTIMATED PROBABILITY OF CAPTURE, P-HAT = 091026
ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = 233983

POPULATION ESTIMATE IS 112 WITH STANDARD ERROR 31.1966

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 50 TO 174

HISTOGRAM OF UtJ)

FREQUENCY 1% 5 11 7 5 6 3 6 “ 8

EACH * EQUALS 2 POINTS
18
12
10
8

6
w
2

FIG. 4. Example of population estimation with

constant probability removal estimator under Mod-

el M, with deer mouse data from E. Larsen
(pers. comm.).

fore, the lower limit should be taken as
69, not 50, in this situation).

Example

V. Reid (pers. comm.) reported the re-
sults of livetrapping deer mice Peromys-
cus maniculatus in a drainage bottom of
sagebrush, gambel oak, and serviceberry
with pinyon pine and juniper on the up-
lands. The area, in Rio Blanco County,
Colorado, was trapped for 6 consecutive
nights in the summer of 1975. Traps were
arranged in a 9 X 11 grid and spaced 50
feet (15.2 m) apart. Analysis of the re-
sulting data by the model selection pro-
cedure indicated that Model M, would
be appropriate for use in estimating N
(e.g., the significance level of a goodness
of fit test of Model M,, was approximately
0.43). The data and the results of using
N, to produce point and interval esti-
mates for N are given in Fig. 5. Note that
the mice tend to become trap happy, as
in the previous example. In that study,
however, the estimate of first capture
probability is p = 0.34, a fact that largely
accounts for the narrow width of the 95
percent confidence interval. Again, the
lower limit of the confidence interval
could be taken as 38, the number of dif-
ferent animals captured.

OCCASION J= 1 2 3 “ 5 6
TOTAL CAUGHT LI L 0 15 23 29 32 35 138
NEWLY CAUGHT Ut = 15 8 6 3 3 3
ESTIMATED PROBABILITY OF CAPTURE, P-HAT = L342413
ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = 611940

POPULATION ESTIMATE IS 41 WITH STANDARD ERROR 3.0518

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 35 TO 47

HISTOGRAM OF U(J)

FREQUENCY s 8 6 3 3 3
EACH * EQUALS 2 POINTS

16 .

0 .

12 .

10 .

8 . .

6 e s e

4 e e e

2 . . . . .

F1G. 5. Example of population estimation with con-

stant probability removal estimator under Model

M, with deer mouse data from V. Reid (pers.
comm.).

Discussion

Simulation results concerning the per-
formance of Ny, in populations that satisfy
the assumptions of Model Mj, seem en-
couraging in that the estimator and its as-
sociated confidence intervals provide
useful information in the presence of be-
havioral response to first capture, if the
probability of first capture is sufficiently
large (>0.1). (Hence, calculation of the
ML estimate of p should assist in assess-
ing the amount of information concerning
N that is contained in the data). However,
the estimator of N appears nonrobust to
other factors that may have an effect on
an animal’s probability of capture. More-
over, the estimation procedure associated
with Model M, is a special case of a more
general estimation procedure which in-
volves fewer assumptions than those as-
sociated with Model M,,. This procedure
is described in the section on removal
models. For these reasons, the estimator
of population size N associated with
Model M, is useful only in those in-
stances where all unmarked animals have
the same capture probability on all trap-
ping occasions.
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MODEL M;: CAPTURE PROBABILITIES
VARY BY INDIVIDUAL ANIMAL

Structure and Use of the Model
Assumptions and Parameters

The assertion that each member of the
population has its own probability of cap-
ture independent of all other members of
the population is the basis of Model M.
The assumptions are made that there is
no difference between trapping occa-
sions and no behavioral response to cap-
ture, but that there is heterogeneity
among the capture probabilities of indi-
viduals. Cormack (1968) stated that a test
for the assumption of “heterogeneity of
individuals™ is impossible unless an in-
dependent experiment is conducted on
a population of known size that is “rep-
resentative” of the population of interest.
Because of that apparent difficulty (and
others), models similar to Model M;, have
been largely ignored, although the as-
sumptions behind the model fit more ex-
perimental situations than do most of
those commonly used. As Eberhardt
(1969a) pointed out, “various sets of data
indicate . . . that the equal-probability-of-
capture assumption is not fulfilled.”

Conceptually, Model M;, involves N +
1 parameters: the population size N and
the set of capture probabilities {p;}, i =
1,2,... N, where p; is the probability of
capture of the i animal on any trapping
occasion. This more general formulation
of Model M,, does not allow estimation of
population size N because of the pres-
ence of too large a number of nuisance
parameters. Therefore, for most of the
development in this chapter, it is more
useful to think of {p;} as a random sample
of size N from some probability distri-
bution F(p) defined on the interval [0,1].

Unfortunately, there is no completely
satisfactory estimator when Model M, is
true. Therefore, one should design the
study to minimize heterogeneity. In fact,
it is worth repeating that it is very im-
portant to design any capture study care-
fully with the goal of having as few fac-
tors as possible affecting capture
probabilities (see STUDY DESIGN).

33

Statistical Treatment

Recall that the random variable X
takes on the value 1 when the i*" animal
is caught on the j" trapping occasion and
is zero otherwise. If it is assumed that
{pi} results from a random sample from
F(p) then the probability distribution for
the set of variables {X;} reveals that a
sufficient statistic for Model M,, is given
by the capture frequencies {f,f, ... f},
where f; = the number of animals caught
exactly j times in the experiment. Hence,
all the information for estimating N is con-
tained in the frequency of capture sta-
tistics. Estimators based on frequency
of capture statistics have been proposed
(Craig 1953, Tanton 1965, Eberhardt
1969a), but are the result of essentially
ad hoc approaches. If the particular
family of distributions of which F(p) is a
member is specified, a maximum likeli-
hood estimator for N may be derived.
For example, Burnham (unpublished
dissertation) assumed that {p;} results
from a random sample from a 2-parame-
ter beta distribution and investigated
the properties of the resulting ML esti-
mator of N. Theoretical and simulation
results indicated that this estimator has
quite unsatisfactory operating charac-
teristics, and this inspired Burnham to
develop a nonparametric estimation pro-
cedure that would not require specifi-
cation of F(p). Such an estimator was
developed using an extension of the jack-
knife method of bias reduction first pro-
posed by Quenouille (1949, 1956). The
resulting form of the estimator Ny
can be written as

. t
Nh = E ajfj.

=1
Each set of constants a,,a,, ..., gener-
ated by using a different “order” of the
jackknife procedure, corresponds to a dif-
ferent “jackknife” estimator. Burnham
(unpublished dissertation) suggested a
sequence of statistical tests designed to
choose the best one of the estimators for
any given data set. For a more detailed
presentation of that estimation proce-

dure, consult Appendix E which also pre-
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TABLE 6.—RESULTS OF COMPUTER SIMULATION STUDIES OF THE BIAS OF N, (ALSO SEE APPENDIX,

TABLE N.4.b)
Percent  Average of True Number Number of
relative bias estimates population Probabilities of capture of reps occasions
R Ave[N,] N pi=12 ..,N R t Trial
-17.2 331.1 400 p;=0.05,1i= 1,200; p; = 0.15,i = 201,300; 200 5 1
p; = 0.50, i = 301,400.
02 1002 100 p; = 0.05,i=1,40; p, = 0.10,1 = 41,80; 200 10 8
pi = 0.30, i = 81,100.
15.0 460.1 400 p;=0.10,i = 1,100; p; = 0.20, i = 101,200, 200 5 3
pi = 0.25, i = 201,300; p; = 0.30, i = 301,400.
4.3 417.1 400 p;=0.01,i=1,50; p; = 0.15,1 = 51,200; 100 5 4
pi = 0.25, 1 = 201,300; p; = 0.30, i = 301,400.
37 2070 200 p;=0.05,i=150;p,=0.15,i=51,150; 100 10 6
pi = 0.25, i = 151,200.
11.0 443.9 400 p; =0.20,1i=1,100; p; = 0.30, i = 101,200, 100 5 5
pi = 0.40, i = 201,300; p; = 0.50, i = 301,400.
13.4 226.8 200 p;=0.15,i = 1,50; p; = 0.20, i = 51,100, 100 7 7

p; = 0.25,i = 101,150; p; = 0.30, i = 151,200.

sents a formula for a variance estimator
of Nh'

Simulation Results

Bias

Cormack (1968:497) noted that when
animals exhibit heterogeneous capture
probabilities “any available estimate of
population size [is] markedly biased.”
We performed simulation experiments
with Model M,, populations to determine
whether, in a given population, “marked
bias” is associated with N,. Table 6 lists
some examples of such results. The com-
plete details of the simulation are given
in Tables N.4.a and N.4.b of Appendix N.
Results of those simulations and of those
conducted by Burnham (unpublished
dissertaion) seem to indicate 2 major
points concerning the bias of the jack-
knife estimator: (1) general statements
concerning the magnitude and direction
of the bias are not easily made since the
estimator exhibits both small and large
and positive and negative bias, depend-
ing on the values of N and the set {p;}.
One may conjecture, however, that if the
number of trapping occasions is suffi-
ciently large (say greater than 5) and if a
negligible number of animals is for all
practical purposes untrappable, then the
bias of N, will be within a tolerable

range; and (2) even though significant
bias may sometimes be present in the
jackknife estimator, the magnitude of
such bias will, in general, be substantial-
ly less than the bias that would be asso-
ciated with any other estimator thus far
discussed. Evidence of this assertion can
be seen in Tables N.1.b, N.2.b, and N.3.b
of Appendix N that present the results of
using estimators other than N, on data
simulated from Model M.

Confidence Intervals

Construction of confidence intervals
from simulated experimental data gen-
erated from populations of Model M,
show a large variance in the achieved
confidence coefficients (Table 7). Cover-
age is poor and ranges from an estimated
0 percent (Trials 2, 11) to 87 percent
(Trial 6) (Appendix N, Table N.4.b). Be-
cause results indicate that the distribu-
tion of the jackknife estimator is approx-
imately normal, poor coverage is caused
either by significant negative bias of the
variance estimator, a significant bias of
the estimator N, or both. Unless an ex-
perimenter has data from an adequate
number of trapping occasions and feels
that very few, if any, members of the pop-
ulation under study are untrappable, the
confidence interval constructed by the
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TABLE 7.—SIMULATED CONFIDENCE INTERVAL WIDTHS AND COVERAGE USING THE JACKKNIFE ESTIMATOR
N (ALSO SEE APPENDIX N, TABLE N.4.b)

Population Number Number of
Average size Probabilities of capture of reps occasions
[C.I. width] Coverage N pi=1, .o N R t Trial
89.9 0.18 400 p;=0.05,i = 1,200; p; = 0.15, i = 201,300; 200 5 1
Py = 0.50, i = 301,400.
104.9 0.40 400 p; = 0.10,1i = 1,100; p; = 0.20, i = 101,200; 200 5 3
pi = 0.25,1 = 201,300; p; = 0.30, i = 301,400.
45.4 0.87 200 pi=0.05,i=1,50; p; = 0.15,1 = 51,150; 100 10 6
pi = 0.25,1 = 151,200.
45.3 0.68 100 p; = 0.05,i = 1,40; p; = 0.10, i = 41,80; 200 5 8

pi = 0.30, i = 81,100.

methods associated with Model M,
should be considered unreliable. The
reader may refer to Table N.4.b of Ap-
pendix N for complete results concerning
simulated coverage of these confidence
intervals.

Robustness

The jackknife estimator was construct-
ed with the objective of having an esti-
mator that is robust to heterogeneity of
capture probabilities. The degree to
which the objective is satisfied has been
discussed previously. The question re-
mains: is the jackknife estimator robust
to other forms of departure from the as-
sumption of equal catachability? Results
indicate that of the estimators discussed
in this monograph the jackknife is the
most robust. This does not mean that it
is a good estimator no matter what as-
sumptions apply to the population under
study. In general, it may be said that the

jackknife estimator will provide an ade-
quate estimate of population size in an
experiment in which many animals are
caught a relatively large number of times.
Some examples of the bias of the jack-
knife estimator when data are simulated
from models other than M, are given in
Table 8. More information may be ob-
tained from Tables N.2.b, N.3.b, and
N.5.b of Appendix N. In the table, the
information under the heading Data
model refers to the population on which
the simulated experiments were per-
formed. For details of these populations,
see Appendix N, Tables N.2.a, N.3.a, and
N.5.a.

Example

Carothers (1973a) conducted a cap-
ture-recapture experiment on the “pop-
ulation” of taxicabs in Edinburgh, Scot-
land. The population, known to be of size
420 and assumed to be closed, was sam-

TABLE 8.—COMPUTER SIMULATION RESULTS ILLUSTRATING THE ROBUSTNESS OF THE JACKKNIFE
ESTIMATOR Nj TO DATA GENERATED UNDER OTHER MODELS (ALSO SEE APPENDIX N, TABLES N.2.b, N.3.b

AND N.5.b)
Percent Population Number Number of
relative bias . size of reps occasions
RB Ave[N,] N R t Data model

-12.5 349.2 400 200 5 M,, Trial 3!
- 13 98.7 100 1,000 5 M,, Trial 12
-17.6 82.3 100 100 5 M,, Trial 9
-13.1 347.7 400 200 5 M,, Trial 4
0.7 402.9 400 100 5 M, Trial 1
19.7 478.7 400 100 5 M, Trial 2

! For example, data generated under Model M, were used to estimate N using the estimator N,



NUSBER OF TRAPPING OCCASIONS WAS 10
NUMBER OF ANIMALS CAPTURED. M(T+1), WAS 283
TOTAL NUMBER OF CAPTURES. N., WAS 500
FREQUENCIES OF CAPTURE .F (1)

I« 1 2 3 4w 56 78 910
Felhis 142 81 43 7 3100 00

COMPUTED JACKKNIFE COEFFICIENTS

NC1) Ni2) N(3) Niw) N{5)
1 1.900 2.700 3.400 4.000 4.500
2 1.000 .289 -.878 -2.278 -3.722
3 1.000 1.000 1.476 2.535 4.0u2
4 1.000 1.000 1.000 LT43 .077
S 1.000 1.000 1.000 1.000 1.103

THE RESULTS OF THE JACKKNIFE COMPUTATIONS

| N(D SECD .95 CONF. LIMITS TEST OF N(l+1) VS. N(I)
0 283 CHI-SQUARE (1 D.F.)

1 410.8 15.58 380.3 w413 25.877

2 466.8 25.20 Wity 516.2 w.225

3 495.0 36.42 u23.7 566.4 1.807

4 516.9 49.98 u18.9 614.9 1.735

5 540.4 65.29 4124 668.4 0.000

AVERAGE P-HAT = 1062

INTERPOLATED POPULATION ESTIMATE IS 471 WITH STANDARD ERROR 26.8266

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 4i8 TO 524
HISTOGRAM OF F (1)
FREQUENCY 12 81 49 7 3 I 0 0 0 0

EACH * EQUALS

15 POINTS

FiGc. 6. Example of population estimation with

variable probability of capture by animal under

Model M, with the complete set of Scheme A
taxicab data from Carothers (1973a).

pled for 10 consecutive days. The sam-
pling was done by observing taxicabs that
passed preselected points and recording
“capture” or “recapture” according to
whether or not the particular cab had
been observed previously. In the au-
thor’s sampling scheme “A,” a different
set of sampling points was selected each
day, and the time of sampling (i.e., morn-
ing, afternoon, night) was also varied. We
applied the model selection procedure
(described in TESTS OF MODEL ASSUMP-
TIONS) to the data collected from this
scheme. The procedure indicated that an
appropriate model for the data would be
Model M;. (For example, a goodness of
fit test of Model M, has a significance
level greater than 0.99). Thus, the esti-
mation procedure associated with Model
M, was used to produce point and inter-
val estimates for N (Fig. 6). Although N,
overestimates the true value of N by ap-
proximately 12 percent, the confidence
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NUMBER OF TRAPPING OCCASIONS WAS 6
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 68
TOTAL NUMBER OF CAPTURES, N.. WAS 145

FREQUENCIES OF CAPTURE.F (1)

1= 1 2 3 v 5 6
Fth= 25 2 13 5 1 2
COMPUTED JACKKNIFE COEFFICIENTS
N(1) N(2) N(3) Nty N(5)
I 1.833 2.500 3.000 3.333 3.500
2 1.000 467 -.233 -.833 -1.167
3 1.000 1.000 1.225 1.542 1.750
4 1.000 1.000 1.000 .956 L9y
5 1.000 1.000 1.000 1.000 1.001
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 NCD) SE(1) .95 CONF. LIMITS TEST OF N(I+1) VS. N(D)
0 68 CHI-SQUARE (1 D.F.)
1 88.8 6.18 76.7 100.9 1.410
2 a3.8 9.40 5.4 1.2 .000
3 93.8 12.85 69.0 118.6 .078
4 2.8 15.45 62.5 123.1 .18
S 82.2 17.06 58.7 125.6 0.000
AVERAGE P-HAT = .2778

INTERPOLATED POPULATION ESTIMATE IS 87 WITH STANDARD ERROR 5.8220

APPROXIMATE 95 PERCENT CONF [DENCE INTERVAL 75 10 9
HISTOGRAM OF F (1)

FREQUENCY 25 22 13 5 1 2

EACH * EQUALS 3 POINTS

FiG. 7. Example of population estimation with

variable probability of capture by animal under

Model M, with snowshoe hare data from Burn-
ham and Cushwa (pers. comm.).

interval constructed for N does in fact
contain the true population value of 420.
These results are as satisfactory as any
produced by various estimation tech-
niques used by Carothers.

Example

In 1972, Burnham and Cushwa (pers.
comm.) laid out a livetrapping grid in a
black spruce forest 30 miles (48.3 km)
north of Fairbanks, Alaska. The basic grid
was 10 x 10, with traps spaced 200 feet
(61 m) apart. Trapping for snowshoe
hares Lepus americanus was carried out
for 9 consecutive days in early winter.
Traps were not baited for the first 3 days,
and therefore we have chosen to analyze
the data from the last 6 days of trapping.
The model selection procedure designed
to identify a proper model for estimating
N chose Model My, as the most appropri-
ate model for the data. A goodness of fit
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test of Model M, had a significance level
of 0.06. The data, and the estimates pro-
duced by the estimation procedure of
Model M, are given in Fig. 7. The results
of the entire 9 days of trapping show 74
different animals caught while the lower
95 percent confidence limit for N given
in Fig. 7 is 75. Although this result is sat-
isfying, we reemphasize that the true
confidence coefficient of the confidence
intervals associated with Model My, is, for
most populations, much less than the
stated level of 0.95.

Discussion

Theoretically, 2 main complicating fac-
tors are associated with the existence of
heterogeneity of individual capture prob-
abilities. First, a parameter must be in-
troduced into the model for every indi-
vidual in the population, and this makes
straightforward statistical estimation of
population size impossible. Second, the
assumption of heterogeneity can render
some individuals nearly “invisible” with
respect to any estimation procedure
based on marking methods because such
individuals have nearly zero catchability.
The jackknife estimation procedure is the
most robust procedure thus far proposed
for dealing with problems associated
with heterogeneity. Moreover, the esti-
mator seems robust to other factors that
may have an effect on capture probabili-
ties. It should be pointed out, however,
that in some cases the bias of the esti-
mator is not negligible. In general, if the
jackknife procedure is to be considered
a good nonparametric and robust tech-
nique, the trapping must be performed
on a large number of occasions, and the
number of recaptures on each occasion
must be substantial.

We remark that the observations con-
tained in this section reflect Gilbert’s
(1973:524) opinion that “the presence of
heterogeneity per se is not as important
as the particular pattern of heterogeneity
and whether the heterogeneity is near
zero or one.”
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MODEL My,: CAPTURE PROBABILITIES
VARY BY TIME AND BEHAVIORAL
RESPONSE TO CAPTURE

Structure and Use of the Model
Assumptions and Parameters

If it is assumed that an animal’s prob-
ability of capture changes after initial
capture and that temporal changes also
have an effect on capture probabilities,
Model My, results. This model has been
conceptualized in the literature (see
Eberhardt et al. 1963, Seber 1973) but it
has not received mathematical treatment
with respect to estimation of population
parameters. Although many variations of
the basic model exist (see Appendix F),
for purposes of this chapter we shall de-
fine the parameters of Model My, as:

N = population size,

p; = the probability an unmarked animal
is captured on the j** trapping occa-
sion, j = 1,2,.. .t

¢; = probability that a marked (previ-
ously captured) animal is captured
on the j' trapping occasion, j =
23,.. .t

Note that again, as in Model M,, an ani-
mal exhibits only 1 behavioral response
to capture after its initial capture.

Statistical Treatment

The joint probability distribution of the
set of possible capture histories {X,} can
be written as

P[{Xw}] =

N! .
[Tty - T e

(1= p)N M (c)™(1 — )™,
where

u; = number of unmarked animals caught
on the j™ occasion, j = 1,2, .. .,t,

M; = number of marked animals in the
population the the time of the j*
sample, j = 1,2,...,t, and

m; = number of marked animals captured
on the j occasion, j = 1,2, .. ..t.
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A minimal sufficient statistic for this dis-
tribution is given by {u,, u,,...,u;, ma,
ms, . ..,m; which has dimension 2t — 1.
Since the model involves 2t parameters,
not all parameters can be estimated and
maximum likelihood estimation of N
proves to be impossible. The structure of
P[{X,}] reveals that estimation of the pa-
rameters N, p,;, pPs, ..., Pt depends only
upon the vector of removals {uu,,...,
u}. Thus, estimation of N in Model My,
would be equivalent to the estimation in
Zippin’s (1956) removal model general-
ized to allow the probability of removing
an animal, p;, to be different for every
trapping occasion. This involves estimat-
ing t + 1 parameters with t statistics.
Hence, in order to make N an identifiable
parameter, one has to make the assump-
tion that at least 2 of the p; are equal.
Because there appears to be no biological
justification for making such an assump-
tion, only ad hoc estimation procedures
are available. For example, Tanaka (1951,
1952) has proposed a regression tech-
nique that involves plotting y; = my/n;
versus M; on a logarithmic scale; how-
ever, Seber (1973) pointed out there are
serious problems of interpretation in-
volved in using this technique. It is true
that graphical techniques such as this
may possess some utility in that they en-
courage the researcher to examine the
data carefully. However, regression
methods are not contained in the class of
estimation methods considered in this
monograph. Therefore, Tanaka’s (1951,
1952) method and those similar to it will
not be considered here.

Discussion

In view of the previous discussion, we
believe that Model M, is not useful for
estimation purposes. However, the mod-
el does have utility with respect to the
problem of choosing a “best” estimation
procedure given the data at hand. For
details of how the model is used in such
a testing procedure see the section on
model selection.
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MODEL My,;: CAPTURE PROBABILITIES
VARY BY TIME AND INDIVIDUAL ANIMAL

Structure and Use of the Model
Assumptions and Parameters

If, on the j"™ trapping occasion, the i
animal has a capture probability of p; =
pip; that is independent of its capture his-
tory (i.e., there is no behavioral response
to capture), then Model My, is the appro-
priate probability model for a capture-re-
capture experiment on such a population.
Notice that the structure of p; implies
that variation in capture probabilities due
to time is independent of the variation
caused by individual heterogeneity. In
effect, this means that the factors respon-
sible for time variation, e.g., environmen-
tal conditions, affect all members of the
population similarly. For purposes of this
section it shall be assumed that the p;,i =
1,2,...N, are a random sample of size N
from some probability distribution-func-
tion F(p; 0) that is parameterized by the
vector @ and defined for p in the interval
[0, 1]. Note that it is necessary that each
of the parameters, p;, j=12,...,t be
subject to the constraint that 0 < pip; < 1
fori=1.2,...N. Conceptually, the form
of the distribution function F(p; 6) and
the parameters 0, p,, p,, ..., p, are un-
known elements of the model, as is the
parameter N.

Statistical Treatment

Estimation of population size under
the assumptions of Model M, has not
been considered in the literature. If one
is willing to completely specify the dis-
tribution F(p; 0), then maximum likeli-
hood estimation of N becomes possible
(cf. Appendix G). In general, such an as-
sumption is not realistic. Furthermore,
simulation results of Burnham (unpub-
lished dissertation) indicate that an ML
estimator resulting from such as assump-
tion may have poor operating character-
istics.

If no assumptions concerning F(p; 6)
are made, ML estimation of N is not pos-
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TABLE 9.—COMPUTER SIMULATION OF THE BIAS ASSOCIATED WITH THE ESTIMATORS N, AND N, FOR
DATA GENERATED UNDER MODEL My, (ALSO SEE APPENDIX N, TABLE N.5.b)

Percent Percent Population Number Number of
relative bias . relative bias N size of reps occasions
RB Ave[N,] RB Ave[N|] R t Trial!
0.7 402.9 —-24.1 303.6 400 100 5 1
19.7 478.7 - 175 369.9 400 100 5 2
-11.5 353.9 -22.8 309.0 400 100 5 3
-11.8 352.8 -31.8 272.8 400 100 5 4
8.9 217.7 - 6.1 187.9 200 100 7 5
-10.9 178.2 -17.9 164.2 200 100 5 6

' The probability of capture for data generated under Model My, is complex; therefore, the specific values are given in Appendix N,

Table N.5.a.

sible. At present, we are not aware of any
rigorous estimation technique that is ap-
propriate for estimation in Model M.

Simulation Results
Bias

To gain some insight into the perfor-
mance of estimators associated with
models closely related to Model My, we
simulated capture-recapture experi-
ments on populations that satisfy the as-
sumptions of Model My, and calculated
the estimators associated with Model M;
and Model M, from the resulting data.
Examples are given in Table 9. See Ta-
bles N.5.a and N.5.b of Appendix N for
a description of the populations used and
for results of other simulations. A choice
between the 2 estimators with respect to
performance is obviously not clearcut.
The magnitude of the bias of N, seems in
general to be less that that of N,. How-
ever, direction of bias of N, i is not consis-
tent, whereas the estimator N, appears to
con51stently exhibit negative bias. Thus,
if the data seem to fit Model My,, com-
puting both estimates of N should give
the experimenter some sense of the size
of the population. However, it should be
emphasized that the model does not
seem particularly useful in providing a
single satisfactory estimate of the value

of N.
Confidence Intervals

Coverage of confidence intervals con-
structed both on the basis of the esti-

mators of Model M, and Model M, was
poor (cf. Table N.5.b, Appendix N). The
lack of coverage is due, in general, to the
significant bias present in the estimates.
Therefore, we recommend that confi-
dence intervals constructed from data
that apparently fit Model My, be consid-
ered only as a very crude indication of
the possible values of N and not as a valid
statement of inference.

Robustness

A discussion of the robustness of the
estimator associated with Model My, is
somewhat inappropriate because no sin-
gle estimator is exclusively associated
with the model. The robustness of N, and
N, has been discussed previously. Those
discussions indicated that the former es-
timator is relatively robust and that the
latter is not. Such assertions seem to be
supported by the results of this section
concerning bias.

Discussion

Model My, is one of the most difficult
models dealt with in this monograph.
That difficulty is reflected in the fact that
no estimation procedure can be proposed
that is specifically suited to all assump-
tions of the model. Estimators associated
with 2 previous models have been inves-
tigated for possible use but neither seems
completely adequate. Thus, at present,
satisfactory techniques for constructing
point and interval estimates of N are not
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available. Hopefully, further research in-
volving Model My, will be forthcoming
so that the model can be dealt with in a
more adequate statistical manner. Until
then, one must be satisfied with obtain-
ing only very rough estimates of popula-
tion size when Model My, is the appro-
priate representation of the experiment.

MODEL My;: CAPTURE PROBABILITIES
VARY BY INDIVIDUAL ANIMAL AND BY
BEHAVIORAL RESPONSE TO CAPTURE

Structure and Use of the Model
Assumptions and Parameters

Model My, assumes that every member
of the population has a specific pair of
capture probabilities: p;, the probability
that the i** animal is caught on any trap-
ping occasion given that it has not been
previously captured; and c;, the proba-
bility that the i*" animal is recaptured giv-
en that it has been captured at least once
previously. Thus, the model allows both
behavioral response to first capture and
individual heterogeneity of capture prob-
abilities. An important and appealing
characteristic of the model is that it al-
lows the behavioral response to capture
to vary with the animal, i.e., all members
of the population do not exhibit an iden-
tical response to first capture.

The most general formulation of the
model involves 2N + 1 total parameters
consisting of N (population size), and 2
capture probabilites for each of the N
members of the population. Obviously,
no real experiment will be able to pro-
vide enough information for the explicit
estimation of this number of parameters.
Further assumptions are necessary be-

fore estimation of population size is pos-
sible.

Statistical Treatment

Pollock (unpublished dissertation) in-
troduced Model M;, and assumed that
the pairs (p;, ¢;) are a random sample of
size N from a bivariate probability distri-
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bution function G(p, c; 0) that is param-
eterized by the vector of unknown con-
stants 0. If one assumes that the form of
the distribution G(p, c; 0) is known and
if the dimension of 0 is no larger than
[t(t + 1)/2] — 1, where t is the number of
trapping occasions, then theoretically
maximum likelihood estimation could be
used to provide an estimator of N. How-
ever, a “nonparametric” approach is also
possible. We discuss this approach in the
context of the assumption that the bivar-
iate density function G(p, c; 0) can be
factored as Gy(p; 0,) Gy(c; 0,). That is, an
individual’s initial capture probability
and its probability of recapture are in-
dependent. With that assumption, Pol-
lock (unpublished dissertation) showed
that the probability distribution of the set
of possible capture histories {X,} can be
written as

P[{X,}] = NI

ul!U2!' * 'ut!(N - MH-I)!

t
Pl AT "thu‘(l — z ﬂj)N_M'"

=1

'P*[{Xw} |u1,u2, . 'au'la
where

u; = number of unmarked animals
caught at time j, j = 1,2,.. .t

. 1
m = EI(1 - pptp] = [ (1-p)p dG,
j=12,...,t and

P*[{Xw} |u17 Ug, ... ut] =
a conditional probability distribu-
tion that does not depend upon
the parameter N or the distribu-
tion G,(p;0,).

(Refer to Appendix H for further details).
Thus, the “removals” {uu,,...,uy} are
the relevant statistics for the purpose of
estimating N and the parameters 6, in
Gi(p; 0,), and these statistics have a mul-
tinominal distribution with parameters N
and m,m,,...,m (Seber 1973:316 gave
this model for the special case t = 3). We
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can transform the m; by writing ;=
(1 - f)l)(l - 152) . .(l - pj—l)p_j’j = la .. ‘7t)
where p; is the average conditional prob-
ability of capture on the j™ occasion for
those animals not previously captured.
The distribution of the t-dimensional
vector of removals now depends upon
the t + 1 parameters N, py,ps, . . .,p, and
thus all the parameters of the model are
not identifiable. This is similar to the sit-
uation that resulted in Model My, where
it was conlcuded that ML estimation of
N is not possible. If individual probabil-
ities of first capture vary over the popu-
lation, however, it is logical to assume
that p, > p,> p3 > > p;, because the
individuals with high first capture prob-
ability will tend to be removed first, the
animals with slightly lower first capture
probabilities removed second, and so on.
Moreover, the assumption that(p, — p,) >
(P2 — P3) >+ -> (D1 — Py, i.e., the big-
ger differences in the conditional proba-
bilities of removal occur in the initial
stages of the experiment, does not seem il-
logical. These assumptions are the basis
for the development of an estimation pro-
cedure appropriate for Model My, The es-
timator N, derived under Model M,, is
obtained by sequentially testing (through
goodness of fit tests) for differences
among the p;. The process begins with
testing whether or not all the p; are equal.
If not, we let p, be different and test
whether or not p,=p;=---=p,. This
testing continues until it is concluded
that the last t — k + 1 capture probabili-
ties are not significantly different, where-
as the first k capture probabilities do dif-
fer. In the case k = 1, we are saying the
simple Model M, (all p; equal) adequate-
ly fits the removals. For k > 1 we are con-
cluding Model M, does not fit the data,
due to the presence of heterogeneity (or
time variation in capture probabilities).
The estimator Ny, is the ML estimator
under the selected model.

The above technique, called the gen-
eralized removal method, is further de-
scribed in Appendix H. The appendix
also points out that it is not necessary that
the factorization G(p, c¢; 0) = G(p; 0,
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Gs(c; 0,) be possible in order to use the
generalized removal method to estimate
population size. It is important to realize
that this method is a generalization of
Zippin's (1956, 1968) removal method
which assumes no variation in first cap-
ture probabilities. Therefore, the fact that
the generalized removal method has util-
ity in removal experiments as well as cap-
ture-recapture experiments is not surpris-
ing (cf. REMOVAL MODELS).

Finally, we mention that the method
can “fail” if a mathematical criterion in-
volving the removals u,u,, .. .,u; is not
satisfied. This failure criterion, similar to
the one involved in Zippin's removal
method, ensures that a sufficient decline
in the number of newly captured animals
is being effected by successive trapping
occasions. A formula expressing this cri-
terion is given in Appendix H.

Simulation Results
Bias

Experiments were simulated on popu-
lations behaving according to the as-
sumptions of Model My, The estimator
Ny was calculated to develop some idea
of the bias involved. Results indicate that
relative bias ranges from 3 to 38 percent
for populations used in the simulations.
That range is somewhat misleading how-
ever, because for all populations except
one (in which half the population was
essentially untrappable), the range of
bias was 3 to 15 percent. Some examples
are given in Table 10. The reader is re-
ferred to Tables N.6.a and N.6.b of Ap-
pendix N for further results and for de-
scriptions of the populations. In general,
it seems there is no serious bias in N, if
relatively few members of the population
are essentially uncatchable (i.e., proba-
bility of first capture less than 0.05) and
the number of trapping occasions is ad-
equate. (Recall that since the estimation
technique depends on removals only,
probabilities of recapture have no effect
on the performance of Ny,.) Considering
the complicated model structure and the
assumptions required to produce the
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TABLE 10.—COMPUTER SIMULATION OF THE BIAS

ASSOCIATED WITH THE ESTIMATOR Ny, FOR DATA

GENERATED UNDER MODEL My, (ALSO SEE AP-
PENDIX N, TABLE N.6.b)

Percent Popula- Number Number
relative tion of of

bias . size reps occasions

RB Ave[Nyn] N { t Trials?
-384 246.6 400 100 5 1
-14.8 3408 400 100 5 2
- 59 94.1 100 100 5 7
-12.3 1755 200 100 10 5
- 32 1937 200 100 7 6
- 43 3830 400 100 5 4

! The probability of capture for data generated under Model My,
is complex; therefore, the specific values are given in Appendix
N, Table N.6.a.

generalized removal estimator, these re-
sults are encouraging with respect to
practical use of the estimator.

Confidence Intervals

Simulation results are not so encour-
aging, however, when it comes to placing
a confidence interval on N. The variance
estimator associated with Ny, appears ill
behaved and the distribution of Ny, is
nonnormal. Those factors resulted in sim-
ulated confidence coefficients averaging
approximately 0.50. Further work is nec-
essary to develop useful confidence in-
tervals for N when Model M,, seems
appropriate because normal theory
confidence intervals apparently are in-
appropriate for practical use.

Robustness

The generalized removal estimator can
be expected to be robust to Models M,
and M,, since both are special cases of
Model My,. If capture probabilities ex-
hibit significant variation over time, the
utility of the method is undoubtedly de-
creased. That is particularly true if prob-
abilities tend to increase with time, al-
though the failure criterion should help
to provide a safeguard against use of the
method when it is inappropriate. In gen-
eral, it is expected that the generalized
removal method used in the context of a
capture-recapture experiment will pro-

vide reasonable estimates of population
size if the number of unmarked animals
captured on each trapping occasion ex-
hibits a definite decrease over time. Such
a trend indicates that conditional proba-
bilities of capture on the j™ occasion are
reasonably large, which is the primary
requirement for adequate estimation of
population size.

Example

E. Larsen (pers. comm.) provided the
results of livetrapping Great Basin pocket
mice Perognathus parvus in a desert
community, Curlew Valley, Utah. The
area was trapped for 7 consecutive nights
during June 1977. Traps were arranged
in a 12 x 12 grid and spaced 15 m apart.
Analysis of the resulting data by the mod-
el selection procedure (described in
TESTS OF MODEL ASSUMPTIONS) indicat-
ed that either Model My, or Model My,
would be appropriate for use in estimat-
ing N. The data on first capture and the
results of using Ny, to produce point and
interval estimates for N are given in Fig.
8. Note that the estimator rejects the
model for k = 1, but accepts k = 2. Also
of interest is that the estimation method
fails for k = 3, but estimates for k = 4 and
k = 5 are produced that appear reason-
able. The estimated variance of Ny, is
quite large for k = 2. Possibly time vari-
ation is quite important and causes this
imprecision. The probabilities of capture
decline for k = 2, as they should under
Model My;,. A histogram of the u; values
is included to help the researcher visu-
ally examine his data.

Discussion

Model My, is one of the most realistic
and useful models for a capture-recap-
ture experiment considered in this mono-
graph. Realism results from allowing
every animal to possess its own proba-
bility of first capture and from not con-
straining the members of the population
so that every individual’s behavioral re-
sponse to first capture is identical. The
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OCCASION J= 1 2 3 4 5 6 7
TOTAL CAUGHT M) = 0 23 32 35 40 46 52 55
NEWLY CAUGHT U= 23 =] 3 5 6 6 3
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., 7
1 60.61 4.4563%4 9.965 .0762 .2802 .e802 .2802 .2802 .2802 .2802 .2802
2 76.73 24.66909 3.486 4801 .2998 1377 1377 1377 L1377 1377 L1377
3 FAILURE CRITERION = -2 NO ESTIMATES FOR THIS STEP.
4 67.44 18.18889 1.308 .5201 L3410 .2025 . 0846 .2067 .2067 .2067 .2067
5 58.65 5.896785 .823 L3643 . 3922 .252% 1126 211y .3953 .3953 .3953
POPULATION ESTIMATE IS 77 WITH STANDARD ERROR 24.6691

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 28 T0

HISTOGRAM OF U(J)

FREQUENCY 23 9 3 5 6 6 3
EACH * EQUALS 3 POINTS

TS .

a1 .

18 .

15 .

12 .

9 . .

6 . . . . .

.

3

126

F1Gc. 8. Example of population estimation with variable probability removal estimator under Model
My, with pocket mouse data from E. Larsen (pers. comm.).

model is useful because an estimation
procedure based on the assumptions of
the model is available for estimating pop-
ulation size. Although the operating char-
acteristics of the estimator are not com-
pletely satisfactory, the estimator would
seem superior to any other that might be
used if, in fact the assumptions of Model
My, are satisfied. Moreover, the method
is nonparametric in the sense that one
does not have to specify a probability dis-
tribution for the pairs (p;, cj).

MODEL Mn: CAPTURE PROBABILITIES
VARY BY BEHAVIORAL RESPONSE
TO CAPTURE, TIME, AND
INDIVIDUAL ANIMAL

Discussion

For purposes of this monograph, Mod-
el My, is useful only conceptually. Be-
cause all 3 factors that may affect capture
probabilities are assumed to be operating

in Model My, every other model consid-
ered here is of course a special case of
this model. Thus it may be useful to think
of Model My, as the most realistic of all
models that assume population closure.
Unfortunately, this extreme realism pre-
cludes the model from having any prac-
tical use in the estimation of population
size. If the experimenter is led to believe
that all the assumptions of Model My, are
required for the capture-recapture ex-
periment at hand, none of the models
considered in this publication are capa-
ble of producing valid statistical infor-
mation concerning the population param-
eters of interest. If such a failure occurs,
the researcher is forced to reevaluate the
experimental design to discern how the
experiment might be conducted to obtain
useful information. This reevaluation
may cause the capture-recapture method
to be discarded in favor of some other
completely different technique, e.g., line
transect methods. Whatever the conclu-
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sions, such an approach is much pre-
ferred over one that ignores necessary
assumptions associated with the appro-
priate capture-recapture model and pro-
ceeds to use some simpler but inappro-
priate model. This latter approach
requires the researcher to give credence
to statistically invalid information about
the population, and therefore violates ba-
sic tenets of scientific research.

REMOVAL MODELS
Introduction

In a capture-recapture experiment, all
members of the population captured on
a given trapping occasion are marked and
released back into the population. In a
removal experiment, however, as the
name implies, members of the popula-
tion are permanently removed and are
not reintroduced into the population after
first capture. The removal may be accom-
plished by killtrapping, electrofishing,
trawling, or merely livetrapping the ani-
mals and physically displacing them to
another area.

Removal methods have traditionally
been associated with catch—effort exper-
iments, which have been used often in
practice (Omand 1951, Ketchen 1953,
Fischler 1965). Such experiments are
based on the idea that the size of the pop-
ulation will be decreased gradually as
will the catch per unit effort by applying
a known amount of removal effort on a
number of occasions. The basic assump-
tion behind catch—effort techniques is
that the number of animals removed from
the population directly depends upon the
amount of effort expended in removing
them. By using the size of the successive
decreases and the known efforts that ef-
fected those decreases, initial population
size N can be estimated. The experiment
usually is modeled by assuming that all
animals have probability of capture p; =
1 — exp(—ke;) on the j* trapping occa-
sion, where k is often called the “Poisson
catchability coefficient” and e; represents
the known effort expended on the j* oc-
casion. Under such conditions and the
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condition that units of effort act inde-
pendently, a number of estimation tech-
niques have been proposed. Although
maximum likelihood estimation of N is
possible (cf. Seber 1973:297), the best
known estimation techniques are the
regression techniques proposed by Les-
lie and Davis (1939), DeLury (1947), and
Ricker (1975). All those methods involve
regressing catch per unit effort against
some function of the “catchability coef-
ficient” and the efforts expended, and
then using least squares analysis to pro-
vide an estimator of N and its variance.

Such catch-effort techniques will not
be considered in our approach to removal
experimentation for a number of reasons.
First, and most important, we restrict our
consideration of removal studies to those
in which effort is deliberately kept con-
stant on all occasions. In such studies, the
concept of effort has no utility. Second,
because the general approach in this
monograph has been to void parametric
assumptions concerning capture proba-
bilities, the assumption that p;=1 —
exp(—ke;) is inappropriate for our pur-
poses. Third, it is necessary for purposes
of least squares analysis to make certain
assumptions that involve the variance
structure of the observations. Because to
each postulated variance structure there
corresponds a formula by which the es-
timate of N is calculated, such proce-
dures are to some extent arbitrary in the
absence of valid tests for determining
proper variance structure. Finally, Braa-
ten (1969) investigated the robustness of
the DeLury (1958) estimator to depar-
tures from some of the assumptions and
found that the estimator may exhibit sig-
nificant negative bias.

Structure and Use of the Generalized
Removal Model

If it is assumed that sampling effort is
constant over trapping occasions, and
that all animals in the population have
the same probability of removal, then the
removal model and estimation method
considered by Moran (1951) results. That
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method was discussed in conjunction
with estimation in Model M;. The con-
text here, however, is different since an-
imals are not reintroduced into the pop-
ulation after initial capture. Zippin (1956)
showed that the joint distribution of
{uu,,...,u}, where u; represents the
number of animals removed on the j** oc-
casion, can be written as

Pl{uu,, .. u]l =
N!

[lj uj!](N - M,)!

thﬂ

NS =i+ Dy
=]

(1-p) ,

where p is the probability of removal of
any animal on any trapping occasion.
Because the parameter space is 2 di-
mensional (N and p are the only param-
eters) and the minimal sufficient statistic

t
{MHI’ Ejllj}
=1

is 2 dimensional, both parameters are
identifiable and may be estimated by
maximum likelihood. Such estimators are
derived in Appendix D, and are the same
as those used to estimate N and p in
Model M,,.

An estimator of population size N
based on the above model will clearly be
unsatisfactory if all animals present do
not have an equal probability of removal
on a given trapping occasion. In removal
experiments, unequal capture probabili-
ties can be caused by time variation or
heterogeneity or both. Behavioral varia-
tion is nonexistent since members of the
population are removed after first cap-
ture. We maintain that proper planning
and design of the removal experiment
can be used to control or reduce time
variation (see STUDY DESIGN). Thus, the
main problem lies in dealing with het-
erogeneity of capture (removal) probabil-
ities. In the following development, it is
argued that the estimation procedure pre-
viously proposed for Model My, is also
appropriate for estimation in removal
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models. Such a procedure represents a
generalization of Moran’s (1951) and Zip-
pin’s (1956, 1958) constant probability re-
moval model to the case in which heter-
ogeneous probability of removal exists. If
the set of removal probabilities p;, i =

1,2,...,N, is assumed to be a random
sample of size N from some probability
distribution G(p; 0) parameterized by 0
and defined on [0, 1], then the distri-
bution of the vector of removals
{uj,u,, .. .,ui} can be written as

P[{uy,u,, ..

N!
[ljuj!:l(N - M)
<+ -{E[(1 = p)*'p]}* {E[(1 — p)'}¥ M,

where

E(1 - p)ip] = [ (1- p)p dG (0:0),
ji=1,...t

E[(1 - p)1=1—- 3 E[(1 - p)'p].
=1

-,Ut}] =
{E[p]}*{E[(1 - p)p]}*

This distribution is identical to the dis-
tribution of the removals {u,u,,...uy
under the conditions discussed in the
section on Model My;. Thus, it is easily
argued (cf. Appendix J) that the general-
ized removal method developed for Mod-
el M, is also appropriate for estimation
in removal models in which it is assumed
that heterogeneity of first capture proba-
bility exists. Details of this estimation
technique are given in Appendix H,
along with an estimator of the asymptotic
variance of the population estimator Ny
(the R stands for “removal,” but we note
that Ny is mathematically the same as
Npn) and a “failure” criterion that must
not hold if parameters are to be validly
estimated. This criterion ensures that a
sufficient decline in the population is
bleing effected by the successive remov-
als.

As explained in the material on esti-
mation of N in the section on Model M,,,,
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our procedure is to look at a sequence of
removal models. These correspond to a
sequence of assumptions as follows: all
p, are equal, or p, # p, but p, = p3
= '+ =Py, OF Dy # Dy # P3, but p3 =Py
= = P, and so forth. The most general
model allows all p; to be different, but
this most general model does not allow
estimation of N. We define the specific
removal model Mg, as the model in
which the last t — k + 1 values of p; are
the same, and for k > 1, the first p, to px
are different.

The estimation procedure is to test the
goodness of fit of the removal models se-
quentially from My, to My;_,. Thus, we
are first testing whether the constant
probability model fits. If it does, we use
the corresponding maximum likelihood
estimator of N. If this simple model is
rejected by the chi-square test (at the
20% significance level in program CAP-
TURE), we then examine the case (mod-
el Mg,) of p, # Py, but p, = ps =+ = py.
The estimator of N, Ng, used in this gen-
eralized removal approach is taken as the
ML estimator of N for the selected re-
moval model.

Simulation Results

Bias and Confidence Intervals

A discussion of the bias of the estimator
of N associated with the generalized re-
moval method and of the usefulness of its
associated confidence intervals was pre-
sented in the material on Model My,
Briefly, the simulation study revealed
that the bias of the estimator of N was in
most cases not serious, but that confi-
dence intervals achieved only 50 percent
coverage on the average. Although the
results and discussion of that section
were presented in the context of a cap-
ture-recapture experiment, all the mate-
rial is directly applicable here. Because
the 2 estimation procedures are identical,
the relevant data in both cases involve
only the removal statistics from popula-
tions with heterogeneous probabilities of
first capture. Denoting the estimator of N
as Ny is intended to remind the reader
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that this section deals with strict removal
data.

Robustness

In the context of removal experiments,
the generalized removal method repre-
sents a significant step forward with re-
spect to robust estimation of population
size. It should be emphasized, however,
that the procedure is designed to be ro-
bust to failure of the assumption that all
animals have the same probability of first
capture, and not to failure of the assump-
tion that sampling effort is uniform over
trapping occasions. There is some indi-
cation in the simulation results that the
method performs adequately when there
is no heterogeneity of capture probability
but there is nonuniformity in sampling
rates over time. The method performs
very poorly, however, when both heter-
ogeneity and nonuniform sampling rates
are present. First, the percentage of ex-
periments which “fail,”” as determined by
the failure criterion, can be very high.
For instance, in the population defined
by Trial 1 of Model My, the experiment
failed in every one of 100 simulations.
Secondly, when the experiment does
succeed, bias is usually significant. Some
simulated examples are given in Table 11
which help to substantiate these remarks.
Complete simulation results are given in
Table N.6.b of Appendix N.

Example

Andrzejewski and Jezierski (1966) re-
ported the results of a study designed to
estimate population density of European
hare Lepus europaeus on experimental
hunting grounds in Poland. Hares were
captured and removed by driving them
into nets surrounding the area. Results of
the application of the generalized remov-
al method to the data resulting from the
4 drives (removal occasions) are given in
Fig. 9. When k = 1 (i.e., all animals are
assumed to have the same probability of
removal), a poor fit to the data results
(chi-square goodness of fit value is 13.5,
2 df, and p = 0.0014). For k = 2, how-
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OCCASION J= 1 2 3 4

TOTAL CAUGHT M(J)= 0 722 913 982 1018

NEWLY CAUGHT utd)= 722 191 63 36
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., 4
1 1028.21 3.7839703 13.150 L0014 .6806 .6806 .6806 .6806
e 1033.10 7.658751 1.528 2164 .6948 .5916 .5916 .5916

POPULATION ESTIMATE IS 1033 WITH STANDARD ERROR 7.6588

APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 1023 TO 1055

HISTOGRAM OF U(J)

FREQUENCY 722 191 69 36

EACH * EQUALS 73 POINTS

730 .
657 .
584 *
511 .
438 .
365 .
-
-
-
-

219

F1G. 9. Example of population estimation under the variable probability removal model with data on
European hare from Andrzejewski and Jezierski (1966).

ever, an acceptable fit results (p = 0.2164) Ny = 1,039 + 7.66 seems much prefera-
and, therefore, the point and interval es- ble to the estimate of 1,010 that results
timates corresponding to Model Mg, are from the (commonly used) regression
chosen. In particular, the point estimate method used by Andrzejewski and Je-

TABLE 11.—COMPUTER SIMULATION RESULTS ILLUSTRATING THE ROBUSTNESS OF THE GENERALIZED
REMOVAL ESTIMATOR Ny USING DATA GENERATED UNDER OTHER MODELS (ALSO SEE APPENDIX N,
TABLES N.2.b, AND N.5.b)

Percent Population Number Number of
relative bias size of reps occasions
RB Ave[Ng] N R t Data model
- 32 387.1 400 100 10 M,, Trial 6!
- 9.0 364.1 400 100 7 M,, Trial 7
2.6 410.3 400 100 7 M,, Trial 9
- 0.2 199.7 200 100 5 M,, Trial 10
-1.9 272.6 400 100 5 My, Trial 2
22.3 489.1 400 100 5 M,,, Trial 4
-10.3 179.4 200 100 7 My, Trial 5

! For example, data generated under Model M, were used to estimate N, using the generalized removal method Np.
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OCCASION J= 1 e 3 4
TOTAL CAUGHT M(D) = 0 181 182 186 =201 204
NEWLY CAUGHT U= 181 11 4 5
K N-HAT SE (N) CHI-SQ. PROB. ESTIMATED P-BAR(J) ,J=1,..., 5
1 204.00 .2094765 70.820 0.0000 .8160 .8160 .8160 .8160 .8160
2 206.77 3.697937 1.555 .4596 .8754 .4029 4029 4029 .4029
3 208.43 8.365668 1.021 L3124 .8684 L4010 . 3306 . 3306 .3306
POPULATION ESTIMATE IS 207 WITH STANDARD ERROR 3.6979
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 199 TO 215

HISTOGRAM OF U(U)

EACH * EQUALS

19 POINTS

190
171
152
133
14

* & * 5 " * & 5 .

F1G. 10. Example of population estimation under the variable probability removal model with aquatic
insect data from R. F. Raleigh (pers. comm.).

zierski, because the number of hares actu-
ally removed was 1,018. The estimated cap-
ture probabilities for Model Mg, are p, =
0.6948, and p, = p; = p, = 0.5916, a re-
sult that supports the idea that hetero-
geneity is operating.

Example

R. F. Raleigh (pers. comm.) provided
some results of a removal experiment in-
volving a species of mayfly Ephemerop-
tera. Mayflies were sampled from 10 ran-
domly placed 0.25-m? areas in a section
of the Poudre River streambed near Fort
Collins, Colorado, with 5 removal occa-
sions at each site. A special benthic
aquatic sampler was used in the study.
Because these are true removal data, the

generalized removal estimation proce-
dure was used to produce point and in-
terval estimates for N (Fig. 10). As in the
previous example, there is a poor fit for
the simple model with constant capture
probability (k = 1). When k = 2, how-
ever, a good fit to the data results and an
estimate Ny = 207, corresponding to
Model Mg, is produced. Note the differ-
ence between p,; =0.8754 and p =
0.4029, indicating that a significant het-
erogeneity in removal probabilities may
exist. The computed confidence interval
is somewhat unsatisfactory because its
lower limit is less than the number of an-
imals actually seen, and reminds one that
in removal and livetrapping experiments,
conditions necessary for construction of
normal theory confidence intervals are
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OCCASION J= 1 2 3 Y4 5 6
TOTAL CAUGHT M) = 0 a5 51 66 79 9l
NEWLY CAUGHT Ut = 25 @26 15 13 12 13

K N-HAT SE(N) CHI-SQ. PROB.

1 138.07 14.67943 3.879 .5670

2 132.46 13.64926 3.623 L4594

3 141.63 25.85191 2.754 4311

Y4 130.96 20. 14541 2.688 .2608

S5 118.54 10.21072 2.133 L1442

POPULATION ESTIMATE IS 138 WITH STANDARD ERROR

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL

HISTOGRAM OF U(J)

FREQUENCY 25 26 15

EACH * EQUALS 3 POINTS

a7

T
" e e e e x w .
s s e e e e e
« e ..
« e e
. s "

« . e
.

108 TO

7
104 108

5

ESTIMATED P-BAR(J) ,J=1,..., 7
.1880 . 1880 . 1880 .1880 . 1880 . 1980 . 1880
.1887 .e218 .e2l18 .2218 .e218 .2218 .e218
.1765 .2229 .1829 .1829 .1829 .18238 .1829
. 1908 2454 .1876 .2339 .2339 .2339 .23329
.e1098 .2779 .e22l 24Ty .3675 .3675 .3675
14.6794

167

F1G. 11. Example of population estimation under the variable probability removal model with whitefish
data from Ricker (1958:150).

not satisfied. In this case, one should trun-
cate the lower limit to the actual number
removed, rather than using a lower limit
less than M,,.

Example

Ricker (1958:150) removed whitefish
Coregonus clupeaformis from Shake-
speare Island Lake in Ontario, Canada,
on 7 successive occasions by means of
gillnetting. Members of whitefish re-
moved in the 13- to 14-inch (3.3-3.6 cm)
length class are shown in Fig. 11, with
the results of the generalized removal
method. Notice that a good fit to the re-
movals is achieved for k = 1, so that Zip-
pin’s (1956, 1958) constant probability re-
moval model seems appropriate for
estimating N. The population estimate of
Ng = 138 is in close agreement with
Ricker’s estimate of 136 which was ob-
tained by using DeLury’s (1947) regres-

sion method assuming equal effort. (We
wish to reemphasize that on theoretical
grounds the ML estimation procedure is
superior to the various regression tech-
niques often used with removal studies.)
The 95 percent confidence interval esti-
mate of [109, 167] is very informative.
Moreover, the true confidence level of
the interval probably is close to the stated
level of 0.95, since the estimated proba-
bility of removal is nearly 0.20.

Discussion

Conducting a removal experiment for
purposes of estimating population size
may sometimes prove more feasible than
a capture-recapture approach (refer to
STUDY DESIGN for further discussion). In
such cases, the experimenter has avail-
able 2 classes of estimation procedures,
the catch—effort techniques usually asso-
ciated with Leslie and Davis (1939) and
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DeLury (1947) or the “removal” tech-
niques first introduced by Moran (1951),
refined by Zippin (1956, 1958), and gen-
eralized here. It is felt that catch—effort
techniques are often not appropriate,
either because of the assumptions in-
volved or because the concept of effort
may be meaningless in many experimen-
tal situations. In those frequent situa-
tions, we believe the generalized remov-
al method provides the best approach to
estimating population size. The operat-
ing characteristics of this method are by
no means completely satisfactory, in
view of the results concerning confi-
dence interval coverage and the failure
of the experiment in some situations.
However, the fact that the method fails
in a given experiment does at least pre-
vent the use of wildly inaccurate esti-
mates in practice and helps to inform the
experimenter that the assumptions of
the method are not met and the quality
of the experiment needs to be upgraded
or the design altered, or both. Neverthe-
less, the method is the most general now
available in the literature that is capable
of providing useful results and, with fur-
ther research, improvements in the meth-
od should be forthcoming.

TESTS OF MODEL ASSUMPTIONS

In preceding sections, we have recog-
nized 3 distinct sources of variation in
capture probabilities, and have given 8
models corresponding to presence or ab-
sence of specific types of variability. No
estimator of population size has been de-
rived from 3 of those models (M, My,
Mn). Consequently, we have introduced
only 5 estimators that are identified be-
low, along with the models where they
should be used. The main purpose of this
section is to give a strategy for selecting
one of the estimation procedures based
on tests of the various underlying as-
sumptions.

Philosophy of the Approach

Our philosophy is that one should first
present the most general model structure

WILDLIFE MONOGRAPHS

(i.e., assumptions) possible for the given
data. Then a series of specific alternative
models should be developed based on
specific assumptions that cover the var-
ious cases of realistic or theoretical inter-
est. Those alternative models form the
basis for both testing of assumptions and
estimating parameters. Under FUNDA-
MENTAL CONCEPTS, we gave the general
model framework considered here: pop-
ulation closure is assumed and captures
are assumed to be independent events
with capture probabilities

Pini=1...ti=1,...N

Such a model structure is useful only as
a conceptual starting point because none
of the parameters are estimable. Next, we
recognized 3 different sources of varia-
tion acting on these capture probabili-
ties: (1) variation over time, (2) behavior-
al variation as a result of first capture (trap
response), and (3) variation over individ-
uals (heterogeneity). We also recognized
the various possible combinations of
these sources of variation.

An almost infinite variety of very spe-
cific models could be constructed. We
examined 8 models likely to be generally
useful for estimation or testing purposes.
Those models can all be expressed in
terms of the assumptions about variation
in the capture probabilities. If each of the
8 models introduced had its own unique
estimation procedure, then selection of
an estimator would be synonymous with
selection of a model. Such is not the case
with only 5 estimators and 8 models. Our
strategy is to present a testing sequence
designed to lead to selection of the most
appropriate model. We define “appropri-
ate model” as the simplest model that
“fits” the data. When that selection gives
a model such as My, for which there is no
theoretically appropriate estimator, we
recommend (in some instances) using the
next best fitting model for which an es-
timator exists. It will occasionally be nec-
essary to conclude that no estimate of N
can legitimately be calculated from the
data.

It is important to recognize that we do
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not claim this model selection procedure
results in the “true” model. By true mod-
el for a capture study we mean that the
stated model is an exact representation of
the true capture probability structure for
that study. Any model is a simplification
that can realistically represent only the
more predominant features of the study.
Also, we must recognize that the most
appropriate model will depend upon the
amount of data we have. With good data
(large grids, many occasions) one might
be able to show, for example, that Model
M, was necessary. Yet, if the same study
used a much smaller grid, and fewer
days, it might be impossible to demon-
strate heterogeneity from the data them-
selves and Model M, might be indicated
as appropriate.

The conceptual goal of our model se-
lection procedure is to achieve an ac-
ceptable trade-off between precision and
bias. If one uses too simple a model, the
estimated population size is likely to be
severely biased yet have a deceptively
small sampling variance. If the model is
complex, but still the wrong one, then
estimators are again of uncertain bias. If
a model is chosen that is too general, the
risk of bias is much reduced, or negligi-
ble, but the sampling variance is larger
than it needs to be (i.e., we lose preci-
sion). Of those 2 cases, the safer one in
our opinion is to choose the more general
model in hopes of minimizing biases. We
state this as our conceptual goal because,
not knowing the true model, we can nev-
er be certain when analyzing real data
that we have made the best choice of a
model.

This model selection procedure is
based on tests of assumptions of 2 types:
(1) tests between specific models, and (2)
general goodness of fit tests to specific
models. Before discussing these tests we
summarize the primary models and as-
sociated estimators.

Summary of Models and Estimators

Capture-Recapture Models

Because these models have been de-
scribed in detail, only a summary is given

below, in terms of assumptions and cor-
responding capture probabilities.

MODEL M,: p; = p.

Comment: This is the most restrictive
model because capture probabilities
are assumed to be constant.

Estimation: We recommend the ML
estimator (see Appendix B); it does

not existin closed form except fort =
2.

MODEL Mt: Pij = pj,j = 1, R &

Comment: Capture probabilities vary
only with time. This is the model
most frequently assumed (often im-
plicitly) in the literature.

Estimation: We recommend the ML
estimator (see Appendix C), it does
not exist in closed form, except for
t =2 (in which case it is the Lin-
coln estimator). The Schnabel esti-
mator, or variations thereof, is often
used with this model, but is only an
approximation to the ML estimator.

. _ [p for first capture,
MODEL M, py = {c for recapture.

Comment: This is the simplest model
of behavioral (trap) response and it
has been recognized in the literature
(Tanaka 1956).

Estimation: The ML estimator, which
is recommended (Appendix D), is a
special case of the generalized re-
moval estimator. Zippin’s removal
model is equivalent to Model M, for
purposes of estimating N, but his
suggested estimator is only a close
approximation to the true ML esti-
mator.

MODEL MhI Pij = Pis i= 1, . oey N.

Comment: This model allows hetero-
geneity of capture probabilities over
animals, but allows no variation in
capture probabilities over time.

Estimation: The jackknife estimator
(Appendix E) is recommended when
M, is the underlying model; that es-
timator was derived specifically for
this model. Note, however, that there
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is no way to derive an optimal esti-
mator for Model M, if nothing is
known about how the capture prob-
abilities vary.

p; for any first cap-

MODEL Mtb: Pi; = ture, j = l, ooty
¢; for any recapture,
ji=2,...t

Comment: This model allows variation
in capture probabilities due to both
time and behavior (trap response).

Estimation: Population size N is not
estimable under this model. There-
fore, there is no satisfactory estima-
tion procedure associated with this
model.

MODEL My Pi=pbs j=1,..,t i=
1,...N.

Comment: This is useful as a concep-
tual model of how time and hetero-
geneity might operate as a simple
product. No estimator can be derived
from this model.

Estimation: Population size N is not
estimable under this model if
straightforward methods are used.
Therefore, there is no satisfactory es-
timation procedure associated with
this model

¢; for all recaptures,
i=1,..,N.

Comment: This model assumes heter-
ogeneity with trap response, but no
time variation as such in the capture
probabilities.

Estimation: The generalized removal
estimator should perform well here
(Appendix H). However, if none of
the generalized removal models fit,

no estimate can be produced using
this model.

MODEL Myy: py = {pi for first capture,

py; for first capture,

MODEL Mun: py = ¢;; for all recaptures,
j=1,...1
i=1,...,N.

Comment: This is a conceptually use-
ful model because it represents the
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TABLE 12.—MODELS AND SUGGESTED ESTIMATED

PROCEDURES
Theoretically

Model appropriate estimator
M, Null (N,)
M, Darroch (N,)
M, Zippin (N,,)A
M; Jackknife (Ny)
Mg, (none)
M (none) R
Mpn Generalized removal (Ny,)
Mipn (none)

case in which all 3 sources of varia-
tion operate.

Estimation: Population size N is not
estimable under this model using
straightforward methods. Therefore,
there is no satisfactory estimation
procedure associated with this mod-
el.

Relationships Between Models

Table 12 summarizes some of the
above information. It is important to un-
derstand the relationship of the models
to one another in order to understand
testing between models. One can only
truly test one model against another
when one model is a special case of the
other. For example, Model M, is a special
case of each of the 3 models M;, M;, and
M. But those 3 models are not related to
each other in any simple manner that al-
lows one to choose or test between them
with any simple statistical tests.

The relationships among these models
is shown in Fig. 12 using an arrow be-
tween 2 models to indicate that one is a
special case of the other. For example,
M, < M; means Model M, is a special
case of Model M, because if Model M; is
restricted by the assumption p; = p;
=--+ = p; = p, Model M, results.

The selection of an appropriate cap-
ture-recapture model is neither simple
nor straightforward and there is, in fact, no
optimal or rigorous statistical theory to
guide this selection. The jumble of ar-
rows in Fig. 12 is indicative of the diffi-
culty.
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Specific Tests to Perform

Before we can give our strategy for
model, hence estimator, selection, it is
necessary to discuss exactly what hypoth-
esis can be tested concerning variations
in capture probabilities. Two types of
tests are made:

(1) Specific tests of one model versus a
more general model. For example,
testing Model M, vs. Model M; tests
for time variation in average daily
capture probabilities;

(2) General goodness of fit tests of a giv-
en model to the data. For example,
testing whether Model M, fits the
data amounts to testing whether time
variation is the only source of varia-
tion in capture probabilities.

There is a basic difference in the nature
of the hypotheses associated with those
2 different classes of tests. The objective
of the first class of tests is to establish
whether or not the more general model
produces a significantly better fit to the
data than the more restrictive model. On
the other hand, the goodness of fit tests
of the second class test whether or not the
data might reasonably have arisen from
the specified model.

Table 13 gives the 7 specific tests we
have used in the model selection proce-
dure. The reader should study Table 13
before proceeding. Program CAPTURE
has been used to produce an example of
the tests. Results are presented in Fig. 13,
that is based on simulated data under
Model M, with parameters N =100, p =
0.50, and t = 5. The first 3 tests of the
model selection procedure separately test
each of the simple models M,, M,, M,
against Model M,. These are all chi-
square tests (see Appendix K for details).
The significance level of the tests is given
by the program. For example, in Fig. 13
under the test of Model M, vs. Model My,
(test 1) we have a chi-square test statistic
of 5.007 (3 degrees of freedom) and the
significance level (labeled PROBABILITY
OF LARGER VALUE) is 0.17127. Thus, that
test is not significant, and we have no
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M

FIG. 12. Relationships among models: arrows in-
dicate that one model is an immediate special
case of another model.

basis to believe there is any heterogeneity
of capture probabilities.

Similarly, the simple tests for behav-
ioral variation (Model M, vs. Model M,,
test 2) and for time variation (Model M,
vs. Model M,, test 3) are not significant in
Fig. 13. Those tests had significance
levels of 0.98056 and 0.31935, respective-
ly. Based on only these results, we would
(correctly, in this case) conclude the ap-
propriate model is Model M,. When a
model more complex than M, is the ap-
propriate one, additional tests are needed.

In the second part of the model selec-
tion procedure, 4 more tests are pre-
sented. The first 3 are simple goodness
of fit tests to models My, M,,, and M,. The
seventh is a test for behavioral response
in the presence of heterogeneity; hence
this test helps make a choice between My,
and My,. That last test is included here
because we have an estimator for Model
Mbh'

The goodness of fit test of Model My
(test 4) in Fig. 13 results in a chi-square
value of 4.556 (4 df) and has a significance
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OCCASION J= 1 2 3 4 S
ANIMALS CAUGHT N(J)= 55 47 S+ 60 48
TOTAL CAUGHT M(J)= 0 55 75 88 96 98
NEWLY CAUGHT Ut = 55 =20 13 8 2
FREQUENCIES Fldr= 10 38 26 20 4

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(Q) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 5.007 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = .001 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 4.701 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 4.556 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENC[ES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 5.000 Y4 .28730
2 1.298 4 .86167
3 1.949 4 .74519
4 5.500 4 .23973

S. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 5.183 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 2.459  DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
SB. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 2.724  DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

CHI-SQUARE VALUE = 59.465 DEGREES OF FREEDOM = 54  PROBABILITY OF LARGER VALUE

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 7.471 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(O) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA 1.00 .96 .26 .51 0.00 .44 .33 .BY

[

[

17127

. 98056

.31935

.33601

.52053

.48276

.43610

.28338

.68036
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TABLE 13.—SPECIFIC TESTS OF ASSUMPTIONS USED IN THE MODEL SELECTION PROCEDURE

Test Source of variation
number tested for Null hypothesis Alternative hypothesis Comments
1. Heterogeneity Model M, fits Model M, fits This test examines the capture
the data the data frequencies to see if there is
evidence of variability among
individual capture probabilities

2. Trap response after Model M, fits Model M, fits This is a test for gross behavior
first capture the data the data effects on capture probabilities

3. Time variation in Model M, fits Model M, fits This tests for variation in aver-
capture probabilities  the data the data age daily capture probabilities.

Unfortunately the actual test is
also sensitive to Model M,,

4. Trap response and/or Model M, fits Model M, fails to  If M, is the true model we ex-
time variation given  the data fit the data pect this test not to reject. We
heterogeneity would also expect test 1 to re-

ject Model M, in favor of My

4a.  As above As above As above These tests are a specific form
of test 4, where for each sig-
nificantly large capture fre-
quency an individual test can be
made for trap response or time
variation or both

5. Heterogeneity and/or Model M, fits Model M, fails to  If My, is the true model we ex-
time variation given  the data fit the data pect this test not to reject. We
trap response also would expect test 2 to re-

ject Model M, in favor of M,.
This goodness of fit test can be
partitioned into two specific
tests, useful in their own right
(5a, 5b)

5a. Heterogeneity and/or First capture prob- First capture prob- This test is identical to the good-
time variation using  abilities are abilities vary by ness of fit test for the simple re-
first capture only constant time and/or movel model

animals

5b.  Heterogeneity and/or Recapture prob- Recapture prob- If M, is true then this null hy-
time variation using  abilities are all abilities vary by pothesis should not be rejected
only recaptures constant time and/or

animals

6. Trap response and/or Model M, fits Model M, fails to  If M, is the model, then we ex-
heterogeneity given  the data fit the data pect this test to fail to reject,
time variation and we expect Model M, to be

rejected in favor of M,
7. Trap response given  Model M, fits Model My, fits This test is useful because if we
heterogeneity the data the data reject M, in favor of M, the
estimator to use is the gen-
eralized removal method
@

F1G. 13. Example of the model selection procedure tests with simulated data. True model is M, with
parameters N = 100, t = 5, and p = 0.5. Appropriate model is M,. Suggested estimator is Null.
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level of 0.33601. Thus, in this example

Model M, fits the data. This is expected
because Model M, is a special case of
Model M,,, and hence the tests should not
reject.

When individual capture frequencies
are large enough (we have used the cri-
teria f; > 2t) we have computed a good-
ness of fit test of Model M,, based on the
data for animals captured exactly f; times.
Theoretically, this can be done for all fre-
quencies f,, . . .fi_; that are large enough.

The goodness of fit test of Model M,
(test 5) can also be partitioned into 2 com-
ponents. Test 5a is actually the goodness
of fit test to Zippin’s removal model, i.e.,
it tests whether the probability of first cap-
ture is constant over time. In Fig. 13, the
test statistic value is 2.459 with signifi-
cance level 0.48276. Thus, in this case
there is no evidence of variation in first
capture probability over time. The second
component of the test of Model M, (test
5b) examines for time variation in recap-
ture probabilities. In Fig. 13, the test sta-
tistic value is 2.724. The goodness of fit
test statistic for Model M, is the sum of
those 2 chi-square values. In Fig. 13, the
value is 5.183 (6 df) with significance level
0.52053. Thus, we conclude Model M, fits
the data. Again, we point out that Model
M, is a special case of My, so the result
is not surprising.

The final goodness of fit test is for Mod-
el M, (test 6). In Fig. 13, the test statistic
value of 59.465 (54 df) is not significant
(P = 0.28338).

An alternate way of thinking of these
tests is as follows. The test of Model M,
vs. M, tests whether there is heteroge-
neity of capture probabilities while the
goodness of fit test of Model M, tests
whether there is any additional source of
variation in capture probabilities due
either to behavior or time or both. If we
rejected Model M, in favor of M, and the
goodness of fit test to M;, indicates M, fits
the data, we could conclude Model M,
was appropriate.

Similarly, the tests of Model M, vs. M,,
test for whether there is behavioral vari-
ation in capture probabilities, while the
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goodness of fit tests to Model M, exam-
ine whether any other source of varia-
tion is operating.

The 7 tests have been simulated to
study their size and power, and the re-
sults are presented in Appendix N. In
general, all the tests have good size prop-
erties, i.e., they tend not to reject when
the null hypothesis is true. However,
most of the tests lack power, i.e., they do
not always reject when they should. This
is particularly true for tests of heteroge-
neity (M, vs. My, and the goodness of fit
test of My).

On the Need for an Objective
Selection Procedure

The above discussion and Fig. 13 il-
lustrate the general model selection ap-
proach. Conceptually, we examine the
results of the 7 tests of assumptions, and
on the basis of the results choose the ap-
propriate model. In the example used
(Fig. 13), the selection was not difficult.
However, for other models, and for much
real data we have seen, the judgemental
selection of an appropriate estimator can
be very difficult because (1) the tests are
not independent, in particular if behav-
ioral variation in capture probabilities is
present this can strongly affect the test
for time and heterogeneity effects; and
(2) for real data all 3 sources of variability
probably are present in varying degrees,
so all we can hope to do is select the most
appropriate model (the one that best de-
scribes the data). With respect to the first
point, consider what happens if Model
M, is true. For example, assume 7 trap-
ping occasions with My, as the true model,
and p = 0.40, ¢ = 0.20. That is, prior to
being captured animals have a 0.40 cap-
ture probability, but due to behavioral
response (trap avoidance in this case)
their capture probabilities drop to only
0.20 after first capture. The expected dai-
ly capture probability is given by

E(n,
pj = I(\IJ),
These are constant only if the expected

i=1,...7.
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daily captures are constant. But as trap-
ping progresses the average daily capture
probability decreases as more and more
animals “shift” their capture probability
from 0.40 to 0.20 as a result of trap re-
sponse. A formula for p; in this case is

p, = —(1-p e+ 1 -p)'p’
' 1-(1-p) ’
i=2, ..t

(p; =p). For the case above, we have

b
0.400
0.275
0.237
0.220
0.211
0.207
0.204

When Model M, is true, the test for time
variation in capture probabilities (Model
M, vs. My will tend to reject Model M,
because the behavioral response does in-
deed “cause” time variation to be present
also.

The same sort of argument shows that
behavioral response “causes” heteroge-
neity on any given day. Consequently,
when Model M, is true, there is a strong
tendency for all of the simple tests to re-
ject Model M,, making selection of the
correct model difficult.

In the final analysis, selection of a mod-
el involves examining a point in a 7-di-
mensional space and trying to classify it
into 1 of 8 categories. We have not been
successful ourselves in providing a set of
simple rules for this choice and believe
that field biologists without rigorous sta-
tistical training might have great difficul-
ty arriving at a proper choice.

ﬂ@mﬁwNHF

An Objective Model
Selection Procedure

The problem identified in the previous
section falls in the realm of multivariate
statistics, specifically classification of an
unknown entity into one of several dif-
ferent known populations. In the classi-
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cal version of this problem, one has a
sample of measurements from each
known population, and from those data a
mathematical rule is constructed for clas-
sifying future cases based on their mea-
surements. In our case, the “measure-
ments” are the significance levels from
the 7 tests. The “populations” are the 8
models. What is unknown is what model
best fits any capture data at hand. Given
this conceptualization, we chose to use
discriminant function analyses to con-
struct the classification function (see
Cooley and Lohnes 1962). The objective
of the discriminant analysis is to weight
and linearly combine the significance
levels of the 7 tests in some fashion so
that the models are forced to be as statis-
tically distinct as possible.

The model classification function was
derived from simulated data where the
true model is known. The capture prob-
ability structure of these simulated data
is presented in Table 14. These parame-
ter values were chosen because they are,
in our opinion, representative of many
real capture studies. For each population,
100 replications were generated, giving
a total of 1,600 cases. The probability
levels from each of the 7 tests were then
used to construct the classification func-
tion. In addition to the 7 probabilities, 9
additional variables were constructed by
taking all possible products between
probability levels from tests 1-3 and tests
4-6, i.e. by taking the 9 pairwise prod-
ucts of the probabilities from the 3 spe-
cific tests against Model M, and the 3
goodness of fit tests. This provides a
total of 16 variables that were transformed
by X = log(P + 0.01). That transformation
tends to weight the smaller probability
levels more heavily than the larger values
close to 1. The classification rule result-
ing from that series of transformations was
one of many rules examined; this par-
ticular rule was chosen because it had
the best performance.

The transformed variables were then
used to compute a classification function
using the SPSS discriminant procedure
(Nie et al. 1975) . The classification func-
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TABLE 14.—CAPTURE PROBABILITY STRUCTURE FOR THE SIMULATED DATA USED TO GENERATE THE
CLASSIFICATION FUNCTION. ONE HUNDRED REPLICATIONS OF EACH TYPE WERE GENERATED, GIVING

A TOTAL SAMPLE SIZE OF 1,600

Model Probability Structure
LARGE POPULATION (N = 400, t = 7)

M, p = 0.30.
M, p;=0.15,i=1,100; p; = 0.25, i = 101,200; p; = 0.35, i = 201,300; p; = 0.45, i = 301,400.
M, p=02;¢c=05.
My pi = 0.15, ¢, = 0.375, i = 1,100; p; = 0.25, ¢; = 0.625, i = 101,300; p; = 0.35, ¢; = 0.875,

i = 301,400.
M, p; = 0.15; p, = 0.45; p; = 0.35; p, = 0.25; p; = 0.30; ps = 0.20; p, = 0.40.
My p; =Dpi'py; pi = 045, i = 1,100; p; = 0.55, i = 101,200; p; = 0.65, i = 201,300; p; = 0.75,

i = 301,400; p, = 0.65; p, = 0.75; p; = 0.55; p, = 0.35; p; = 0.60; ps = 0.50; p, = 0.80.
M,, py=Dp;c c=250; p, =0.05 p,=0.35; p; =025; p, = 0.15; p; = 0.20; ps = 0.10; p, = 0.30.
Mun Dy = Di'bPy- ¢ py = 0.15, 1 = 1,100; p; = 0.25, i = 101,200; p; = 0.35, i = 201,300; p; = 0.45,

i = 301,400; ¢ = 2.50; p, = 0.65; p, = 0.75; p; = 0.55; ps = 0.45; p; = 0.60; ps = 0.50;

pr = 0.70.

SMALL POPULATION (N = 100, t = 5)

M, p = 0.10.
M, pi=005,1=125; p;=0.15i=26,50; p; = 0.25, i = 51,75; p; = 0.35, i = 76,100.
M, p = 0.40; ¢ = 0.20.
My,  pi=0.15, ¢; = 0.075,i = 1,33; p; = 0.25, ¢; = 0.125, i = 34,66; p; = 0.35, ¢; = 0.175, i = 67,100.
M, p: = 0.15; p, = 0.45; p; = 0.35; p, = 0.25; p; = 0.30.
My puy=pi'p; b= 035, i =1,25; p; = 045, i = 26,50; p; = 0.55, i = 51,75; p; = 0.65, i = 76,100;

p; = 0.65; p, = 0.75; p; = 0.55; p, = 0.35; ps; = 0.60.
My  py = pyrc; ¢ = 0.5; p; = 0.35; p, = 0.25; p, = 0.15; p, = 0.20; p; = 0.30.
Mwpn Py =Dpi'ps-c; p; = 0.15, i = 1,25; p; = 0.25, i = 26,50; p; = 0.35, i = 51,75; p; = 0.45, i = 76,100;

¢ = 0.75; p, = 0.65; p, = 0.75; p; = 0.55; p, = 0.45; p; = 0.60.

tion consists of 8 sets of coefficients (1 set centroids for the transformed probability
for each of the 8 models) that are used to levels. The i function has the form

form linear combinations of the 16 vari-
ables plus an intercept. The classification
equations are derived from the pooled

Ci=cio+ cuX; + cip- Xy
+ 0t cue Xie

within-model covariance matrix and the The 136 classification coefficients are

TABLE 15.—CLASSIFICATION FUNCTION COEFFICIENTS USED IN THE MODEL SELECTION PROCEDURE

Coefficient M(0O) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
Co -8.09154 —-14.33446 —25.69392 —17.15981 -31.90722 -23.20432 —26.11839 —15.07368
Cl1 2.44865 1.55835  2.41361 2.09104 4.85352  4.52842 4.58145 1.01685
c2 0.01513 0.76894 0.34328 —0.30063 4.19868 3.36253 -1.18146 —0.78482
C3 5.60627 7.61750 4.45155 2.65005 —3.83028 —4.33794 3.81010 1.97090
C4 2.31654 2.43157 -1.90418 1.85727 4.11214 3.84041 0.07484 5.00658
C5 0.39009 0.24251 2.57294 2.95937 -0.37644 -0.30277 -0.73170 —1.36695
C6 1.59847 1.50362 5.40943 0.82379 3.29315 2.76447 4.77294 0.91642
Cc7 -1.07536 —0.75833 -1.39342 -0.92010 -—1.87794 047319 -1.46921 -0.87191
C8 -0.95870 —2.99247 -0.29576 0.83512 —1.39938 -1.28509 -—1.44532 -—2.06608
C9 —4.23372 -5.76230 -1.30645 -—3.97856 -4.93318 -4.85310 -3.75607 —7.44977
C10 0.73672 2.16608 1.71422 -0.11956 1.32575 2.28866 1.74703 2.68257
Cl1 -0.90843 -0.51321 0.06944 -2.67855 -2.69316 -2.01668 —1.73071 1.08225
Cl12 1.54069 2.72345 —-4.56388 —2.53049 -5.55330 -—2.64194 0.53878 2.03048
C13 -5.49376 -6.30792 -2.38615 -2.14175 4.38634 -0.03381 -2.06993 -5.17029
Cl4 -3.30107 -2.40404 -5.13204 -2.38473 -3.79996 -4.33330 -4.76823 -2.41632
C15 —0.19891 -1.42895 -2.26381 -0.48135 0.35309 -2.42112 -1.92578 —0.09665
C16 —2.04687 —-3.46579 -4.06512 -1.73548 -4.64956 —1.59132 —3.89432 -1.80314
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TABLE 16.—CAPTURE PROBABILITY STRUCTURE USED TO SIMULATE GOOD, MEDIUM, AND POOR DATA TO
STUDY THE OPERATING CHARACTERISTICS OF THE MODEL SELECTION PROCEDURE. A POPULATION OF 400
WAS TRAPPED 7 OCCASIONS FOR 200 CASES

Model

Probability Structure

GOOD DATA (Average p = 0.35)

M, p=0.35.
M, pi=0.5,i=1100;p, =
M, p=05c=02.

= 0.35, ¢; = 0.50, i = 301,400.

p, = 0.65, ¢, = 0.10, i = 1,100; p, = 0.55, ¢, = 0.15, i = 101,200; p, = 0.45, ¢; =

0.4, 1= 101,200; p; = 0.3, i = 201,300; p; = 0.2, i = 301,400.

0.10, i = 201,300;

i
M, p, =035, p, = 0.45, ps = 0.25, p, = 0.35, ps = 0.20, ps = 0.50, p; = 0.35.

pi-p,-; p; = 0.9,i=1,100; p; = 0.8, i = 101,200; p; = 0.7, i = 201,300; p; = 0.6, i = 301,400,

0.35; ps = 0.65; p; = 0.5.

pl,—p,c ¢ =1.5;p, = 0.3; p, = 0.45; p; = 0.15; p, = 0.3; p; = 0.2; ps = 0.4; p, = 0.3.

0.3,i = 201,300; p; = 0.2, i = 301,400;

c=15;p, =07 p, =0.7; p; = 04; p, = 04; p; = 0.7; ps = 0.9; p, = 0.87.
MEDIUM DATA (Average p = 0.20)

M, pij=
=0.5; p, = 0.6; p; = 0.4; p, = 0.5; ps =
My,
Mpn P = Pi'pirc; pi = 0.5,1 = 1,100; p; = 0.4, i = 101,200; p, =
M, p = 0.20.

M, p;i=03,i=1100;p =

M, p=0.15;c=0.03.

pi =035, ¢ =
pi =025, ¢, =02, 1-301400

M, p, =002 p,=

0.35; p; = 0.05; p; = 0.2; p; =

0.25, i = 101,200; p; = 0.15, i = 201,300; p; = 0.10, i = 301,400.

0.05, i =1,100; p; = 0.4, ¢; = 0.1, i = 101,200; p; = 0.2, ¢; = 0.05, i = 201,300,

0.1; pg = 0.3; p, = 0.2.

p‘ ps; i = 0.7,i = 1,100; p; = 0.55,1 = 101,200; p; = 0.45,i = 201,300; p; = 0.3, i = 301,400;

0.5; p; = 0.4.

p,c ¢ =0.33; p, = 0.30; p, = 0.45; p, = 0.15; p, = 0.30; p; = 0.20; ps = 0.40; p, = 0.30.
0.25, i = 101,200; p; = 0.15, i = 201,300; p, = 0.10,

i = 301,400; ¢ = 2.00; p, = 0.50; p, = 0.65; p, = 0.35; p, = 0.50; p; = 0.40; ps = 0.70;

POOR DATA (Average p = 0.05)

Mg py=
= 0.4; p, = 0.55; p; = 0.25; py, = 0.4; p; = 0.3; ps =
My py=
toh  Pij = Pi’ p]Cpl_03 i=1,100; p; =
p; = 0.50.
Mo p= 0.05.

M, pi = 0.09, i = 1,100; p; =
M, p=0.075c=00l.

M, p: = 0.05; p, = 0.01; p; = 0.09; p, =

M  pPy=Dpi'p; D=
i = 301,400; p, = 0.33; p, =

py = py'c; ¢ =0.10; p, = 0.10; p, =

0.05, i = 101,300; p; = 0.10, i = 301,400.

p; = 0.07, ¢; = 0.03, i = 1,100; p; = 0.03, ¢; = 0.08, i = 101,300; p; = 0.01, ¢; = 0.09, i = 301,400.
0.05; p; = 0.07; ps = 0.03; p;, = 0.05.

0.20, i = 1,100; p; = 0.25; i = 101,200; p; = 0.05, i = 201,300; p; = 0.10,

0.10; p; = 0.10; p, = 0.333; p; =
0.15; p; = 0.05; p, = 0.10; p; =
Py = Pi°'pi-c; py = 0.20, i = 1,100; p; = 0.25, i = 101,200; p; = 0.05, i = 201,300; p, = 0.10,

0.50; ps = 0.50; p; = 0.33.
0.19; ps = 0.01; p, = 0.10.

i = 301,400; ¢ = 2.00; p, = 0.20; p, = 0.15; p, = 0.20; p, = 0.05; ps = 0.05; ps = 0.15;

p; = 0.37.

given in Table 15. The 8 C; values are
then standardized over the interval 0 to
1 to give the model selection criteria.
These standardized “model selection cri-
teria” are printed by program CAPTURE
right after the 7 tests (cf. Fig. 13).

Given the classification functions, an
evaluation of their usefulness must be
made. Again, data are required where the
underlying models are known; this is only
possible with simulated data. Hence, we
simulated 3 additional data sets: 200 repli-
cations each of good, medium, and poor
data for each model. In all cases, we used

N =400 and t = 7. The good data had an
approximate overall average capture
probability p of 0.35, medium p was ap-
proximately 0.20, and poor p was approx-
imately 0.05. The capture probability
structure of these data is given in Table
16.

We analyzed each data set and selected
a model based on the classification func-
tion described above. This allows an
evaluation of the selection procedure,
i.e., how often a wrong model is chosen,
and which models tend to be confused.
These results are given in Tables 17-19
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TABLE 17.—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH GOOD DATA. THE TRUE MODEL

FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA-

TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED,
THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Model

All

selected M, M, M, Mgn M, Mu My, Mibn data
70.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 9.1
M, 399.7 382.2 - — - - - - 399.1
0.957 0.200 - - - - - - 0.931
21.5 93.5 0.0 0.0 0.0 0.0 0.0 0.0 144
M, 414.0 427.4 - - - - - - 424.9
0.349 0.059 - - - - — - 0.113
0.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 11.3
M, - - 399.7 - - - - - 399.7
- - 0.922 - - - - - 0.922
6.5 1.5 0.5 93.0 0.0 0.0 0.0 0.0 12.7
Y . 394.2 396.3 399.0 396.6 - - - - 396.4
0.692 1.00 1.00 0.575 - - - - 0.591
1.0 0.0 0.0 0.0 82.0 58.5 2.0 0.0 17.9
M, 404.0 - - - 399.8 396.3 372.0 - 398.0
1.00 - - - 0.951 0.829 0.0 - 0.888
0.0 1.0 0.0 0.0 6.5 39.5 0.5 0.0 5.9

Ma - - - - - = - T =
0.0 0.5 9.5 0.0 11.0 2.0 95.0 37.0 19.4

My - - T - D e T
1.0 1.0 0.0 7.0 0.5 0.0 2.5 63.0 9.4

Mipn - - - - - - - - -

Mean population
estimate 402.5 425.8 399.7 396.6 399.8 396.3 372.0 -
Coverage 0.808 0.077 0.923 0.575 0.951 0.829 0.0 -

for the 3 types of data. However, our in-
terest in these simulated data does not
stop with the results of the model selec-
tion. Even more informative is how well
the estimator performed when the wrong
model was selected (we know that esti-
mator performance usually is acceptable
when the correct model is used). Infor-
mation on the Ave(N) and confidence in-
terval coverage is also given in Tables
17-19 for all estimators. The tables also
provide summaries by model selection
and by data type.

Those tables again emphasize the im-
portance of high capture probabilities.
The estimates and coverage coefficients
drastically decline in usefulness as the
capture probabilities decline. In addi-

tion, the correct model is much less likely
to be selected for poor data. Note that in
Table 19 (the poor data case), Model M,
is selected 34.7 percent of the time
(whereas it is the true model only 12.5%
of the time), and that Ave(N,) is 745.5.
For good data, such a discrimination
procedure will do quite well in selecting
the appropriate model. We suggest that
users knowledgeable in statistics and ex-
perienced in analysis of capture data may
sometimes be able to render an improved
judgement about the approrpriate model
for real data. However, the field biologist
should probably accept the model rec-
ommended by the model selection algo-
rithm. The primary reason for this is the
problems with dependence among tests
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TABLE 18.—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH MEDIUM DATA. THE TRUE

MODEL FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE

CLASSIFICATION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL
WAS SELECTED, THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Model All
selected M, M, M, Min M, My My Mun data
68.0 28.0 0.0 0.0 0.0 0.0 0.0 0.5 12.1
M, 400.8 361.1 - - - - - 234.0 388.4
0.971 0.089 - - - - - 0.000 0.710
18.5 66.5 0.5 0.0 0.0 0.0 0.0 0.0 10.7
M, 484.7 449.7 890.4 - - - - - 459.9
0.000 0.399 0.000 - - - - - 0.310
1.0 0.0 81.0 58.0 0.0 0.0 0.0 1.5 17.7
M, 427.0 - 397.2 388.4 - - - 783.0 397.9
0.500 = 0.951 0.681 - - - 1.000 0.837
7.5 3.0 9.0 32.0 0.0 0.0 0.0 3.5 6.9
\Y 409.3 382.0 471.8 390.1 - - - 467.1 410.6
0.667 0.333 0.949 0.688 - - - 1.000 0.727
1.0 0.0 0.0 0.0 57.5 67.5 0.0 1.5 15.9
M; 405.0 - - - 400.3 377.9 - 251.3 386.7
1.000 - - - 0.974 0.593 - 0.000 0.761
3.0 2.0 0.0 0.0 10.5 25.5 0.0 11.5 6.6
My, - - : - - - - - -
0.0 0.0 8.5 8.5 31.5 6.5 98.0 65.0 27.2
My, - - - - - - - - .
1.0 0.5 1.0 1.5 0.5 0.5 2.0 16.5 2.9
Mipn - - - - - - - - -
Mean population
estimate 418.0 422.2 4074 389.0 400.3 377.9 - 471.9
Coverage 0.755 0.308 0.945 0.683 0.974 0.593 - 0.714

and the fact that with real data it is highly
unlikely that any of these 8 models will
be exactly “true.”

Estimation in Alternative Models

When the model selection procedure
described above has classified a model as
the best one for a given set of data, 2
problems may still arise. First, the model
may not have an associated estimation
procedure for estimating N. Second, the
model with the largest selection value
(always 1.0) may not really fit the data,
even though it is the “best” model avail-
able. In the first case, the investigator
should scan for a large selection value
(say 0.90) corresponding to a model hav-

ing an estimator. If such a model is found,
and if the relevant tests of model as-
sumptions suggest that the goodness of
fit of the model is adequate, the corre-
sponding estimator can be used with
some confidence. We would caution,
however, against using models with se-
lection values less than 0.75 to produce
estimates of N, especially if there is a
poor fit of the model to the data. In the
second case, none of the models with cor-
responding estimation procedures seems
to fit the data well; where fit is judged by
the model selection procedure and in-
spection of individual tests, then we can
see no justification for granting statistical
validity to any calculated population es-
timate.
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TABLE 19.—PERFORMANCE OF THE MODEL SELECTION PROCEDURE WITH POOR DATA. THE TRUE MODEL

FROM WHICH THE DATA WERE GENERATED IS AT THE TOP, AND THE MODEL SELECTED BY THE CLASSIFICA-

TION FUNCTION ON THE SIDE. THE ENTRIES ARE THE PERCENTAGE OF TIMES THE MODEL WAS SELECTED,
THE AVE(N), AND THE 95% CONFIDENCE INTERVAL COVERAGE

Data generated from model

Model All

selected M, M, M, Mpn M, Mg, Mg Min data
79.0 74.0 39.5 83.0 0.0 1.0 0.0 1.0 34.7
M, 417.5 316.3 3,229.7 270.2 - 342.5 - 146.5 745.5
0.949 0.547 0.557 0.386 - 0.500 - 0.000 0.615
13.0 18.5 4.5 11.0 1.0 9.0 0.0 5.0 7.8
M, 377.7 336.5 612.2 255.6 374.6 347.1 - 210.5 342.8
0.923 0.514 0.000 0.000 1.000 0.611 - 0.000 0.452
0.5 1.0 14.0 0.0 0.0 0.0 0.0 0.0 1.9
M, 158.0 156.0 272.8 - - - - - 261.6
0.000 0.000 0.250 - - - - - 0.226
3.0 4.0 33.0 2.0 0.0 0.0 0.0 0.0 5.3
Muyn 174.7 172.1 359.5 123.3 - - - - 317.2
0.000 0.000 0.924 0.000 - - — - 0.726
1.0 0.5 0.0 1.5 83.5 24.5 2.0 68.0 22.6
M, 366.5 246.0 - 216.7 406.7 325.9 2,983.0 164.5 331.0
1.000 0.000 - 0.000 0.940 0.653 0.000 0.059 0.550
1.5 0.5 0.5 1.5 5.0 5.0 0.0 0.5 1.8

My, - - B - - - - — -
0.5 0.0 4.5 0.0 1.0 0.0 92.5 0.0 12.3

M - - - - - - - - -
1.5 1.5 4.0 1.0 9.5 60.5 5.5 25.5 13.6

Mipn - - - - - - - - -

Mean population
estimate 402.7 312.2 1,604.5 264.7 406.3 3319 2,983.0 167.4
Coverage 0912 0.510 0.615 0.328 0.941 0.638 0.000 0.054

Additional Examples of
Model Selection

As part of a population ecology study
on salt marsh rodents, Coulombe (1965,
unpublished master’s thesis, University
of California, Los Angeles, California),
conducted a livetrapping study on an out-
break of feral house mice Mus musculus
in a salt marsh in mid-December 1962, at
Ballana Creek, Los Angeles County, Cal-
ifornia. A square 10 x 10 grid was used
with traps spaced 3 m apart and trapping

was done twice daily, morning and eve-
ning, for 5 days. Thus there are 10 trap-
ping occasions, but we can expect time
variation in capture probabilities be-
tween morning and night occasions. The
entire data set of 173 distinct individuals
captured included young and adult, and
male and female. Thus, we might also
expect some heterogeneity of capture
probabilities.

From the model selection procedure
(Fig. 14), there is clear evidence of time

—

F1G. 14. Example of the model selection procedure applied to Coulombe’s (unpublished thesis) full
data set. Appropriate model probably is M, No estimator results from the model.
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OCCASION = 1 2 3 Y 5 6 7 8 9 10
ANIMALS CAUGHT N(J)= 68 61 62 52 T4+ 41 76 3B 76 39
TOTAL CAUGHT M(J) = 0 68 102 128 140 156 158 171 171 173 173
NEWLY CAUGHT Ut = 68 34 26 12 16 3 12 0 e 0
FREQUENCIES Flo= 2 B4 40 31 16 13 S 1 0 1

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.

2. TEST
NULL

3. TEST
NULL

HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 48.576 DEGREES OF FREEDOM = 6  PROBABILITY OF LARGER VALUE =

FOR BEHAVIORAL RESPONSE AFTER
HYPOTHESIS OF MODEL M(0) VS.

INITIAL CAPTURE.
ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 1.848  DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE =

FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 62.246 DEGREES OF FREEDOM = 9  PROBABILITY OF LARGER VALUE =

4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 57.151 DEGREES OF FREEDOM = 9  PROBABILITY OF LARGER VALUE
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
e 14.027 9 .12136
3 6.857 9 .65199
4 27.387 S .00121

5. GOODNESS OF FIT TEST OF MODEL M(B)

NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 68.087 DEGREES OF FREEDOM = 15 PROBABILITY OF LARGER VALUE

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME

CHI-SQUARE VALUE = 24.780 DEGREES OF FREEDOM = 7 PROBABILITY OF LARGER VALUE

5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME

CHI-SQUARE VALUE = 43.307 DEGREES OF FREEDOM = 8 PROBABILITY OF LARGER VALUE

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

CHI-SQUARE VALUE = 162.329 DEGREES OF FREEDOM = 125

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 31.439

DEGREES OF FREEDOM = 2y

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL
CRITERIA

M(0)
.15

M(H)
.24

M(B)
.03

M(BH)
.ee

M(T)
.26

M(TH)
1.00

M(TB)
0.00

M(TBH)
.66

PROBABILITY OF LARGER VALUE =

PROBABILITY OF LARGER VALUE =
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0.00000

. 17400

0.00000

0.00000

0.00000

.00083

.00000

.01386

. 14153
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and heterogeneity variation, but little in-
dication of behavioral variation. Note
also that none of the simple models (My,
M,, M) fit the data. The model selection
criteria strongly suggest Model My, as ap-
propriate, but there is no estimator asso-
ciated with this model. To obtain an es-
timator, we can look for the next most
likely model, which is My, (selection cri-
teria = 0.66); however, there is no esti-
mator for that model either. In fact, to get
a model allowing estimation we would
have to use either M, My, or M. Unfor-
tunately, the value of the selection cri-
teria corresponding to those models is too
low to allow legitimate choice of one of
the models for estimation purposes.
Therefore, the investigator must realize
that none of the models can be used to
estimate population size with the data in
the present form.

One alternative is to simply take the
total number seen (M;,,) as the best es-
timate. Given good data, M;,; will be
nearly equal to N. Also with good data
one will tend to reject the simpler
models. The real measure, however, of
good data comes from such things as t, n./
M;,,, the pattern of the new captures (the
u;’s) and the apparent average capture
probability (average p is 0.3 here using
N = 173 = My,). In good data, very few
new animals will be caught by the last
few occasions; in Coulombe’s data, only 2
new animals were caught after the sev-
enth occasion. Similarly, the capture fre-
quency data should show many animals
caught 2, 3, 4, or more times and there
should not be a strong spike at f; (cap-
tured once only). By all these measures,
Coulombe’s data suggest that almost all
the population was caught. Thus, here
we would suggest taking 173 as the esti-
mated population size.

Under those circumstances, we would
also expect the point estimate of N from

WILDLIFE MONOGRAPHS

all 5 possible estimators to be in close
agreement with the value of 173. In fact
the results for Coulombe’s full data set
are:

Standard

Estimator Value error
N, 176 1.8
N, 175 1.6
N 174 16
Y 175 1.8
Nih 173 0.2

These are all very similar and precise.
Note that in general it is not appropriate
to compute all estimates. We recommend
it only when there is strong evidence all
animals were captured, in which case it
provides an additional check.

As a further example, Fig. 15 shows the
model selection results using only the
morning capture data from Coulombe’s
(unpublished thesis) study (i.e., pretend-
ing the evening captures never oc-
curred). Presumably, this would elimi-
nate most of the time variation, but not
heterogeneity. The selection criteria ver-
ify this conjecture.

Model selection

Model criteria
M, 0.99
M. 1.00
M, 0.58
My 0.74
M; 0.00
M 0.46
M 0.53
\Y P, 0.80

When the criteria value for 2 or more
models exceed 0.95, the program does
not just suggest 1, but names the 2
models that have the highest criteria.
Thus, in this case the choice between
models M, and M}, is not clear cut. As a
standard operating procedure, we rec-

—

FIG. 15. Example of the model selection procedure applied to Coulombe’s (unpublished thesis)
morning trapping occasions (Occasions 1, 3, 5, 7, 9). Appropriate model probably is M, or M,.
Suggested estimator is jackknife.
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OCCASION J= 1 e 3 Y4 5
ANIMALS CAUGHT N(J)= 68 62 ™ 76 76
TOTAL CAUGHT M(J)= 0 68 103 127 153 160
NEWLY CAUGHT Ut = 68 35 24 26 7
FREQUENCIES Fltdr= 45 59 36 15 5
1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)
CHI-SQUARE VALUE = 5.051 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = . 16813
2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = 2.271 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = 13184
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 3.667 DEGREES OF FREEDOM = Y4 PROBABILITY OF LARGER VALUE = 45295
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 3.674 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE = 45191
TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)
NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
1 3.333 4 .50367
2 4.362 4 .359¢28
3 3.074 4 54551
Y 2.667 4 .61508
S. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)
CHI-SQUARE VALUE = 10.240 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE = . 11482
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBAZILITY ACROSS TIME
CHI-SQUARE VALUE = 7.735 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = .05183
5B8. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 2.505 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = 47440
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 115.230 DEGREES OF FREEDOM = 101 PROBABILITY OF LARGER VALUE = . 15766
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 16.497 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE = . 08626

MODEL SELECTION CRITERIA.

MODEL
CRITERIA

M(0)
.99

M(H)
1.00

M(B)
.58

M(BH)
T4

MODEL SELECTED HAS MAXIMUM VALUE.

M(T)
0.00

M(TH)
.46

M(TB)
.53

M(TBH)
.80
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OVERALL TEST RESULTS --
Z-VALUE
PROBABILITY OF A SMALLER VALUE

~-.403
. 34362

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.

(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

e -.660 .25477
3 -.322 .37360
4 -.066 47356
5 694 . 75607
6 -1.085 . 13906

F1G. 16. Example of the test for closure procedure
with feral house mouse data from Coulombe (un-
published thesis).

ommend using the jackknife estimator in
such cases because it is robust to heter-
ogeneity and will tend to do well even if
a competing model is true. For the morn-
ing data, the estimate of N from the jack-
knife estimator w as 194 + 7.6, while that
from the null estimator was 171 * 4.1.
Hence, both choices given by the model
selection procedure provided similar es-
timates.

As a final check on whether time vari-
ation exists in the form of morning and
evening differences, note that there were
more captures in the mornings (occasions
1, 3, 5, 7, 9) than in the evening (occa-
sions 2, 4, 6, 8, 10).

A Test for Closure

Throughout this monograph our phi-
losophy has been that assumptions
should be tested. One of the most critical
assumptions behind this entire work is
that of population closure. Although it is
desirable to test closure, there are no tru-
ly suitable tests for this assumption. Clo-
sure is difficult to test for, because some
types of variations in capture probabili-
ties (especially behavioral) are difficult to
distinguish from a failure of closure.

Burnham and Overton (pers. comm.)
suggest a closure test based on Model My,
(cf. Appendix K). Fig. 16 gives an exam-
ple produced by program CAPTURE of
this closure test applied to Coulombe’s
(unpublished thesis) full data set. The

test statistic value (z-value) is —0.403,
and the significance level of the test is
0.34362. Thus, for Coulombe’s data, clo-
sure is not rejected.

If individual capture frequencies are
10 or more, program CAPTURE also
computes and prints a partitioned version
of the closure test for those frequencies.
For example, from Fig. 16, for animals
caught twice the test value is —0.660 and
is not significant. These partitioned test
cases are of interest, but we emphasize
the overall test is the one to use for the
final judgement on closure.

Failure of closure means that during
the study animals are either entering or
leaving the population at risk of capture,
or both. This could be caused, for exam-
ple, by death, emigration, or the trap grid
itself attracting animals from surrounding
areas (especially likely in removal trap-
ping). In any of those cases, the animals
that enter or leave have zero capture
probabilities during the time they are not
part of the trapped population. The cor-
responding probability model has simi-
larities to our behavioral Models My, Myp,
My, and My, Indeed, as previously stat-
ed, behavioral responses are extremely
difficult to untangle from true failures of
closure. Our simulation results have
shown the closure test rejects strongly
when Model My, is true, and is not a truly
unbiased test whenever there is strong
behavioral variation in capture probabil-
ities. However, the test does not seem to
be affected by heterogeneity or random
time variations. We have not used other
tests from the literature (e.g., Pollock et
al. 1974) because, to our knowledge,
those tests all are implicitly developed
under the assumption that Model M, is
the true model under the closure as-
sumption. Because we feel Model M,
probably is never acceptable, those tests
will be even more untrustworthy than
our current closure test.

The biologist is advised to look care-
fully at the closure test. If the test statistic
is not significant, this tends to support the
validity of the closure assumption. If that
test rejects closure, before accepting that
result, it is necessary to look at the other
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tests and the indicated model. If strong
behavioral variation is indicated, the clo-
sure test is not valid.

Additional evidence regarding closure
is obtained from a test of average cap-
tures per trap as a function of trap dis-
tance from the edge of the grid. That test
is discussed in the section on DENSITY
ESTIMATION; it tests for whether the grid
attracts animals.

Finally, we mention that the closure
test used here is oriented toward detect-
ing breakdowns in closure only during
the initial and final stages of the experi-
ment. The test is not appropriate, for in-
stance, for identifying situations in which
animals emigrate during the middle of
the study period and then immigrate
back to the study area in the latter stages
of an experiment.

DENSITY ESTIMATION

Introduction

The models discussed to this point in-
volve only population size N as the pa-
rameter of interest. Often, interest may
lie in population density, the number of
animals per unit area (e.g., squirrels/hec-
tare). One could naively take N divided
by the area enclosed by the trapping grid
as an estimate of density. That approach,
however, leads to severe overestimation
as a result of what has been called “edge
effect,” i.e., not all animals have their en-
tire home range within the trapping grid,
but may still be caught because some
traps near the grid boundary are within
their home range. Although biologists
have recognized this problem for de-
cades (Dice 1938, 1941; Stickel 1954),
statisticians concerned with estimation of
population abundance have tended to ig-
nore or have failed to recognize the prob-
lem. This probably is due in part to the
fact that abstract models for capture stud-
ies, such as ball-and-urn models, have no
spatial component, hence do not include
any concept of density as distinct from
numbers of animals.

Three basic approaches are given in
the biological literature to solve this
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problem. Two of them rely on Dice’s
(1938) concept of a boundary strip about
the grid such that the effective trapping
area is the grid area plus this boundary
strip area. Dice assumed the boundary
strip to be one-half the average diameter
of the home range of the population
being trapped. The first 2 approaches at-
tempt to estimate this strip width, W,
from the capture data. These 3 ap-
proaches are given below:

(1) Home range size is estimated from
the locations of different captures for
the same animal and is used to esti-
mate the strip width W. A variety of ap-
proaches have been used; all are ba-
sically ad hoc and subject to numerous
problems, e.g., results depend upon
trap spacing and numbers of recap-
tures (Hayne 1949b, Stickel 1954,
Tanaka 1972). The basic idea can be
developed into an elaborate statistical
estimation problem (Jennrich and
Turner 1969), but as far as we know
estimation of W based on movement
data remains unsatisfactory.

The parameter W is directly estimat-
ed based on data drawn from selected
subgrids (MacLulich 1951, Hansson
1969, Seber 1973:51, Smith et al.
1975). As suggested by Burnham and
Cushwa (pers. comm.) that idea can be
developed into a procedure allowing
joint estimation of D and W from data
on 1 sufficiently large grid. We dis-
cuss this approach in detail below.
The use of “assessment’” lines is the
most complex approach to density es-
timation. It involves designing the
study to specifically estimate the ef-
fective trapping area as well as the
size of the population at risk of cap-
ture. There are numerous variants on
this approach (Smith et al. 1971, 1972,
1975, Swift and Steinhorst 1976,
O’Farrell et al. 1977). We have not
pursued this approach here because
the proper data analysis depends upon
the study design.

2)

Of those 3 approaches, only the second
seems to be formulated in a rigorous sta-
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tistical fashion without arbitrary assump-
tions. However, even the second ap-
proach cannot be made workable without
some arbitrary ad hoc features.

Problem Formulation

We will illustrate the problem with
some data from a livetrapping study of
feral house mice Mus musculus in a
southern California coastal salt marsh in
December 1962 by Coulombe (unpub-
lished thesis), that were also used to il-
lustrate the model selection procedure.
Only the basic specifications of the study
will be needed here: 100 Sherman live
traps were laid out in a 10 x 10 square
grid. Morning and evening trapping ses-
sions were conducted for 5 days and pro-
vided 10 trapping occasions, although
only the morning sessions will be used

Note the corner of the boundary strip is a quarter
circle of radius W.

in the calculations. Traps were 3 m apart
and the area enclosed by the grid was
0.073 ha. We can delineate subgrids of
smaller size by examining smaller groups
of traps; in particular, we can concep-
tualize a series of nested subgrids (see for
example Fig. 17).

The size of the population at risk of
capture for each grid must be estimated.
The choice of a population estimator
should be based on the model selection
procedures using the data for the entire
grid. Fori=1, 2, ..., k,assume thata pop-
ulation estimate N, has been made for the
it" grid by using data obtained only from
that grid. The naive estimator of density
of the i'" grid is given by

-

TABLE 20.—THE INFORMATION NEEDED TO ESTIMATE DENSITY USING THE FOUR NESTED SUBGRIDS AND
THE DATA FROM COULOMBE (UNPUBLISHED THESIS)

Grid ¢
N individual
No. Size Al (individuals) (“n‘ ) Se(¥)
1 4x4 inner grid 0.0081 47 5770.9 607.8
2 6x6 middle inner grid 0.0225 107 4750.7 452.6
3 8x8 middle outer grid 0.0441 166 3768.5 2434
4 10x10 entire grid 0.0729 194 2654.4 104.9
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where A, is the size (area) of the it* trap-
ping grid. The grid data are given in Ta-
ble 20. Note that the standard error of Y;
is Se(Nl)/A, R

The four Y; values in Table 20 cannot
reasonably be considered each an un-
biased estimate of a single parameter.
The bias is attributed to the phenomenon
of edge effect, wherein the area used by
individuals at risk of capture is not re-
stricted to the area contained within the
trapping grid; rather, there are areas out-
side the trapping grid that are part of the
home ranges of individuals at risk of cap-
ture.

We assume that the population density
is constant in the area of trapping. That
is, there is not a trend in density across
the grid. Under these conditions it is rea-
sonable to think that there is an area of
constant width about the trapping grid
such that the actual area used by the pop-
ulation at risk of capture is the total area
of the trapping grid plus that of the
boundary strip. Let W equal the width of
this strip. This is illustrated for the four
grids in Fig. 18. The concept of a bound-
ary strip goes back at least as far as Dice
(1938). We need not interpret W, but
from the inception of the boundary strip
concept, biologists have considered that
W is related to home range size (Dice
1938, 1941). In fact they arbitrarily as-
sume W is one-half the maximum linear
dimension of the average home range of
the species.

Statistical Treatment

The approach to density estimation
that we advocate for use with grid trap-
ping is to formulate the problem as one
of joint estimation of D and W, with the
parameter N being a function of D and
W. Then, by having 2 or more grids of
different sizes, we can estimate those
parameters with a weighted nonlinear
least squares procedure.

In what follows, we assume that den-
sity (D) is expressed in individuals per
unit area and strip width (W) in linear
units, such as meters. Consider a layout
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of traps in the shape of a square or rec-
tangle. That is, by connecting the outer-
most traps, a square or rectangle results.
Let P be the measured perimeter of the
grid. Let A be the area within this perim-
eter, and let A(W) equal the area obtained
by adding a boundary strip of constant
width W. Then the fundamental relation-
ships is
A(W) = A+ PW/c + #W?c,

where c is a conversion factor to express
PW or W2 in units of A. For example, to
convert m? to ha, ¢ = 1,000 m¥ha.

Let there be k such grids identified.
These may be subgrids of one grid, or
may be physically separate study grids.
Assume a constant density applies for
each grid. Then, for grid i we would ex-
pect to have

Ni =D Al(W) = D[Al + PiW/C
+ 7 W¥c],

where N; is the population at risk of cap-
ture with respect to the i* grid of traps
only. Conceptually, we should let the ac-
tual numbers of individuals at risk of cap-
ture on grid i be a random variable with
expectation DAy(W). Then we would
write E(N;) = DA(W), and it is really
E(N;) we are estimating for the i grid.
Letting i=1, ..., k we obtain structural
equations relating the parameters D, W,
and the induced parameters N.. The area
A;, and the grid perimeter P, must be
known. Next we redefine the basic struc-
tural equations as

N;

Yl:x:D[l""alW'f‘blwz]
i=12 ..,k
where
_ P, _ T
ai——[ii—gandbl—?‘;.

Assume that from the trapping data of
each grid we have estimates of the N;,
expressed as N;, and estimates of their
variances Var(N;). Assume further that
the N; are good estimates in the sense
that they have small bias, so we can write
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I\

= Yi = D[]. + aiW + biWZ] + €i,

>

i=12, ...,k

where ¢; is a random error with E(e) = 0,
and covariance matrix E(e €)= 3. The
small bias of the N; is a big assumption
that relies heavily on previous sections.

Note that Y; = N/A; is what we would
call the naive estimator of density, D,
from the i*" trapping grid; clearly it can
be significantly biased unless A; is large
relative to (P;W/c + #W?/c), the area that
is added by assuming a strip width of W.
Note that for a sequence of k subgrids of
increasing size, the most biased estimate
of D is obtamed from Y, because A, is
smallest relative to (P;W/c + #W?c). On
the other hand, Yy is the best estimate of
D because Ay is largest relative to (P W/
¢ + 7#W%c). If we had a very large grid,
say the state of Wyoming, the contribution
of area due to the boundary strip W would
be negligible, and we could ignore the
problem. Because this is not the case, we
use our biased estimates of Y; to find an
unbiased estimate of D.

We assume E(e €’) = § because i in gen-
eral the naive density estimates, Y;, are
not independent from one another if
these subgrids derive from 1 overall grid.
Hence, we must estimate the covariance
matrix ﬁ. of the k estimates of Y;. A simple
and intuitive procedure is to assume the
correlation between Y; and Y; is just the
proportion of overlappmg area between
grid i and grid j mcludmg their boundary
strip. Then the covariance of Y;and Y, is
Se(Y;)-Se(Y;)-Corr(Y,, Y)). Wlth the re-
sulting covariance matrix, generalized
nonlinear least squares can be performed
to estimate density and strip width as D
and W, respectively. Note that ﬁ. is a
function of W, because the amount of
overlap between grid i and grid j is a
function of the estimated strip width W.

In the most common situation, there is
one grid such as our example in the Cal-
ifornia salt marsh, and one must choose
a small number of subgrids to use in this
approach. We recommend 4 or more nest-
ed grids. The main concern is to keep the

inner grid large enough so that N, is well
estimated. Other possibilities (not rec-
ommended) are to include subgrids con-
sisting of halves and quarters of the total
grid, or both.

The basic idea behind this procedure
was introduced by MacLulich (1951), but
until recently no method of estimating
the variances of D and W had been given
(Smith et al. 1975).

In Fig. 19, a complete analysis is pre-
sented for the California salt marsh feral
mouse study. First note that we have
computed the matrix of captures per trap
station. That matrix includes the data for
both the morning and evening trapping
sessions, or for all 10 occasions. Multiple
captures per trap cause some entries to
be greater than 10. Visual study of this
matrix (Fig. 19a) does not disclose any
gross trends in mouse density across the
grid. Fig. 19b shows the results of 3 chi-
square goodness of fit tests, where the
capture matrix is first collapsed by rows,
then by columns, and finally by rings.
Those tests generally tend to reject the
null hypothesis of uniform probability of
capture by rows or by columns. How-
ever, we are more concerned in identi-
tying gross irregularities in mouse den-
sity, such as no captures in one corner of
the grid, or a strong trend of decreasing
probability of capture from right to left.
The tests identify a problem of higher
trap success at the grid edges. This is in-
dicated by the test of rows, where a large
portion of the chi-square value is contrib-
uted by the ninth and tenth rows, and by
the ring test, where the outside ring of
traps had much better success than ex-
pected, and the inner ring poorer success
than expected. For large trapping grids,
the problem could be corrected by not
using the data for the outer ring of traps.
This is very wasteful of data, however,
and we will ignore the problem here.

The next 4 pages of output (Figs. 19¢-f)
consist of the population estimates for
the whole grid and each of the 4 subgrids,
computed with the jackknife estimator
derived from Model M,,. That model was
selected based on the output for the tests
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MATRIX OF CAPTURES PER TRAP STATION.

COLUMNS 1 2 3 Y4 5 6 7 8 9 10
_______ s
ROW 1 1 9 4 6 6 6 7 5 5 =) B
ROW 2 : 12 6 Y4 7 e 4 Y4 2 4 8
ROW 3 : 4 8 9 7 4 8 3 3 3 7
ROW 4 l1 alalslz + 10 sl7]s] s G'1id
ROW 5 : 7 lslv ]y 8 v 1] 7)sels 2
ROW 6 ; 5 8 3 4 3 4 ] 5 Y4 S _2
ROH 7 : 7 6 1 8 3 3 5 2 3 6
ROW 8 : 5 5 1 5 7 2 4 6 5 3
ROW 9 : S 9 6 6 10 5 4 7 -3 BR}
ROW 10 ; 10 9 6 8 B 6 5 8 11 9
Fi1Gc. 19a. Nested subgrids used in the density

estimation procedure with feral house mouse data

from Coulombe (unpublished thesis). In the matrix,

trap coordinates are rounded to the nearest whole

integer. In goodness of fit tests, trap coordinates

that are not integers and nonrectangular trapping
grids will cause spurious results.

described in the section on model selec-
tion (Fig. 15).

The final page of output (Fig. 19g)
gives the generalized least squares esti-

CHI-SQUARE TEST OF UNIFORM DENSITY BY ROWS.

ROW 1 e 3 4
OBSERVED 63 53 56 63
EXPECTED 58.500 58.500 58.500 58.500 58
CHI -SQUARE .346 .517 .107 .346
TOTAL CHI-SQUARE = 22.26 WITH 9 DEGREES OF FREEDOM

CHI-SQUARE TEST OF UNIFORM DENSITY BY COLUMNS.

COLUMN 1 2 3 Y4
OBSERVED 72 73 48 57
EXPECTED 58.500 58.500 58.500 58.500 58.
CHI-SQUARE 3.115 3.594 1.885 .038
TOTAL CHI-SQUARE = 12.08 HWITH 9 DEGREES OF FREEDOM.
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mates of D and W. The columns headed
NAIVE DENSITY, PERIMETER/AREA, and
PI/AREA correspond to Y,, a;, and by, re-
spectively, and the COVARIANCE MATRIX
corresponds to 3 for the initial value of
W. The number of iterations required to
estimate the parameters is given, and for
this example it is 189. The maximum
number allowed in program CAPTURE
is 300. The approximate number of sig-
nificant digits of D and W is also printed.
A table listing the grid number, the naive
density, and the predicted value is then
given. This allows the investigator to get
a feel for how well the model fits his data.
Note that all the residuals in the example
are negative; this is because they are all
highly correlated, and hence we expect
them to be of the same sign. The multiple
correlation coefficient, R, is also printed
to help assess the fit of the model. The
value of R? is interpreted as the propor-
tion of the variance in the data that is ex-
plained by the model (0 < R?<1). The
computed values of D and W are highly
negatively correlated, indicating the

CHI-SQUARE TEST OF UNIFORM DENSITY BY RINGS (OUTER RING 1S NUMBER 1).

RING 1 2 3 4
OBSERVED 247 160 96 65
EXPECTED 210.600 163.800 117.000 70.200 a3.
CHI-SQUARE 6.291 .08e8 3.769 .385 1.
TOTAL CHI-SQUARE = 12.28 WITH 4 DEGREES OF FREEDOM.

5 6 7 8 9 10
59 S0 Yy 43 ™ 80
.500 58.500 58.500 58.500 58.500 58.500
.04 1.235 3.584 4.107 4.107 7.902
. PROBABILITY OF LARGER VALUE = .0081
S 6 7 8 9 10
53 53 Se Se 59 66
500 58.500 58.500 58.500 58.500 58.500
517 .517 .722 .7e2 .004 .862
PROBABILITY OF LARGER VALUE = .2090
S
17
400
750
PROBABILITY OF LARGER VALUE = .0154

FIG. 19b. Chi-square tests of uniform density with feral house mouse data from Coulombe (unpublished
thesis).



NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 33
TOTAL NUMBER OF CAPTURES, N., WAS 50

FREQUENCIES OF CAPTURE.F (1)
1= 1 2 3 N s
Fthh= 18 13 2 0 o0

COMPUTED JACKKNIFE COEFFICIENTS

NCD N2) N(3) N4y N(S)
1 1.800 2.400 2.800 3.000 3.000
2 1r.000 .550 .050 -.250 -.250
3 1.000 1.000 1.133 1.250 1.250
% 1.000 1.000 1.000 .992 .992
5 1.000 1.000 1.000 1.000 1.000
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(1) SE() .95 CONF. LIMITS TEST OF Nti+1) vS. NLI)
o 33 CHI-SQUARE (1 D.F.)
1 47.4 5.09 37.4 57.4% 2.839
2 52.4 7.57 37.5 67.2 L1448
3 53.3 9.51 3.7 72.0 .002
4 53.3 10.862 32.4 TNl 0.000
5 53.3 10.82 324 Te.1 0.000
AVERAGE P-HAT = 2128

INTERPOLATED POPULATION ESTIMATE IS 47 WITH STANDARD ERROR %.823%

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 37 10 57
HISTOGRAM OF F (1)

FREQUENCY 18 13 2 0 0

EACH * EQUALS 2 POINTS

.

18
18
4
12
10
8
6
Y
2

FI1G. 19c. Example of population estimation with

variable probability of capture by animal under

Model M, with feral house mouse data (Coulombe

(unpublished thesis) from inner inner grid of Fig.
19a (X =4-7,Y = 4-7).

strong inverse relation between density
and strip width. This negative correlation
makes it difficult to estimate either pa-
rameter with a small standard error, be-
cause other combinations of D and W
also result in almost as good a fit as the
values selected. Finally, a test of whether
W is significantly different from zero is
printed. In that example, the highly sig-
nificant difference of W from zero indi-
cates that the estimate of D is much bet-
ter than the naive estimate based on the
actual grid area.

Discussion

The density estimation problem results
because the grid is an artificial entity in
the environment, and animals trapped
use areas both inside and outside the
grid. A practical problem illustrated in
the example is that the grid can attract

WILDLIFE MONOGRAPHS

NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 67
TOTAL NUMBER OF CAPTURES. N., WAS 1o

FREQUENCIES OF CAPTURE F(1)
1= 1 2 3 4 5
Fth= 37 21 5 0

COMPUTED JACKKNIFE COEFF ICIENTS

N(1) N2) N(3) N(y) N(5)
1 1.800 2.400 2.800 3.000 3.000
2 1.000 -550 .050 -.250 -.250
3 1.000 1.000 1.133 1.250 1.250
4 1.000 1.000 1.000 -992 -892
5 1.000 1.000 1.000 1.000 1.000
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
i N(IY  sE(D) .95 CONF. LIMITS TEST OF N(I+1) VS, NUI)
0 67 CHI-SQUARE(1 D.F.)
1 96.6 7.30 82.3 110.8 10.573
2 109.4 10.91 88.0 130.7 2.231
3 14.3 13.65 87.6 1.1 .789
“ 116.0 15.17 86.2 145.7 0.000
5 116.0 15.17 86.2 145.7 0.000
AVERAGE P-HAT = 2056

INTERPOLATED POPULATION ESTIMATE IS 107 WI1TH STANDARD ERROR 10.1827

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 86 70 127
HISTOGRAM OF F (1)

FREQUENCY 37 21 5 4 o

EACH * EQUALS 4 POINTS

N . . . .

FiG. 19d. Example of population estimation with

variable probability of capture by animal under

Model M}, with feral house mouse data (Coulombe

unpublished thesis) from the middle inner grid
of Fig. 19a (X = 3-8, Y = 3-8).

animals, thus “inducing” a higher den-
sity than would otherwise be found. The
problem of the grid attracting animals can
cause severe bias. If attraction occurs
during trapping, then the assumption of
population closure will be violated. With
removal trapping, over a long enough
time the problem is sure to develop. The
problem may still occur in livetrapping
studies. One possible test for this effect
is the “ring” test given in Fig. 19b. Even
with some approach like prebaiting to al-
low this attraction effect to stabilize be-
fore trapping, both methods (recapture
movements, and direct estimation of W
and D) will be invalid if the grid itself
attracts animals. In that case, it appears
assessment lines would have to be used.

If the above method produces a poor
result, an alternative approach is to base
an estimate of W on animal movements
as determined from recapture locations.
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NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 116
TOTAL NUMBER OF CAPTURES. N.. WAS 202
FREQUENCIES OF CAPTURE.F (1)

1= 1 2 3 4 S
Ftlhh= 55 w3 11 7 o

COMPUTED JACKKNIFE COEFF ICIENTS

N N(2) N(3) N(4) N(5)
1 1.800 2.400 2.800 3.000 3.000
2 1.000 -550 .050 -.250 -.as0
3 1.000 1.000 1.133 1.250 1.250
4 1.000 1.000 1.000 992 992
5 1.000 1.000 1.000 1.000 1.000

THE RESULTS OF THE JACKKNIFE COMPUTATIONS

NCD SECD) 95 CONF. LIMITS TEST OF NCI+1) VS, N(I)

1

0 116 CHI-SQUARE(1 D.F.)
1 160.0 8.90 142.6 1774 6.866

2 173.7 13.20 147.8 199.5 195

3 175.6 16.64 143.0 208.2 .073

“ 17%.9 18.62 138.4 21y 0.000

5 17%.9 18.62 138.4 21ty 0.000

AVERAGE P-HAT = .2u3u

INTERPOLATED POPULATION ESTIMATE IS 166 WITH STANDARD ERROR 10.7335

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 145 T 188

HISTOGRAM OF F (1)

FREQUENCY 55 43 1" 7 0

EACH * EQUALS 6 POINTS
54
48
ue
36
30
B
18
12

FiG. 19e. Example of population estimation with

variable probability of capture by animal under

Model M,, with feral house mouse data (Coulombe

unpublished thesis) from the middle outer grid
of Fig. 19a (X = 2-9, Y = 2-9).

Let W be such an estimate, for example
one-half of the average maximum dis-
tance between trapped locations for all
animals captured at least twice. The stan-
dard error of W, Sé(W), can be computed
from the data themselves. The estimator
of density is then

- N

D=,

A(W)
where N is based on all the data (i.e., the
entire grid) and
A(W) = A1 + aW + bW?],

for a and b as defined previously in this
section. An_estimator of the sampling
variance of D is given by

_ Var(N)
[AW))?

+ (o)

Var(D)

a+ 2bW

2 -
) Ve,

NUMBER OF TRAPPING OCCASIONS WAS 5
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 160
TOTAL NUMBER OF CAPTURES, N., WAS 356
FREQUENCIES OF CAPTURE,F (1)
1= 1 2 3 4 5
Fth)= 45 59 36 15 5
COMPUTED JACKKNIFE COEFFICIENTS
N Nt2) N(3) N(4) N(5)
1 1.800 2.400 2.800 3.000 3.000
2 1.000 .550 .050 -.250 -.250
3 1.000 1.000 1.133 1.250 1.250
4 1.000 1.000 1.000 .992 .9%2
S 1.000 1.000 1.000 1.000 1.000
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(D SECI) .95 CONF. LIMITS TEST OF N(I+1) VS. N(D)
0 160 CHI-SQUARE (1 D.F.)
1 196.0 8.05 180.2 211.8 .007
2 196.5 11.69 173.5 219.4% 2.000
3 189.8 15.15 160.1 219.4 2.847
“ 185.1 17.31 151.2 219.0 0.000
5 185.1 17.31 151.2 218.0 0.000
AVERAGE P-HAT = 3870
INTERPOLATED POPULATION ESTIMATE IS 194 WITH STANDARD ERROR 7.6455

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 178 T0 208
HISTOGRAM OF Fi(1)

FREQUENCY 45 59 36 15 5

EACH * EQUALS 6 POINTS
60
54
u8
u2 .
36 .
30 .
24 .
18 .
12
6

c e v e s e e e

Fi1G. 19f. Example of population estimation with

variable probability of capture by animal under

Model M}, with feral house mouse data (Coulombe

unpublished thesis) from the entire grid of Fig.
19a (X = 1-10, Y = 1-10).

and the standard error of D is simply

Se(D) = (Var(D).

These variance formulas are valid what-
ever the technique for estimating W from
recapture locations.

_In the example of the feral house mice,
W is calculated as 3.63 m with SéW) =
0.149, and compares favorably with the
estimated value of W =4.65 from Fig.
19¢g.

The methods outlined in this section
require large amounts of data to achieve
satisfactory results. Both a large trapping
grid and a large number of captures are
required. A grid size of 9 X 9 probably
can be considered the minimum; how-
ever, a larger grid such as 15 x 15 is
much better. Good trapping success to
achieve a large number of captures is
necessary to provide a useful population
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STARTING VALUES FOR DENSITY ESTIMATION--
NUMBER OF GRIDS 0
TRAP INTERVAL

UNITS CONVERSION

INITIAL DENSITY ESTIMATE
INITIAL STRIP WIDTH ESTIMATE

3.00
10000.00
5089
882.6797

GRID NAIVE DENSITY  PERIMETER/AREA P1/AREA
AtD

I

STARTING COVARIANCE MATRIX

1 5770.927
2 47150.710
3 3788.521
W 2854.402

.3879€-01
-1396€-01
7124E-02

4309€-02

-369€+06

2736406 .205€+06

IYE+06 .109€+06 .592€ +05
6256405 WEBE+05 .254E+05 .110E+05

iy
2666667

1904762
14@1481

RESULTS OF ITERATIONS
FUNCTION EVALUATIONS REQUIRE| 189
ESTIMATED SIGNIFICANT DIGHS OF PARAMETER VALUES 8

FITTED MODEL covntn ro n( DATA

w  2e54.402  2511.652

MATIPLE CORRELATION COFFICIENT IS 93181

ESTIMATED DENSITY= 1408.93%  172.1260
ESTIMATED STRIP WIOTH= 4.653  1.0576

CORRELATION OF ESTIMATORS - 9471

= ITS STANDARD ERROR
= 1TS STANDARD ERROR

TEST OF ESTIMATED STRIP WIDTH GREATER THAN ZERO.
Z-VALUE = 4.3998 PROBABILITY OF LARGER VALUE =  .0000

FINAL COVARIANCE MATRIX
- 3694E+06
15606406 .2048E +06

.5398E405 70856405 .5924E+05
1621€+05 .2127€+05 17796405 . 1100E+05

F1G. 19g. Example of joint estimation of density
and boundary strip width with feral house mouse
data from Coulombe (unpublished thesis).

estimate for each grid. This becomes a
problem especially with the smaller
grids, where only a fraction of the data
are used to estimate the population. Be-
sides requiring a good population esti-
mate, a good variance estimate for N is
required because that quantity is used in
constructing the estimate of the weight-
ing matrix g“. Poor data result in a poor
weighting matrix, which then results in
poor estimates of D and W.

Possible methods to increase the
amount of data are (1) to place traps close
together to increase recaptures, (2) to
place grids in a uniform habitat so that
discontinuities in density do not occur,
and (3) to increase the number of traps.
To repeat, the method requires large
amounts of data. A carefully designed
study is required to obtain reliable values
of D and W, and only rarely can a typical
capture—-recapture study be made to yield
reasonable estimates.

STUDY DESIGN

The objective of this monograph is to
present methods for the thorough analy-
sis of capture data when the target pop-
ulations are closed except for known re-

movals. However, proper planning,
design, and field conduct of such studies
is necessary to obtain meaningful data for
analysis. Many factors must be consid-
ered when planning a capture-recapture
or removal study to estimate animal
abundance. We consider these as falling
into 2 broad categories: statistical design
and data recording considerations, and
field procedures, although the distinction
may sometimes seem a bit arbitrary. Ex-
amples of such considerations include
(but are not limited to) the following:

Statistical considerations
number of capture occasions
time between occasions
size and shape of trapping grid
spacing of traps
number of traps at a point
numbering of traps

Field procedure considerations
live vs. removal captures
choice of trap type
choice of electrofishing gear
method of marking or tagging
method of recapture
use of bait
time of day to check traps
handling the animals

The purpose of this section is to present
some suggestions and cautions regarding
the aspects of study design. The general
themes presented are to conduct the ex-
periment so that (1) assumptions can be
tested, (2) the closure assumption is met,
(3) the simplest possible model is appro-
priate, and (4) the number of animals
captured is maximized (including recap-
tures). We begin by mentioning
livetrapping versus removal methods,
then discuss closure, proceed through
ways of eliminating variation due to time,
behavior, and heterogeneity, and then
discuss sample size considerations such
as grid size and number of traps.

For additional discussion of design
consideration in grid trapping the reader
is referred to Overton and Davis (1969),
Smith et al. (1969, 1971, 1975), Tanaka
(1970), and Hansson (1974).
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It is beyond the intended scope of this
monograph to provide guidance on the
operational aspects of capture studies, al-
though they are important. For example,
if the method of marking (or tagging) is
such that marks are lost, then a basic as-
sumption needed for meaningful results
is violated. When making decisions about
a field study, the scientist should consid-
er the probable effects of the experimen-
tal design on assumptions necessary for
data analysis. For additional discussion
of field procedures the reader is referred
to Davis (1956), Southwood (1966), and
Taber and Cowan (1969).

Livetrapping Versus Removal Methods

As discussed in the previous sections,
removal methods are a special case of
livetrapping methods. That is, the remov-
al estimators can be used on livetrapping
data. Hence, we recommend that live-
trapping methods should be used if pos-
sible because of the wider array of op-
tions available for the data analysis. A
hazard of removal studies is that they dis-
rupt the population, and as substantial
animals are removed, immigration may
occur; this violates closure.

For livetrapping studies, all possible
precautions should be taken to prevent
deaths of the animals while in the traps,
e.g., shading the traps in summer, or
avoiding periods of extreme cold. Simi-
larly, it is assumed (implicitly) that the
method of marking will not induce mor-
tality. If substantial mortality cannot be
avoided, then one must analyze the study
as a removal experiment.

Closure

For the analysis methods presented
here, the single most important assump-
tion is closure. Closure is very difficult to
test for, yet any violation of this assump-
tion biases the tests and population esti-
mators presented here.

Considerations to help assure closure
include, for example, timing the trapping
to avoid known migration times, and pe-

riods of recuitment (e.g., juveniles be-
coming trappable) or immigration. Also
keep the duration of the experiment as
short as possible. If it is necessary to
study the population at such times, open
population models should be used for
data analysis (Seber 1973, Pollock 1975,
Arnason and Baniuk 1977).

Grids are often thought to attract ani-
mals. For example, when kill traps are
used, animals from the area around the
grid will move onto the grid as local an-
imals are removed (cf. Gentry et al. 1968,
Smith et al. 1975:38). This violates clo-
sure, and the only good solution seems to
be to keep the length of the study (in
days) very short so that the study will end
before significant immigration can occur.

Eliminating Variation Due to Time,
Behavior, and Heterogeneity

Given that closure is satisfactorily
achieved, the next most important con-
sideration is twofold: (1) achieving a
large enough number of captures to ob-
tain reliable results, and (2) achieving a
study for which the best model is the sim-
plest possible one (e.g., Model M, rather
than My, or Model M, rather than M,).
In this section, we discuss methods of
eliminating variation of capture probabil-
ities due to time, behavioral response to
first capture, and heterogeneity of indi-
viduals.

Of the 3 factors that affect capture prob-
abilities, time is the one most easily con-
trolled by the biologist. He can select the
season of the year the studies are to be
conducted, the length of the trapping pe-
riod, and the time of day when trapping
is to be done. In all those decisions, the
objective is to reduce variation in capture
probabilities over time. Among other
things, this means that equal effort
should be expended on each occasion.
For example, use the same number of
traps thoughout, trap at the same time of
day, and if bait is used, use the same type
and amount on all occasions. The study
should be done when weather conditions
will be as constant as possible, because
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variable weather is likely to cause time
variation in capture probabilities (Getz
1961).

Behavioral response is common in
small mammals, and it is doubtful if
much can be done to avoid it. Apparently
for this reason, many biologists have
studied and used strict removal methods
for small mammal population estimation.
If there is any choice, a method of cap-
ture (for livetrapping) should be used
that will not result in a trap response.
One approach is to use different methods
of capture on each occasion (cf. Overton
and Davis 1969). This is an excellent pro-
cedure, but its application to multiple
capture occasions is severly limited be-
cause one cannot usually find 5 or 10
quite different capture methods. We
note, however, that the use of different
trapping methods probably will result in
time variation (the different methods oc-
cur of necessity at different times). Con-
sequently, there is a trade-off here: re-
duced behavioral variation may result in
increased time variation.

A common source of heterogeneity is
the lack of equal access to traps if traps
are far apart relative to home range
(Eberhardt 1969a). The above phenome-
na are part of the reasoning behind our
recommendation of 4 traps per home
range when we discuss sample size con-
siderations in the next section.

Other sources of heterogeneity are dif-
ferences in activity or catchability related
to measurable characteristics such as
size, age, or sex. Such sources can be re-
moved by stratification if the attributes
are recorded and sample size permits.
Unfortunately, sample sizes are seldom
adequate to allow stratification. Hetero-
geneity may also be due to some unrec-
ognized attribute, and thus cannot be
eliminated by stratification. Different
methods of capture may increase the
number of animals captured in this case,
but will not eliminate the basic problem
of heterogeneity of capture probabilities.

One possible method of eliminating
heterogeneity, and possible trap re-
sponse, is to locate traps randomly on
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each trapping occasion. We are unsure of
the usefulness of the technique, and
would like to see further studies con-
ducted to see if significant reductions in
heterogeneity result. For logistical rea-
sons, the randomization of trap locations
on each occasion probably is not feasible.

A valuable check on the livetrapping
methods presented in this monograph
can be made by using a second method
of estimating the proportion of marked
animals in the population. A common ex-
ample is killtrapping or hunting after the
capture-recapture experiment has been
completed. Then, using the number of
marked animals in the population, M, ,,
and the ratio of marked to unmarked an-
imals obtained from the killtrapping or
hunting, a second and somewhat inde-
pendent population estimate is made
with Chapman’s (1951) version of the
Lincoln estimate,

My + 1)
N = ‘(all animals killtrapped + 1)
(marked animals killtrapped + 1)

(cf. Seber 1973). Of course traps are traps,
and kill traps still present a strange object
in the animal’s environment. Another
possibility for small mammals marked by
toe clipping is to use tracks to obtain a
ratio of marked to unmarked animals. Bi-
ologists have used smoked plates (Justice
1961) or dust covered tiles to obtain an
estimate of the proportion of marked an-
imals, and thus a second population es-
timate to compare with that obtained by
livetrapping methods. The use of tracks
has the distinct advantage of being a truly
different method of sampling the popu-
lation. Much confidence in the popula-
tion estimate is obtained when the 2 es-
timates are similar.

In addition to design considerations,
poststratification of the data can be used
to create subsets of data which are more
homogeneous with respect to capture
probabilities. This is nothing more com-
plex than partitioning the data into sub-
sets on variables such as species, sex,
age, weight, etc. If there are sufficient
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data, such poststratification is a valuable
device. The subsets so created are then
analyzed separately by the methods de-
scribed in this monograph. The only ad-
ditional testing one might do is for ho-
mogeneity among these strata (subsets)
(see White 1975).

Sample Size

To obtain reliable estimates of popu-
lation size, a sufficiently large sample
must be taken. Typical sample size con-
siderations are not applicable here (e.g.,
determining the numbers of plots to sam-
ple). Rather, “sample size” relates to the
number of animals captured. For a live-
trapping study, one must have both a
large enough number of distinct animals
captured and a sufficient number of re-
captures (except for Model M, and M,,).
The factors that control expected num-
bers of captures are (1) grid size, in terms
of area covered and numbers of traps
used, (2) capture probabilities, and (3)
number of trapping occasions. We dis-
cuss these 3 factors in relation to the size
of the experiment necessary to achieve
precise population estimates.

The size of the grid is the first decision
to be made. Grid size is a function of trap
spacing, s, and the number of rows, r, and
columns, c, of traps. Equal trap spacing
and a systematic grid layout are suggest-
ed. At each grid station there will be one
or more traps. If densities are very high,
we recommend 2 or more traps per sta-
tion to avoid competition for traps. Few
studies have been made comparing 2 or
more traps per station with 1 trap station,
and we suggest further research is re-
quired to see where multiple traps per
station increases the probability of cap-
ture for individual animals.

The objective of grid trapping over a
short time period is to estimate the pop-
ulation size and usually also the density
at the grid site. Because of “edge effect”
(as discussed in the section on density
estimation), it is necessary to estimate
effective trapping area as well as N. In
practice, this means we must be able to

estimate strip width W as well as N. This
requires that the traps be laid out to cover
an area, rather than in a single line. More-
over, we must be able to associate each
trap with an arbitrary X-Y coordinate sys-
tem. For practical reasons, this implies
some sort of regular grid layout (often
square or rectangular) with equal spacing
between traps. This latter aspect of trap
layout is not necessary just for estimation
of N: for example, if trapping was on a
small island, or in an enclosure, knowl-
edge of trap location in a coordinate sys-
tem would not be needed. Finally, for the
density estimate to be meaningful, the
grid should be placed in a homogeneous
habitat type, to assure uniform density
over the grid.

For a choice of r and ¢ when the objec-
tive is density estimation, we suggest that
both values be greater than or equal to 5;
as a minimum we recommend r + ¢ = 20.
Examples are a square grid 10 x 10 or a
rectangle 5 X 15. We note much work in
the literature relies on 16 x 16 grids
(Gentry et al. 1968, Smith et al. 1971),
and we suggest that grids should be at
least that large for attempts to use the
density estimation method based on nest-
ed subgrids. We base this recommenda-
tion on the fact that a large number of
captures is required in each subgrid;
hence, the larger the size of the subgrids
the better the chance that large numbers
of captures will be achieved.

The next decision to be made is the
spacing of traps (i.e., the value of s). Most
work with small mammals uses 15-m trap
spacing or less (Barbehenn 1974, Smith
et al. 1975). The rationale, when one is
given, relates to the size of home range.
Let s be the spacing between traps, and
let 2W be the average linear home range
size. Home ranges may rarely be circular,
but assuming for design purposes that
they may be circular, then their radius is
W. We suggest at least 4 traps per home
range. This implies s < ({2)W. For best
results we suggest s < W/2. Clearly, this
implies some knowledge of home range
sizes before a good study can be de-
signed. This is not unreasonable to ask;
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the biologist should have some behavior-
al knowledge of the species being stud-
ied so that sampling decisions can be
made intelligently. In fact, in any statis-
tical sampling problem, a good study can-
not be planned without some prior
knowledge of the population parameters
to be estimated.

The analyses presented in this mono-
graph for estimating population size re-
quire sufficient numbers of captures to
produce satisfactory results. Defining
“sufficient numbers” is an extremely
complicated task. Based on our experi-
ence with both real and simulated data,
however, some crude guidelines may be
stated. For instance, experiments in
which M, is on the order of 10 or 20
animals simply do not provide enough
information for the procedures discussed
here to perform well. The number of dif-
ferent animals captured needs to be sev-
eral times larger, and will depend heavi-
ly on the probabilities of capture of the
population members being studied. That
is, a population in which members have
an “average” capture probability of 0.40
or 0.50 might only have to be as large as
50 before the estimation and testing tech-
niques become useful, whereas a popu-
lation size of 200 or so might require an
average capture probability of only 0.20.
For most studies, a relatively large num-
ber of recaptures must be realized before
the experiment has a chance to produce
useful results, and this again relates to
the magnitude of the probabilities of cap-
ture involved. In general, the probabili-
ties must be larger for smaller popula-
tions, but in no instance should N be less
than 25 or average capture probabilities
less than 0.10 when trapping small mam-
mals for only a few occasions (say t < 10).
These recommendations do not guaran-
tee that the data can be satisfactorily ana-
lyzed, but we have seen enough real and
simulated data to say that if the data fail
these criteria it is improbable that a pre-
cise estimate will be achieved.

Estimation of density by the nested
subgrid approach requires even larger
sample sizes; the data on the smaller

subgrids will otherwise be too sparse for
reliable results. We believe that reliable
density estimates using the subgrid ap-
proach require a grid of at least a 10 x 10
and as a minimum 75 to 100 different an-
imals caught.

We now consider an approach to de-
termining a minimum grid area on the
basis of the above criteria. We start with
the relationship N = D-A(W), where
A(W) is the effective trapping area. For
a rectangular grid, this is

N = D[L,L. + 2(L; + L)W + aW?],

where L, is the length of a row [L,=s-"
(r—1)] and L, [L.=s(c — 1)] is the length
of a column of traps. Thus, the area cov-
ered by the grid is L L.

As mentioned above, without some
knowledge of D and W, a suitable study
cannot be designed. Assume D, and W,
are the best guesses of the values of the
parameters. To determine if a grid study
is at all feasible, set N = 50, substitute
D, and W, in the above equation, set L,
= L. = L (a square grid), and solve for L:

L = ,/0.8584(W,)* + N/D, — 2W,,

Then the actual area the grid must cover
is L2

This procedure is not difficult; how-
ever, one must be careful to use the same
basic units for D, L, and W. For example,
let W, be 100 feet (30.5 m) and assume a
density of 1 animal per acre (1/0.4 ha). For
compatibility of units put D, in terms of
square feet, then D, = (1/43,560) feet?,
Solving for L gives

L= \/(0.8584)(100)2 + (50)(43,560) — 200
= 1,279 feet.

This translates back into 37.5 acres (15.2
ha) as an absolute minimum grid size
[37.5 = (1,279)%43,560].

This is clearly conservative because
not all animals will be caught. Improved
planning requires us to determine grid
size so that a given number of animals
M, will be caught. But the expected
number of distinct animals caught de-
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pends upon the true underlying capture
probabilities, which are not known. The
only practical approach is to make the
best guess at the overall average proba-
bility of first capture, p, applicable during
the study and then use the formula

My, = N[1 - (1-p)]

Because the value of t (number of occa-
sions) has been introduced, the relevant
computations for several realistic values
of t can now be performed.

For example, assume p = 0.30, set
M., = 50, and solve for N for several val-
ues of t. Given these values of N, solve
for the value of L, and hence minimum
grid size:

grid size
in acres
t N L (ha)
4 66 1,498 51.5(20.8)
6 57 1,378 43.6 (17.6)
8 53 1,323 40.0(16.2)

In practice, this example means if trap-
ping were only for 4 days, one would
need a 16 x 16 grid, traps spaced 100 feet
(30.5 m) apart. For an 8-day period of
trapping, the same (expected) data could
be obtained with a 14 x 14 grid of traps
spaced 100 feet (30.5 m) apart.

This process can be reversed. Let us
say a study is planned with a square grid
of 16 traps, spaced 15 m apart (W =7.5
m). Then L, = L, = 225m. Substitution in
the basic equation gives

N = D-57,552

(m?)
or
N=D-576 (ha).

Assume further the study is to last 5 days
and the average capture probability is
about p = 0.30. Then we have

M = N(0.83).

We need to get at least 100 animals be-
cause the smallest subgrid requires 50, so
the density should be large enough that
N = 120, or

120

D= =76 = 20.8 animals/ha.
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Thus, to get reliable results in such a
study we would say the true population
density should equal or exceed 21 ani-
mals/ha. If the biologist has good reason
to believe true density is only 10 or 12
animals/ha, the study is not even worth
doing.

In addition to controlling the sampling
effort through the size of the grid and the
number of traps, the biologist can also
select the number of trapping occasions.
In theory, the more trapping times there
are the better, but this ignores the fact
that the closure assumption becomes less
realistic as more time passes. We rec-
ommend a minimum of 5 trapping occa-
sions, but 7 to 10 is better. The interval
between occasions should be short. In
practice, most trapping of small animals
is either once a day (morning) or twice a
day (morning and evening). Trapping
only once a day is far less likely to intro-
duce time variation. With morning and
evening trapping there is very likely to
be a difference in capture probabilities
between times. If variation of behavior
and heterogeneity should also be pre-
sent, the correct model ends up as M
for which no suitable estimator is avail-
able. Morning and evening trapping may,
however, be aimed at different species.
Then a workable design would be 5 (or
7) days of trapping in both morning and
evening, but with separate analysis of the
morning and evening data.

In removal studies, an absolute mini-
mum is t = 3 occasions (not 2, as is often
done) because it is impossible to test for
equal capture probabilities when t = 2.
We recommend that at least 4 removals
be done.

Another valuable method of testing the
adequacy of the design before going to
the field is to simulate the experiment on
a computer. Approximate parameter val-
ues can be chosen, and the experiment
replicated as many times as necessary.
Among the criteria that can be observed
are selection of the appropriate model,
the bias of selected estimators, and the
achieved confidence level. Obviously,
the validity of the simulations to the field
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(,n (1,2) (1,3) (1,4)
(2,h (2,2) (2,3) (2,4)
(3,1 (3,2) (3,3) (3,9
(4, (4,2) (4,3) (4,4)

F1G. 20. Example of trap numbering for a 4 x 4
grid with a standard coordinate system.

study will depend on the similarity of
parameters selected to the actual param-
eter values. However, insights about the
experiment can be gained through sim-
ulations that cannot be achieved in any
other way. We note that program CAP-
TURE has the capability to conduct these
simulation studies.

Recording Data

If density is to be estimated on the ba-
sis of grid trapping data, the minimum
information that must be taken when a
capture occurs includes: (1) animal iden-
tification code, (2) trap location, and (3)
trapping occasion. Usually, the species,
sex, and age are also recorded for each
animal, though for analyses given here it
has no purpose except to partition the
data by species, sex, and age. While ana-
lyzing the data separately by species is
recommended, there often are not enough
data to further partition by sex and age of
animal.

For true removal studies (e.g., electro-
fishing), there is no animal identification
code. As suggested by Raleigh (pers.
comm.), it is very important in removal
studies to record the individual by
species and to analyze the data by at least
major taxonomic groups.
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In recapture studies, each animal
should be marked uniquely, otherwise
substantial information may be lost and
it will be impossible to compute some of
the tests for sources of variation. Though
it should be obvious, we do mention that
it is crucial to correctly record all data
(e.g., animal number and trap number).

To know the trap location, traps must
be numbered uniquely. Moreover, the
biologist must know the relationship be-
tween the trap number and its coordinate
on some (arbitrary) rectangular X-Y co-
ordinate system. From the standpoint of
data analysis, the best approach is to
identify the traps in the field by these X-
Y coordinates. We strongly recommend
use of this system and we stress that den-
sity estimation using program CAPTURE
requires data to be collected in the con-
text of a coordinate system. We recom-
mend that a corner trap be numbered (1,
1) then the rows become the “X axis™ and
columns the “Y axis.” For example, a 4
X 4 grid would look like Fig. 20. This
system can be extended to cover any reg-
ular rectangular grid of r rows and c col-
umns.

When traps are checked both morning
and evening, it is necessary to record not
only the day of capture, but also the time.

Data recording will be facilitated by
using standard field forms and standard
conventions for trap numbering and ani-
mal identification. One example of a stan-
dardized method is presented in Brotz-
man and Giles (1966).

Data Anomalies

Various anomalies and unplanned
events may occur in trapping. For exam-
ple, (1) several animals may be found in
1 trap, (2) animals may be found dead in
traps, (3) released animals may be found
further down the grid trapped again on
the same occasion, and (4) a trapped an-
imal may escape when one attempts to
remove it from the trap. We make the fol-
lowing suggestions regarding these hap-
penings: (1) more than 1 animal per trap
presents no problem. Record each animal
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separately. This type of data does not in-
validate the analyses present here; (2) an
animal dead in the trap in a livetrapping
study is a more serious problem. If it is
the last trapping occasion it does not mat-
ter. Otherwise the data analysis must be
modified. Some of the methods described
here can allow for known removals in a
true livetrapping study (specifically
Models M, and M,). Because not all tests
and estimators can be so modified, we
have not dealt here with such modified
models. We recommend the following: if
trap deaths are less than 5 percent of total
captures, remove those data from the to-
tal results, run the analyses and add that
number of dead animals to N, and then
multiply the density estimate D, by (1 +

proportion dead). If such deaths are more
than 20 percent of total captures, use the
generalized removal method of analysis
on first captures. For 5-20 percent trap
deaths, the only safe analysis may be the
removal method. These modifications
give N and D relative to the first day of
the study. If one desires these estimators
to apply to the population remaining
alive after the study, then simply delete
all trap deaths from the data set prior to
analysis; (3) the same animal is caught
more than once on a given occasion, the
only added information provided is on
movement. We recommend that both
captures be recorded, but only the results
of the first capture be used for data anal-
ysis; and (4) an animal escapes during
handling before it is tagged, or before the
mark is read. Do nothing but record the
fact. Do not attempt any sort of analysis
of this “record.” In essence, it does not
become part of the data.

COMPREHENSIVE EXAMPLES

Preceding sections have given the de-
tails of the specific models, estimators,
and tests that are the basis for our anal-
ysis of capture data. The analysis of a set
of livetrapping data by these methods
will involve the model selection proce-
dure, followed by estimation of N under
the selected (or most appropriate model);

OVERALL TEST RESWTS --
Z-VALUE
PROBABILITY OF A SMALLER VALUE

-1.084
. 13925

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

2 184 .57306
3 464 .67863
4 1.208 . 88650

F1G. 21la. Example of test procedure for popula-
tion closure with the Scheme B taxicab data from
Carothers (1973b).

density estimation may also be desired.
Finally, in the course of these analyses
various summary statistics can be com-
puted. Below, we given several complete
examples of the entire analysis process of
livetrapping data for purposes of estimat-
ing population size. We do not include
density estimation for all these examples
because its essential features are always
the same. Also, no further examples are
given here of the analysis of removal data
because that subject is substantially sim-
pler than the analysis of capture-recap-
ture data.

A Taxicab Example

Carothers (1973b) conducted an inge-
nious capture-recapture experiment on
the taxicab population of Edinburgh,
Scotland. Such a study has the advan-
tages of known population size, yet the
population is a real one (though not in-
volving animals) as opposed to a com-
puter simulation experiment. Two differ-
ent sampling methods were used; we
have already used Carothers’ Scheme A
in the section on Model M,, to illustrate
the jackknife estimator (see Fig. 6); the
entire 10 days of observations (“trap-
pings”’) from Scheme B are used as an
example here. In that scheme, observers
had fixed stations in the city. This corre-
sponds to a trapping study with 10 days
of trapping at fixed trap locations. The
true population size was 420, and we can
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OCCASION J= ! 2 3 4 5 6 7 8 9 10
ANIMALS CAUGHT N(J)= 48 52 47 44 48 45 48 43 47 53
TOTAL CAUGHT M) = 0 48 90 122 146 173 188 203 213 225 24!
NEWLY CAUGHT Uty = 48 42 32 24 27 15 15 10 i2 16
FREQUENCIES Fto)= 104 67 5! 12 6 1 0 0 0 0

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.

NULL HYPOTHESIS OF MODEL M(0) VS.

CHI-SQUARE VALUE = 7.813

2. TEST
NULL

FOR BEHAVIORAL RESPONSE AFTER
HYPOTHESIS OF MODEL M(0) VS.
CHI-SQUARE VALUE = .095

3. TEST

NULL HYPOTHESIS OF MODEL M(O)

CHI-SQUARE VALUE = 2.247

Y. GOODNESS OF FIT TEST OF MODEL M(H)

DEGREES OF FREEDOM = 4

DEGREES OF FREEDOM = 1

DEGREES OF FREEDOM = 9

ALTERNATE HYPOTHESIS OF MODEL M(H)

INITIAL CAPTURE.
ALTERNATE HYPOTHESIS OF MODEL M(B)

FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)

CHI-SQUARE VALUE = 2.300

DEGREES OF FREEDOM = g

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY
1 6.769 9 .66113
2 6.246 9 - 71504
3 Y.714 9 .85847

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE
CHI-SQUARE VALUE =

8.957 DEGREES

SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 7.598  DEGREES

58. CONTRIBUTION OF TEST OF HOMOGENEITY OF

CHI-SQUARE VALUE = 1.359  DEGREES

6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE
CHI-SQUARE VALUE =

188.341 DEGREES

HYPOTHESIS OF NOT MODEL M(B)
OF FREEDOM = 16
FIRST CAPTURE PROBABILITY ACROSS TIME
OF FREEDOM = 8
RECAPTURE PROBABILITIES ACROSS TIME

OF FREEDOM = 8

HYPOTHESIS OF NOT MODEL M(T)

OF FREEDOM = 168

7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

PROBABILITY OF LARGER VALUE

NULL HYPOTHESIS OF MODEL M(H)

MODEL SELECTION CRITERIA.

MODEL
CRITERIA

CHI-SQUARE VALUE =

M(O)
.93

M(H)
1.00

15.148

M(B)

VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

DEGREES OF FREEDOM = 26  PROBABILITY OF LARGER VALUE =

MODEL SELECTED HAS MAXIMUM VALUE.

M(BH)
.52

M(T)
0.00

M(TH)
.46

M(TB)
.36

M(TBH)

.37 .59

F1c. 21b. Example of model selection procedure based on Scheme B taxicab data from
(1973b). Appropriate model probably is M. Suggested estimator is jackknife.

.09482

n

.75743

.98693

.88578

.91516

.47369

.98480

. 13483

.95458

Carothers
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NUMBER OF TRAPPING OCCASIONS WAS 10
NUMBER OF ANIMALS CAPTURED, M(T+1), WAS 24|
TOTAL NUMBER OF CAPTURES, N., WAS w75

FREQUENCIES OF CAPTURE.F(1)
1= 1 2 L 5 6 7 8 910
Fthh= 104 67 51 12 6 1 0 0 0 0

COMPUTED JACKKNIFE COEFF ICIENTS
N N(@) N(3) N4y N(5)
1 1.800 2.700 3.400 4.000 “+.500
2 1.000 .28 -.878 -2.2718 -3.722
3 1.000 1.000 1.476 2.535 4.042
4 1.000 1.000 1.000 L7443 .077
5 1.000 1.000 1.000 1.000 1.103
THE RESULTS OF THE JACKKNIFE COMPUTATIONS
1 N(D o SECD) .95 CONF. LIMITS TEST OF NUI+1) VS. N(1)
o 241 CHI-SQUARE (] D.F.)
1 334.6 13.34 308.5 360.7 13.22%
e 370.2 21.53 328.0 “ie.u 2.344
3 389.1 31.54 327.3 450.9 1.680
“ 408.6 44.09 322.1 495.0 2.137
5 433.3 58.67 318.3 548.3 0.000
AVERAGE P-HAT = 1301

INTERPOLATED POPULATION ESTIMATE IS 365 WITH STANDARD ERROR 20.307

APPROXIMATE 95 PERCENT CONF IDENCE INTERVAL 325 10 406

HISTOGRAM OF F (1)

FREQUENCY 104 87 51 12 6 1 0 o 0 0

11 POINTS

EACH * EQUALS

Fi1G. 21c. Example of population estimation with

variable probability of capture by animal under

Model M; with Scheme B taxicab data from
Carothers (1973b).

be reasonably certain of the closure as-
sumption.

In this example, the concept of density
is not applicable, nor is it meaningful to
identify “trap” locations. Consequently,
the first page of computer output is the
test of closure (Fig. 21a). From Fig. 21a,
we have the overall test value z =
—1.084. This is not significant, conse-
quently we would not reject closure.
There were enough resightings 2, 3, and
4 times of the same taxicab to allow spe-
cific tests of closure on just those cabs
seen that many times. None of the 3 tests
are significant.

The next section of output is the model
selection procedure (Fig. 21b). After the
headings, some summary statistics are
presented (daily captures n;, cumulative
marked M;, new animals u;, and capture
frequencies f;). The rest of the model se-
lection procedure output (Fig. 21b) is de-
voted to the 7 tests of assumptions fol-

lowed by the computed selection criteria
and a suggested appropriate model. The
first 3 tests compare Model M, to Models
My, My, and M,, respectively. From Fig.
21b results are summarized below for
those 3 tests:

Chi-square Significance

Test of Model  value level

M, versus M, 7.913 0.09482
M, versus M, 0.095 0.75740
M, versus M, 2.247 0.98693

The only indication of variability in cap-
ture probabilities is heterogeneity (sig-
nificant at the 10% level). The study was
designed to achieve constant numbers
captured every day; therefore it is not
surprising there is no indication of time
variability in capture probabilities. Also,
we do not find it surprising that there is
no indication, from test 2, of behavioral
response. One would not expect “trap”
responses from taxicabs.

Tests 4, 5, and 6 examine the goodness
of fit of Models M,, M, and M,, respec-
tively. When any of those tests reject, we
are saying that model does not appear ap-
propriate for the given study. Test 4 in-
dicates no departure from Model M,
(overall chi-square of 2.3 with 9 df). Nor
does test 5 reject Model My, (overall chi-
square of 8.957 with 16 df). The goodness
of fit test to Model M, does not cause us
to reject M, but does make us suspicious
of that model (probability of a larger val-
ue = (.13483). Finally, test 7 gives us no
cause to suspect Model M, should be re-
jected in favor of Model My, (chi-square
of 16.148 with 27 df).

By itself, none of these 7 tests is defin-
itive in suggesting the appropriate mod-
el; rather it is necessary to consider the
results of all the tests. In this example we
see some evidence of heterogeneity, but
no evidence of time or behavioral varia-
tions in capture probabilities. Bearing in
mind the robustness of the jackknife es-
timator of Model M;, we are willing to
conclude the appropriate model for these
data is M. The “model selection crite-
ria” computed by the program suggests
My, as appropriate (with Model M, as the
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best second choice). Given these results,
the user should look next at the jackknife
estimate for these data and should con-
sider all other estimators as being inap-
propriate.

Fig. 21c gives the results of estima-
tion of N from Carothers’ Scheme B data.
This page of output will always give the
summary statistics My, n., and the cap-
ture frequencies. Then the jackknife
coefficients are given for the number of
trapping occasions used. Next, the results
of computing the first 5 jackknife esti-
mates are shown. For example, Ny, =
334.6 with a standard error of 13.34,
while N5 = 433.3, and SE(N,;) = 58.67.
In that example, the selected estimate of
N is 365 with standard error of 20.3. The
approximate 95 percent confidence inter-
val on N is 325 to 406. That confidence
interval fails to cover the true N = 420,
reflecting the previously discussed poor
coverage of the confidence intervals as-
sociated with the jackknife estimator, but
the relative error of the estimator is only
13.1 percent (which is consistent with
our simulation results on Ny). In terms of
real capture-recapture studies, this
amount of bias is, in our opinion, accept-
able.

Finally, we note that jackknife esti-
mator is better (i.e., nearer to N = 420) for
Carothers” Scheme B data than the com-
monly used estimators as Petersen (1896)
or Schnabel (1938).

As a further aid in judging the validity
of the study, the estimated average cap-
ture probability is given. From Fig. 21c,
AVERAGE P-HAT = 0.1301. Our studies
have indicated that a value of less than
0.10 suggests the capture results may not
be trusted to produce good results. A 0.13
average probability is not very high, but
it is acceptable when the true population
size is as high as 420.

A Penned Rabbit Study

Edwards and Eberhardt (1967) report-
ed the results of a livetrapping study on
a penned population of 135 wild cotton-
tails Sylvilagus floridanus. To our knowl-

WILDLIFE MONOGRAPHS

OVERALL TEST RESWTS --
Z-VALUE
PROBABILITY OF A SMALLER VALUE

-2.132
.01650

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER Of CAPTURES Z-VALUE PROBABILITY

2 3.691 .99989

F1G. 22a. Example of test for population closure
procedure with cottontail data from Edwards and
Eberhardt (1967).

edge there have been few other con-
trolled studies like that done, which is
unfortunate because it would be very
valuable to have more data sets on real
populations where N is known.

It that study, 135 wild cottontails were
captured and placed in a 40-acre (16.2 ha)
rabbit-proof enclosure. After allowing 4
days for the rabbits to adjust to their new
surroundings, livetrapping was conduct-
ed for 18 consecutive nights. When pro-
gram CAPTURE was used to analyze the
resultant data, the results were disap-
pointing.

Fig. 22a shows the results of the clo-
sure test applied to Edwards and Eber-
hardt’s (1967) data. Because z = —2.132
(P = 0.0165) one would normally ques-
tion whether closure was true. In that ex-
ample, we attribute the result to a time
variation in daily capture probabilities,
specifically there were fewer captures to-
ward the end of the 18 days than at the
start. As mentioned before, this “closure
test” can detect only certain types of time
variations of individual capture probabil-
ities. It cannot of itself “know’” the cause
of the variations. Therefore, all the evi-
dence in the data or otherwise available
must be used to reach final conclusions
about closure, or about other questions
such as the presence of behavioral re-
sponse (which also gets confounded with
closure).

A brief data summary and the tests of
assumptions are given by the model se-
lection procedure (see Fig. 22b). From
tests 1, 2, and 3, we see that Model M, is
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OCCASION J=
ANIMALS CAUGHT N(J)=
TOTAL CAUGHT M) =
NEWLY CAUGHT U=
FREQUENCIES Ftoh=

8 9 10 11 e 13 14 15 16
14 2] 5 18 11 4 3 16 5 2 7 9 0
18 29 33 34 44 5 52 53 62 62 63 68 T4
7
0

on?om

76
11 4 1 10 1 1 9 0 1 5 6 0
0 o 0 0 0 0 0 0

Wwow-
onoon
© W

£

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS, ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 11.110 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE = .01115

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = .062 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = .80367

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 46.932 DEGREES OF FREEDOM = 17 PROBABILITY OF LARGER VALUE = .goo12
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 55.502 DEGREES OF FREEDOM = 17 PROBABILITY OF LARGER VALUE = .00001

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 52.023 17 .00002

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 102.913 DEGREES OF FREEDOM = 3| PROBABILITY OF LARGER VALUE = 0.00000
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 47,065 DEGREES OF FREEDOM = |5 PROBABILITY OF LARGER VALUE = .00004
58. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 55.848 DEGREES OF FREEDOM = 16 PROBABILITY OF LARGER VALUE = .00000
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)

EXPECTED VALUES TOO SMALL. TEST NOT PERFORMED.

7. TEST FOR BEHAVIORAL RESPONSE [N PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)

CHI-SQUARE VALUE = 52.023 DEGREES OF FREEDOM = 1|7 PROBABILITY OF LARGER VALUE = . 00002

MOOEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL MO) MH) M(B) M(BH) MM M(TH) MTR) M(TBH)
CRITERIA .15 0.00 .28 .01 1.00 B4 .ee .32

F1G. 22b. Example of model selection procedure based on cottontail data from Edwards and Eberhardt
(1967). Appropriate model probably is M,. Suggested estimator is Darroch.

not acceptable; moreover, the tests show (tests 3 and 1). Although test 2 fails to
that there is clearly time variation in av- suggest that Model M, is better than
erage daily capture probabilities and that Model M,, we cannot, from that alone,
there probably is some heterogeneity conclude there are no behavioral re-



OCCASION J= 1
ANIMALS CAUGHT N(J)=

TOTAL ANIMALS CAPTURED

P-HAT (J) =

WILDLIFE MONOGRAPHS

11
16

.04 .21 .07 .03 .

POPULATION ESTIMATE IS 76 WITH STANDARD ERROR L0165
APPROXIMATE 95 PERCENT CONFIDENCE INTERVAL 75 10 7
HISTOGRAM OF N(J)
FREQUENCY 9 8 9 14 8 5 18 11 % 3 16 5 2 7 8 0 4 10
EACH * EQUALS 2 POINTS
18 .
16 . .
14 . . .
12 . . . .
10 . . . . . . . .
B - - - - - - - - - - -
6 . . 3 . . 3 . . . . 3 . .
l' - - - - - - - - - - - - - - - -
-3 . . . . . . . . . . . . . . . . .
Fic. 22c. Example of population estimation with time specific changes in probability of capture

under Model M, with cottontail data from Edwards and Eberhardt (1967).

sponses. In fact, test 7 (p = 0.00002)
shows that there are time variations in
capture probabilities which may be be-
havioral.

Only 2 of the goodness of fit tests (4
and 5) could be computed. The goodness
of fit to Model M, could not be done be-
cause of the small numbers of individuals
caught most days. The other 2 tests, how-
ever, resulted in rejection, indicating that
neither Model M, nor M, is a satisfactory
model for the data.

When the goodness of fit test cannot be
computed for Model M, the model selec-
tion criteria are computed based on the
assumption that test 6 would give a sig-
nificance level of 0.50. This tends to give
undue weight to Model M;, but there is
really no good solution to this problem.
For Edwards and Eberhardt’s data, M, is
the indicated best fitting model, with
Model My, the next best. This is consis-
tent with the observation that capture
probabilities do appear affected by both
time and heterogeneity.

The estimation of N based on Model
M, is given in Fig. 22c. The point esti-

mate of population is 76, which is the
same as the number of distinct animals
captured (i.e., M,y = 76). As further evi-
dence for determining whether N, is a re-
liable estimate (and model), one should
compute the overall average capture
probability:

. n

D=~

tN
For Edwards and Eberhardt’s data:
L 142

(18)(76)

The advantage of using this formula in-
stead of

p=(Sm)0

is that we know the true population size
is greater than or equal to 76. Thus, we
know this value of p is an upper bound
on the true expected value of p, and hence
average capture probability is less than or
equal to 0.10. This should raise a red
flag to the investigator, average capture
probability may well be less than 0.10,

= 0.10380.



STATISTICAL INFERENCE FROM CAPTURE DATA—Otis et al.

87

ANIMAL NUM. MAXIMUM AVERAGE STANDARD  ANIMAL NUM. MAXIMUM AVERAGE STANDARD  ANIMAL NUM. MAXIMUM AVERAGE STANDARD
1.D. CAP. DIST. DIST. ERROR 1.D. CAP. DIST. DIST. ERROR 1.D. CAP. DIST. DIST. ERROR
268 6 4.5 1.7 .69 269 3 1.4 7 .71 272 3] 2.0 .8 .37
273 6 1.4 .3 .e8 274 5 1.0 .3 .25 276 6 1.4 7 .29
27 6 2.2 1.5 .30 279 5 8.5 4.0 1.75 280 4 2.2 .8 42
281 3 5.0 3.2 1.79 282 5 1.4 1.0 0.00 285 5 7.1 3.3 1.45
286 6 2.0 7 .29 287 S 2.0 .5 .29 288 8 2.2 .8 .20
294 5 1.4 4 .35 299 4 3.0 1.0 1.00 300 3 2.0 2.0 0.00
163 Y4 1.0 7 .33 165 4 4.1 3.5 .63 166 2 0.0 0.0 0.00
1687 Al 2.0 7 .67 169 4 2.2 1.2 .65 170 S 2.0 .5 .50
171 S5 4.1 1.8 .61 172 2 1.y 1.4 0.00 173 3 5.0 4.1 .92
175 1 0.0 0.0 0.00 176 3 0.0 0.0 0.00 177 3 1.0 1.0 0.00
184 1 0.0 0.0 0.00 187 4 2.2 7 .75 188 3 0.0 0.0 0.00
189 2 3.0 3.0 0.00 191 Y 1.0 .3 .33 192 3 0.0 0.0 0.00
193 3 0.0 0.0 0.00 196 3 1.4 1.2 .21 198 1 0.0 0.0 0.00
193 2 5.0 5.0 0.00 200 2 2.2 2.2 0.00 86 2 0.0 0.0 0.00
89 1 0.0 0.0 0.00 se 1 c.0 0.0 0.00 91 1 0.0 0.0 0.00
92 2 1.0 1.0 0.00 83 2 0.0 0.0 0.00 95 2 .1 4.1 0.00
98 1 0.0 0.0 0.00 100 1 0.0 0.0 0.00 380 1 0.0 0.0 0.00

NOTE THAT AVERAGE DISTANCE ONLY REFERS TO DISTANCE BETWEEN SUCCESSIVE CAPTURES,
WHILE MAXIMUM DISTANCE REFERS TO THE GREATEST DISTANCE BETWEEN ANY TWO CAPTURE POINTS.

ALSO DISTANCE IS IN UNITS OF TRAP INTERVALS, 1.E.,

IF THE INTER-TRAP DISTANCE 1S 5 METERS,

AND THE MAX. DISTANCE IS 1.4, THEN THE MAX. DISTANCE IN METERS IS 1.4*5 OR 7 METERS.

SUMMARY BY FREQUENCY OF CAPTURE OF MAXIMUM DISTANCE BETWEEN CAPTURE POINTS.

NUMBER SAMPLE  MEAN OF STANDARD
CAPTURES SIZE MAX DIST. ERROR
2 9 1.86 .621
3 10 1.58 Bly
4 8 2.23 .360
5 8 3.45 1.018
1] 7 2.25 392
TOTAL 42 2.e3 .575

A3

F1G. 23a. Example of animal by animal summary of deer mouse capture data from V. Reid (pers. comm.).

in which case this analysis is not trust-
worthy when (apparent) population size
is around 100.

In fact, if we use the true value of N =
135, then average capture probability in
this experiment was 0.056. We also point
out that even after 18 days of trapping
only 53 percent of the population had
been captured. This example illustrates
our contention that it is very important to
have average capture probabilities well
above 0.05 or 0.10 for the population
sizes typically encountered in capture—
recapture studies (50 to 150). Consider-
ing that N = 135 and the population was
penned, we suggest that the “true” situ-
ation was as follows. There was signifi-
cant time variation and heterogeneity but
little real behavioral response. The av-
erage daily capture probabilities de-
clined in the last 9 (of the 18) days and
this caused rejection of both the closure
test and test 7. No good estimator of pop-
ulation size is available for data of this
type and quality.

An Example of Trap Response

Many data sets we have seen on Pero-
myscus maniculatus have fit Model M,
(trap response). The following is an ex-
ample supplied by V. Reid (pers.
comm.). The data were taken in a 6-day
livetrapping study near Wet Swizer
Creek, Rio Blanco County, Colorado, Au-
gust 1975. A rectangular grid of 9 x 11
traps was used, with 50-foot (15.2-m) trap
spacing. One Sherman live trap (for small
mammals) was placed at each grid point
and trapping was done twice daily (morn-
ing and night); we have used only morn-
ing captures for this example. The reader
should study Figs. 23a—e, which give
the basic results, before proceeding.

A summary of movement information
from recaptures is given in Fig. 23a. We
remind the reader these distances are in
units of 1 trap spacing [i.e., 50 feet (15.2
m) here]. Thus, the mean maximum dis-
tance of 2.23 implies the average maxi-
mum movement was 111.5 feet (34 m).
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OCCASION J= 1 2 3 4 S 6
ANIMALS CAUGHT N(J)= 16 29 27 29 32 38
TOTAL CAUGHT M) = 0 16 31 38 44+ 48 51
NEWLY CAUGHT Ut = 16 15 7 6 4 3
FREQUENCIES Flo= S 9 10 8 8 7

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 37.489 DEGREES OF FREEDOM = 4 PROBABILITY OF LARGER VALUE = .00000
2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(O) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)
CHI-SQUARE VALUE = 24.342 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = .00000
3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)
CHI-SQUARE VALUE = 24.773 DEGREES OF FREEDOM = 5  PROBABILITY OF LARGER VALUE = .00015
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 25.225 DEGREES OF FREEDOM = 5  PROBABILITY OF LARGER VALUE = .00013
5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)
CHI-SQUARE VALUE = 5.978 DEGREES OF FREEDOM = 8 PROBABILITY OF LARGER VALUE = . 64968
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 1.135 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE = . BB8B66
5B. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 4.843 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE = .30379
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
EXPECTED VALUES TOO SMALL. TEST NOT PERFORMED.
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 22.217 DEGREES OF FREEDOM = 7  PROBABILITY OF LARGER VALUE = .00233

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(0) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA .26 17 1.00 .65 0.00 .28 .55 .27

F1G. 23b. Example of model selection procedure based on deer mouse data from V. Reid (pers. comm.).
Appropriate model probably is M,. Suggested estimator is Zippin.

One estimate of W (strip width) is pro- ing 106 feet, 32.3 m, here). Either ap-
duced by taking half this average maxi- proach probably would be an improve-
mum distance (56 feet, 17 m, here), or ment over using W = 0, but these are
half of it plus one intertrap distance (giv- essentially ad hoc approaches.
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OCCASION J= 1 2 3 “ 5 6
TOTAL CAUGHT M) = 0 16 3 38 44 48 51
NEWLY CAUGHT Ut = 16 15 7 B 4 3
ESTIMATED PROBABILITY OF CAPTURE, P-HAT = .319119
ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = .677966

POPULATION ESTIMATE 1S 56 WITH STANDARD ERROR 4.2859

APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 47 70 85

HISTOGRAM OF U(J)

FREQUENCY 6 15 7 6 4 3
EACH * EQUALS 2 POINTS

6 o .

14 ..

12 . e

10 .

8 . e e

6 e e

N e e e e e

2 P S

F1G. 23c. Example of population estimation with

constant probability removal estimator under Mod-

el M, with deer mouse data from V. Reid (pers.
comm.).

In this example, the test for closure
gave z = —1.586 (P = 0.05633). But be-
cause the closure test is known to be
biased when there is trap response, in the
final analysis we conclude Model M,, ad-
equately fits the data and closure is ac-
ceptable. A second bit of evidence on clo-
sure is given by the “ring” test (see Fig.
23e). That test examines for any apparent
attraction of animals by the grid; it is not
significant in this example, indicating
that there is no basis to think immigration
occurred.

From the model selection results (Fig.
23b) we find that tests 1, 2, and 3 all re-
ject. This typically happens when there
is strong trap response. Tests 4, 5, and 6
examine the goodness of fit of the 3
Models (My, My, and M,, respectively).
We see that Model M, does not fit, but
Model M, does fit the data adequately.
Unfortunately, the goodness of fit of M,
is the most difficult test to compute and
with the small numbers of animals caught
it could not be reliably computed.

Test 7 examines for possible behavior-
al variations in capture probabilities al-
lowing for any heterogeneity which may
be present (Fig. 23b). That test strongly
suggests some form of behavioral re-
sponse is present.

MATRIX OF CAPTURES PER TRAP STATION.
COLUMNS 1 2 3 4 5 6 71 8 9
_______ e
1
ROW 11 J0O 0 1 3 7 3 5 4 4
1
ROW 21 f3]3 v« v 1 5 0 1]e2
1
rRow 31222 o 0o & afu]e
1
RoW w1l 3f2f3la o 1pr]1}]e .
1 Grid
row s1fH1]o]of}tr o ofpaluls 1
! 2
row 61 Jole]lala 2 of+«Jojo 3
1
row 71 el ]2} 3 spijojof—4
1
rRow 81 laleluw]o v of3)e]s3
1
rRow 91 fvw]Jols o 2 o ojojo
1
rRoWwi101 o}z o 1 o o o 0}0O
1
ROWI1 IO & 2 o 1 2 0 1 1

Fic. 23d. Nested subgrids used in the density

estimation procedure with deer mouse data from V.

Reid (pers. comm.). In the matrix, trap coordinates

are rounded to the nearest whole integer. In the

following goodness of fit tests, trap coordinates

that are not integers and nonrectangular trapping
grids will cause spurious results.

The suggested model is M,, and the
corresponding estimator of population
size is, essentially, the Zippin removal
estimator. (We have used the maximum
likelihood estimator of N under the Zip-
pin removal model. Recall that this dif-
fers slightly from the estimator usually
computed.) Fig. 23c shows the esti-
mate of population size under Model
M, to be N = 56, with a standard error of
4.3. The approximate 95 percent confi-
dence interval on N is 51 to 65. Note that
the program does not truncate the com-
puted lower limit of 47 back to 51 (the
number actually seen), but this could be
done in reporting the results. The prob-
ability of initial capture is p = 0.32 and
the probability of recapture is ¢ = 0.68.
These are significantly different because
Model M, was rejected in favor of Model
M,. This sort of dramatic increase in cap-
ture probability after initial capture is en-
tirely consistent with the properties of
the data, for example, the observed in-
crease over time in the n;'s (daily num-
bers captured).

The area covered by the trapping grid
was 4.59 acres (1.86 ha); the naive esti-
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CHI-SQUARE TEST OF UNIFORM DENSITY BY ROWS.

ROW 1 2 3 4
OBSERVED 27 23 18 15
EXPECTED 15.545 15.545 15.545 15.545
CHI-SQUARE 8.440 3.575 .388 .019
ROW 11
OBSERVED 1
EXPECTED 15.545
CHI -SQUARE 1.329

TOTAL CHI-SQUARE = 26.94 WITH

CHI-SQUARE TEST OF UNIFORM DENSITY BY COLUMNS.

COLUMN 1 2 3 Y4
OBSERVED 21 19 25 15
EXPECTED 19.000 19.000 19.000 18.000
CHI-SQUARE .21t 0.000 1.895 842

TOTAL CHI-SQUARE = 3.47 WITH

10 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE =

B DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE =

WILDLIFE MONOGRAPHS

5 6 7 8 9 10

12 12 18 20 1t 4
15.545 15.545 15.545 15.545 15.545 15.545
.809 .809 .388 1.276 1.329 8.575

.0027

5 6 7 8 9

20 18 17 17 19
19.000 19.000 18.000 19.000 19.000
.053 .0583 a1 .211 0.000

.9012

CHI-SQUARE TEST OF UNIFORM DENSITY BY RINGS (OUTER RING 1S NUMBER 1).

RING 1 2 3 4
OBSERVED 73 42 36 20
EXPECTED 62.182 48. 364 34.545 25.909
CHI-SQUARE 1.882 .837 .061 1.348

TOTAL CHI-SQUARE = 4.13 WITH

3 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE =

.2479

FiG. 23e. Chi-square tests of uniform density with deer mouse data from V. Reid (pers. comm.).

mate of density is thus 12.2 mice/acre
(30.7/ha). Because of edge effect, we
know this is an overestimate. As dis-
cussed abovey, movement data from re-
captures is one basis for estimating the
strip width W to get an estimate of effec-
tive trapping area. A conceptually better
approach is to estimate W based on trap-
ping grids of different sizes. Figs. 23e—f
give results relevant to this approach
for Reid’s Wet Swizer Creek data. Four
nested subgrids were chosen (as shown
in Fig. 23d) as the basis of this procedure;
from the number of captures per trap sta-
tion, there is no apparent evidence of a
nonuniform density over the grid. Figure
23e gives some logical tests of this uni-
form density assumption. However, our
experience with the tests is that they
often reject when there is, in fact, no real
density gradient (i.e., systematic changes
in density over the grid). Thus, even
though there may be some variation in
density by “rows,” it is minor. Also, the

choice of subgrids as shown tends to min-
imize the problem.

For each subgrid, an estimate of the
population at risk of capture on that
subgrid was obtained using Model M,,.
As explained in the density estimation
section, we can then estimate W. The re-
sults are shown in Fig. 23f. The 4 naive
densities are shown, with the necessary
computed constants (based on grid sizes),
and the initial covariance matrix of the
naive densitites._

The value of W is 105 with a (typically
large) standard error of 58. Nonetheless,
this value of W is significantly greater
than zero, so we accept as our density
estimate D = 5.54 animals/acre (13.7/ha),
(SE(D) = 1.92).

When this subgrid approach to esti-
mation of D fails, one must use

D = N/AW),
AW) = A1 + aW + bW?],
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STARTING VALUES FOR DENSITY ESTIMATION--

NUMBER OF GRIDS

"
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TRAP INTERVAL 50.00
UNITS CONVERSION 43560.00
INITIAL DENSITY ESTIMATE 30.6995
INITIAL STRIP WIDTH ESTIMATE .52e8
GRID NAIVE DENSITY  PERIMETER/AREA P1/AREA STARTING COVARIANCE MATRIX
I YD ACD B(I)
1 32.67000 .3000000E-01 .1571E-03 150.
2 61.71000 . 1666667E-01 .5236E-04 507. . 152E+05
3 17.42400 .1166667E-01 .2618E-04 7.4 232. 4.1
4 12.19680 .S000000E-02 . 1571E-04 1.16 34.7 2.11

RESUWLTS OF ITERATIONS
FUNCTION EVALUATIONS REQUIRED
ESTIMATED SIGNIFICANT DIGITS OF PARAMETER VALUES 8

FITTED MODEL COMPARED TO THE DATA

GRID(D)
1

F Wh

MULTIPLE CORRELATION COFFICIENT IS

ESTIMATED DENSITY=

ESTIMATED STRIP WIDTH=

Yo
32.670
61.710
17.424
12.197

5.538
105.225

CORRELATION OF ESTIMATORS

Fcn

32.651
18.460
13.941
11.745

-.9824

1.9241
57.9903

.33718

= |ITS STANDARD ERROR
= |TS STANDARD ERROR

TEST OF ESTIMATED STRIP WIDTH GREATER THAN ZERO.

Z-VALUE =

1.8145 PROBABILITY OF LARGER VALUE =

FINAL COVARIANCE MATRIX

150.0

g918.6 . 1521E+05

18.80 3114 14.10
3.359 55.62 2.518

.0348

.B714

.871

Fic. 23f. Example of joint estimation of density and boundary strip width with deer mouse data from
V. Reid (pers. comm.).

where A, is the grid area, W derives from
either movement data or an independent
source, and a and b are constants which
can be computed. In fact, the program
prints these constants on the density es-

tance of 111.5) we get
A(W) = 4.59 x 1.5506 = 7.117,

and hence,

timation page. From Fig. 23f we have

(for the total grid), a = 0.009 and b = D

0.00001571.

As an illustration only, if we use W =

56

= =77 7.87.

55.75 (half the average maximum dis-

(For previously given reasons, however,
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OCCASION J= 1 2 3 4 )
ANIMALS CAUGHT N(J)= 37 5S4+ 58 65 68
TOTAL CAUGHT M(J) = 0 37 68 77 98 110
NEWLY CAUGHT Ut = 37 31 g 2al 12
FREQUENCIES Fth= 3+ 20 @28 15 13

1. TEST FOR HETEROGENEITY OF TRAPPING PROBABILITIES IN POPULATION.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(H)

CHI-SQUARE VALUE = 49.016 DEGREES OF FREEDOM = 3  PROBABILITY OF LARGER VALUE = 0.00000

2. TEST FOR BEHAVIORAL RESPONSE AFTER INITIAL CAPTURE.
NULL HYPOTHESIS OF MODEL M(0) VS. ALTERNATE HYPOTHESIS OF MODEL M(B)

CHI-SQUARE VALUE = 35.865 DEGREES OF FREEDOM = 1 PROBABILITY OF LARGER VALUE = 0.00000

3. TEST FOR TIME SPECIFIC VARIATION IN TRAPPING PROBABILITIES.
NULL HYPOTHESIS OF MODEL M(0O) VS. ALTERNATE HYPOTHESIS OF MODEL M(T)

CHI-SQUARE VALUE = 24.071 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE = .oooo8
4. GOODNESS OF FIT TEST OF MODEL M(H)
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(H)
CHI-SQUARE VALUE = 25.504 DEGREES OF FREEDOM = 4  PROBABILITY OF LARGER VALUE = .0o004

TEST OF MODEL M(H) BY FREQUENCY OF CAPTURE
(FREQUENCIES LESS THAN 2T ARE NOT CALCULATED.)

NUMBER OF CAPTURES CHI-SQUARE D.F. PROBABILITY

1 18.647 4 .00082
e 18.333 4 .00106
3 6.048 4 . 19562
Y 6.000 4 .19915

5. GOODNESS OF FIT TEST OF MODEL M(B)
NULL HYPOTHESIS OF MODEL M(B) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(B)

CHI-SQUARE VALUE = 13.510 DEGREES OF FREEDOM = 6 PROBABILITY OF LARGER VALUE = .03562
SA. CONTRIBUTION OF TEST OF HOMOGENEITY OF FIRST CAPTURE PROBABILITY ACROSS TIME
CHI-SQUARE VALUE = 9.220 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = . 02650
58. CONTRIBUTION OF TEST OF HOMOGENEITY OF RECAPTURE PROBABILITIES ACROSS TIME
CHI-SQUARE VALUE = 4.289 DEGREES OF FREEDOM = 3 PROBABILITY OF LARGER VALUE = .e3187
6. GOODNESS OF FIT TEST OF MODEL M(T)
NULL HYPOTHESIS OF MODEL M(T) VS. ALTERNATE HYPOTHESIS OF NOT MODEL M(T)
CHI-SQUARE VALUE = 84.121 DEGREES OF FREEDOM = 66  PROBABILITY OF LARGER VALUE = . 06562
7. TEST FOR BEHAVIORAL RESPONSE IN PRESENCE OF HETEROGENEITY.
NULL HYPOTHESIS OF MODEL M(H) VS. ALTERNATE HYPOTHESIS OF MODEL M(BH)
CHI-SQUARE VALUE = 47.135 DEGREES OF FREEDOM = 10 PROBABILITY OF LARGER VALUE = .00000

MODEL SELECTION CRITERIA. MODEL SELECTED HAS MAXIMUM VALUE.

MODEL M(0) M(H) M(B) M(BH) M(T) M(TH) M(TB) M(TBH)
CRITERIA .55 .42 .99 .88 0.00 .55 .88 1.00
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we suspect that W= 55.75 is an under-
estimate and suggest W = 105 is a better
value to use.) }

The sampling variance of D is comput-
able by the formula given in the density
estimation section. The only missing
term is Var(W) which is obtained from
the standard error of mean maximum dis-
tance (Fig. 23a)

L‘;@) — 206.64.

Then using the formula for Var(D) we get
Var(D) = 0.98, or SE(D) = 0.99.

Var(W) = (

An Example Where No Model Fits

In previous examples, the model selec-
tion procedure usually indicated a model
that fit the data, and for which there was
an estimator. However, with many real
data sets we have found that no model
fits the data. In those cases, the proce-
dures given in this monograph serve to
warn that no reliable estimator can be
computed from the data (unless it can be
judged the entire population has been
caught).

In this example (Figs. 24a—€), we use
livetrapping data collected by S. Hoff-
man (pers. comm.) in mid-July 1974 on
deer mice. The study site was in a sage-
brush-greasewood community at 4,500
feet (1,372 m) elevation in Curlew Val-
ley, Idaho. A 12 x 12 grid of Sherman
live traps, spaced 15 m apart, was used.
Trapping was on 5 consecutive mornings,
110 individuals were caught (i.e., M, =
110) and there were 283 captures in all.

Fig. 24a shows some summary sta-
tistics and the model selection procedure
results. The daily captures increased (37,
54, 58, 65, 69), and although the new cap-
tures tended to decrease, they varied
substantially (37, 31, 9, 21, 12). From
these summary statistics, we would judge
a substantial part of the catchable popu-

OCCASION J= 1 2 3 Y 5

TOTAL CAUGHT M(D= 0 37 68 77 98 110

NEWLY CAUGHT U= 37 3 9 ai 12

ESTIMATED PROBABILITY OF CAPTURE, P-HAT = .255222

ESTIMATED PROBABILITY OF RECAPTURE, C-HAT = .617857

POPULATION ESTIMATE IS 142 WITH STANDARD ERROR 16.4217
APPROXIMATE 95 PERCENT CONFIDENCE INTERVALS 109 TO 175

HISTOGRAM OF U(J)

FREQUENCY 37 3 9 a1 12

EACH * EQUALS 4 POINTS
3%
2
28
2
20
16
12
8
4

F1G. 24b. Example of population estimation with

constant probability removal estimator under Mod-

el My, with deer mouse data from S. Hoffman (pers.
comm.).

lation remains untrapped. Phrased differ-
ently, there is no evidence here to sug-
gest My, is a reliable estimate of N.

From Fig. 24a, it can be seen that tests
1, 2, and 3 reject Model M, overwhelm-
ingly. We thus conclude there is some
type of variability in capture probabili-
ties, and are suspicious that more than
one source is operating. Test 4 also re-
jects the null hypothesis that Model M,
fits. At this point we can be fairly certain
there is some form of time variability in
daily capture probabilities, but it may be
the often encountered result of behavior-
al variability.

The goodness of fit test to Model M,
indicates that this model is not a good fit
to the data (P = 0.03562). Test 6 also sug-
gests Model M, is not an adequate fit to
the data. Test 7 again confirms that some
form of behavioral response is present so
that Model M,, is inadequate. This leaves
us uncertain as to how time and behavior
variability are operating. Tests 5a and 5b

«—

FIG. 24a.

Example of model selection procedure based on deer mouse data from S. Hoffman (pers.

comm.). Appropriate model probably is My, or My, Suggested estimator is Zippin.
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MATRIX OF CAPTURES PER TRAP STATION.

COLUMNS 1 2 3 4+ 5 6 7 8 8
_______ ;___-____-___________--___-__-____-_____
ROW 1 I 4 I 5 5 5 3 2 0 3
ROW 2 : 5 5 0 & 1 0 4 3 0
ROW 3 : 4 2 0 3 1 0o 2 2 1
ROW 4 : 1 S 3 4 1 0 2 5 @
ROW 5 ; 0 1 4 3 0 1 3 0 0
ROW 6 ll 3 5 0 1 1 0 3 2 o0
ROW 7 : e 0 2 o0 o 0 1 3 0
ROW 8 i 4 1 v 2 0 0 1 0o 0
ROW 9 i 1 e 4 2 4 0 0 2 4
ROW 10 : 2 0 5 2 o0 o0 1 0 1
ROW 11 : 1 3 1 0o o0 0 0 3 4
ROW 12 : 4 4 3 0 2 o0 o 0 1

10 11 12
v 3
1 3 0
3 3
v 2 3
1 5 2
0 4 5
12 1
3 2 o0
[T
2 4 .4
2 2 @
Yy o4 o2

IN THE ABOVE MATRIX, TRAP COORDINATES ARE ROUNDED TO THE NEAREST WHOLE INTEGER.
IN THE FOLLOWING GOODNESS OF FIT TESTS, TRAP COORDINATES THAT ARE NOT INTEGERS
AND NON-RECTANGULAR TRAPPING GRIDS WILL CAUSE SPURIOUS RESULTS.

CHI-SQUARE TEST OF UNIFORM DENSITY BY RINGS (OUTER RING IS NUMBER 1).

RING 1 2 3
OBSERVED 107 76 53
EXPECTED 86.472 70.750 55.028
CHI-SQUARE 4.873 .390 .075

TOTAL CHI-SQUARE = 15.31 WITH

5 DEGREES OF FREEDOM. PROBABILITY OF LARGER VALUE =

4 5 6

32 11 4
39.306 23.583 7.861
1.358 6.714 1.896

.0091

FIG. 24¢. Chi-square tests of uniform density with deer mouse data from S. Hoffman (pers. comm.).

help to clarify matters somewhat. Test 5a
is the goodness of fit test to Zippin’s
(1956) constant probability removal mod-
el, i.e., the null hypothesis here is that
first capture probability is constant. Test
5b examines the null hypothesis that re-
capture probabilities are constant. This
latter test has P = 0.23187 suggesting that
recapture probabilities may well be con-
stant over time. By contrast with Test 5a
(P = 0.02650) we conclude that first cap-
ture probabilities probably vary. These 7
tests suggest that behavior is the strong-
est factor affecting capture probabilities
and that time is the next most significant
factor.

The model selection criteria are a sig-
nificant aid to interpreting data. In this
example, the criteria values for models
Mb’ Mbh, Mtb, and Mtbh are 099, 0.89,
0.88, and 1.00, respectively. Recall that
the most likely model is always given a
value of 1, and the other criteria values
are scaled accordingly, hence, we cannot
say Model M, actually fits the data. It is
significant that these 4 models all account
for behavioral response, thus corroborat-
ing our contention that there is a strong
behavioral variation in capture probabil-
ities. Because Model M, is the next most
likely model, one might select it as the
basis for estimation. But there can be no
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SUMMARY BY FREQUENCY OF CAPTURE OF MAXIMUM DISTANCE BETWEEN CAPTURE POINTS.

NUMBER SAMPLE  MEAN OF STANDARD

CAPTURES SI1ZE MAX DIST. ERROR
e 20 1.46 2719
3 28 2.43 .410
“ 15 2.26 .388
5 13 2.44 .338

TOTAL 76 2.14 .401

Fi1G. 24d. Summary by frequency of capture of
maximum distance between capture points.

strong reliance on Nb or any other esti-
mator here, because none of the models
fit the data. From Fig. 24b, the first cap-
ture probability (p) and the recapture
probability under Model M, are estimat-
ed to be

p = 0.26 and ¢ = 0.62.

These are known to be significantly dif-
ferent because test 2 rejected Model M,
From Model M, the estimate of Nis Ny, =
142, with an estimated standard error of
16.4. The approximate 95 percent confi-
dence interval is 109-175. Other alter-
natives are also basically unsatisfactory.
Model M, could be considered but it
does not fit the data for any of its specific
cases. This may be because first capture
probabilities vary over time. Model M,
does not fit, and there are strong indica-
tions that behavior is the dominant source
of variation. Based on these factors, we
cannot recommend a valid estimation
procedure for these data.

If density estimation is desired here,
further problems arise. From Fig. 24c,
there is no visual evidence of nonuniform
density over the 12 x 12 grid. However,
the ring test suggests significantly more
animals were caught in the outer traps,
which could be evidence of the grid “at-
tracting” animals. This phenomenon
does affect density estimation based on
nested subgrids; in fact, this procedure
failed for these data as the estimated W
value was not significantly different from
zero. The only recourse is to estimate W
from movement data, or to use a value of
W known to be representative for deer
mice.

Fig. 24d shows the summary of max-
imum distances moved for recaptured an-
imals. The overall average is 2.14 trap

95
OVERALL TEST RESULTS --
Z-VALUE -2. 142
PROBABILITY OF A SMALLER VALUE .01610

TEST OF CLOSURE BY FREQUENCY OF CAPTURE.
(FREQUENCIES LESS THAN 10 ARE NOT COMPUTED.)

NUMBER OF CAPTURES Z-VALUE PROBABILITY

e -1.118 .13178
3 -1.708 .04383
4 -1.054 . 14582

Fi1G. 24e. Example of test for population closure
procedure with deer mouse data from S. Hoffman
(pers. comm.).

units. Converting this to meters (2.14 X
15) and dividing by 2 we have 16 m
(52.7 feet) as a conservative estimate of
W. This is typical of such values seen for
deer mice on livetrapping grids with 15-m
trap spacing. Itis also known to be an un-
derestimate. Using W = 16 m would give
aless biased density estimate than W = 0,
but it would still probably result in an
overestimate of D. The matter is further
complicated if animals were in fact at-
tracted to the grid. This phenomenon
cannot be adequately dealt with, except
by assessment lines (or designing a study
so that no attraction occurs). Dropping
the outer ring of traps and reanalyzing
the data is another possibility, but then
we are treating this outer ring as an as-
sessment line.

Normally, we should have looked at
the closure test early on in the model as-
sessment procedure (see Fig. 24e); the
results are z = —2.142, P = 0.0161. Be-
cause there is strong behavioral variation,
we must discount this test; it cannot be
relied upon. Thus, the only evidence we
have of a closure failure is the ring test
of Fig. 24c.

We propose the following as a plausi-
ble explanation of these data. From Hoff-
man (pers. comm.) we know there was no
prebaiting of these traps, no time was al-
lowed for the animals to become used to
the traps. From the analysis we know
there was behavioral response, and prob-
ably time variation in first capture prob-
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abilities (but not in recapture probabili-
ties). The lack of prebaiting (often
recommended in the literature) may have
resulted in animals either increasing
their first capture probabilities over time
as the study progressed, or in an influx
occurring during (rather than before) the
study started. Prebaiting may solve the
first problem. It will not solve the second
problem of the grid attracting animals
and thereby creating artificially high den-
sities.

COMPREHENSIVE COMPUTER
ALGORITHM

The computations necessary to calcu-
late many of the estimates described in
the preceding pages are quite lengthy,
and in most cases, nearly impossible
without a computer. Therefore, to pro-
vide methods of population estimation
useful to the biologist, a comprehensive
FORTRAN computer program, CAP-
TURE, has been written. The input to
the program has been written in a free-
form and natural style to make it easy to
use.

The program is written in ANSI FOR-
TRAN 1V with several small exceptions
so that it will function on most brands of
digital computers. Statements known to
cause compilation errors on IBM, CDC,
Burroughs, Univac, Xerox, Honeywell, or
DEC equipment have been flagged with
comment statements, and the correct
statement for the specific brand of com-
puter included on a comment statement.
A magnetic tape with the FORTRAN
code and the 13 sets of example data il-
lustrated in this monograph are available
from

SHARE Program Library Agency
P. O. Box 12076
Research Triangle Park, N.C. 27709

at a cost of $40.00. Specifications for the
tape (e.g., 7 or 9 track, 800 or 1,600 bpi,
etc.) should be given when ordering the
source program (No. 360D-17.5.002).
The program consists of a main routine

WILDLIFE MONOGRAPHS

and 54 subroutines. In addition, there are
7 common blocks. Included in the source
code are ample comment statements to
follow program flow. The total code con-
sists of about 6,000 cards. Core require-
ments on an IBM 360 are about 200 K for
the code without an overlay structure,
but this can be reduced considerably
with an overlay structure.

The dimensions of the program are
presently set to allow up to 2,000 indi-
vidual animals and 31 trapping occasions.
The product of the number of captured
animals and the number of trapping occa-
sions must be less than 4,000. This will
allow, for example, 30 trapping occasions
and 80 animals, or 120 animals and 20
trapping occasions. These values can be
changed by changing DIMENSION
statements in the program.

SUMMARY

The results of this study provide meth-
ods for the estimation of animal popula-
tion size N and density D from capture
experiments. Both capture-recapture and
removal studies to estimate population
size are treated in detail. The primary fo-
cus of the work has been to relax the as-
sumption of equal probability of capture.
Three basic types of variation in proba-
bilities of capture were examined: (1)
capture probabilities vary with time,
Model M,, (2) capture probabilities vary
by behavioral response, Model M,, and
(3) capture probabilities vary by individ-
ual animal, Model M;. Models allowing
these assumptions and various combina-
tions of assumptions (i.e., Models My,
Min, Mpn, and Myy) are treated. Popula-
tion closure is assumed throughout.

An integrated approach was followed
and the result is a blend of practical
methods, examples of the analysis of real
data, statistical theory, and results of
computer simulation studies revealing
some small sample properties of the
methods. The estimation and testing
problem has been treated in a standard
and usually rigorous statistical frame-
work. Above all, the necessity of assump-
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tions, their importance, and statistical
tests of their reasonableness have been
emphasized. Assumptions must be care-
fully evaluated, both biologically and sta-
tistically, before a particular estimator
can be used justifiably.

A sequence of 8 models that incorpo-
rate various assumptions has been devel-
oped. Point and interval estimators have
been derived for most of the models. Fur-
thermore, a comprehensive and objective
(but not optimal) model selection strate-
gy is provided. This is crucial because
use of an incorrect model and improper
assumptions is apt to produce biased es-
timates and incorrect inferences. In ad-
dition, proper interpretation of the test
statistics and their interrelationships is
shown to be somewhat difficult.

Although the practical analysis of data
from capture experiments has been ex-
tended, additional research needs are ap-
parent. Statistical testing within and be-
tween models will require more work.
Models allowing other sets of assump-
tions need to be developed. Alternative
estimation schemes (e.g., the generalized
jackknife as opposed to the standard max-
imum likelihood approach) need atten-
tion, particularly for some of the more
complex models. Additional work with
incomplete contingency tables may prove
fruitful (see Fienberg 1972). Interval es-
timates in general, and particularly inter-
val estimates for the removal models, re-
quire additional research. Better tests for
the important closure assumption are
needed. Additional controlled studies are
needed where population size is known,
such as that reported by Edwards and
Eberhardt (1967). Behavioral studies
aimed at specific animal-trap interac-
tions promise to provide interesting in-
sights.

Research results indicate that accept-
able estimates can be obtained if ade-
quate data are collected properly. How-
ever, it is clear that biologists have not
correctly conceptualized capture experi-
ments over the past 4 decades. These
limitations must be corrected if progress
is expected in biological experiments in-
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volving capture of animals. Biologists
have all too often gone into the field with
only a few traps hoping to obtain mean-
ingful data. Rarely will this be possible,
even if only an estimate of population
size is the goal. If density estimation is
a goal, then further data requirements
must be met.

As a reference point, it probably is ap-
propriate to think in terms of 12 x 12,
16 x 16, or 20 x 20 square or rectangular
grids and a trapping period of 8-9 days.
Further guidelines on effort and sample
size are given in the text. Our primary
contention is that most capture experi-
ments conducted in the past were quite
inadequate in terms of design, effort, and
sample size, which virtually prohibits
justifiable inferences to be drawn from
such studies.

Our computer simulation experiments
have examined the small sample prop-
erties of the various point and interval
estimators and the tests of model assump-
tions. The results have been informative
and provide some basis for cautious op-
timism. Capture-recapture and removal
methods have been overrated in the past
and this probably has contributed to the
lack of emphasis on design, sample size,
and analytical methods. Estimation prob-
lems related to D and N represent diffi-
cult subjects. Our results provide hope
that a rigorous analysis may often allow
useful inferences to be drawn if future
experiments are well designed and pro-
vide adequate capture and recapture or
removal data for analysis.
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APPENDIX A

Notes on Estimation

Justification for the Use of Maximum Likelihood Estimation

Our philosophy throughout this work has been to present a variety of
explicit mathematical models for capture data based upon fully specified
assumptions. Given these models that incorporate various types of variability
in capture probabilities (time, behavior, and heterogeneity), we are con-
cerned with optimal estimation of population size, N, under each model.
To achieve that optimality, we turn to the field of mathematical statistics.

A number of very general approaches to optimal statistical inference have
been developed during the past 50 years. We feel that not all of them are
suitable for use by biologists for the problem at hand (e.g., decision theoretic,
or Bayesian approaches would require inputs from the biologist that we doubt
they would be willing, or able, to supply). We have chosen to use the method
of maximum likelihood (ML) estimation and inference; it is one of the best
developed, omnibus tools of mathematical statistics.

The properties of ML estimation are well known (see Mood et al. 1974).
For many practical models, ML estimators are optimal in many desirable
ways. Because of its general applicability and good properties, ML estimation
has been the basis for most modern methods of estimating parameters from
animal marking experiments of all kinds (Seber 1973).

The only requirement for application of ML estimation is that one have
a well-defined parametric model with fewer parameters than the dimension
of the vector of minimal sufficient statistics. Thus, we have been able to use
ML estimation for Models M,, M;, M,, M,;, and the removal models, but
not for Model M;. Only for Model M, do we hesitate to claim there cannot
be significant improvements in the estimator.

It is not necessary to understand the mechanics of how a ML estimate is
computed; it suffices to understand this is not an ad hoc technique, but
rather a well-developed inference method.

For any of the models dealt with here, there is a sampling probability
distribution for the basic data (the {Xj;}) that can be represented as a
mathematical function of appropriate parameters; symbolically it is

P{Xij ’ Nap}a

for N = My, ,, and with p representing a set of capture probability parameters
(e.g., p = (p,c) under Model M;). Given an actual sample, we can substitute
these data for the X;; variables and treat this formula as strictly a function
of the parameters N and p. This function (of N,p) is called the likelihood
function. The ML estimators N and p are those values of N and p which
maximize the function

L(N,p) = P{X13|N,P}

or, equivalently, which maximize the log of L(N,p). In this way, the problem
of deriving parameter estimators is reduced to the classic problem of
maximizing a given function over a set of possible values of specified
variables.
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The theory of ML estimation goes much deeper than just deriving point
estimators of parameters. It also gives methods for deriving approximate
sampling variances for the estimator and provides justification for the usual
procedure for confidence interval construction. Also, there is a strong tie be-
tween ML theory and the theory of minimal sufficient statistics.

A sufficient statistic is a condensation of the sample into a smaller number
of statistics that still contain all the information there is about N and p. For
example, My, and n. are the minimal sufficient statistics for N and p under
Model M, (representing quite a condensation of the entire sample of X
values). The ML estimator is always a function of the sufficient statistic,
even if one has not explicitly determined the sufficient statistic. Partly be-
cause ML estimators are functions of the sufficient statistic, they have, for
large samples, the smallest possible sampling variances in the class of con-
sistent estimators. Stated differently, ML estimators are (asymptotically) the
most efficient estimators possible under a sampling theory approach to
inference. For all the above reasons, we have used likelihood theory as the
main basis of estimation in this monograph.

Numerical Methods

Except for the special case of only 2 rapping occasions (t = 2), the ML
estimators described in the preceding chapters do not have explicit mathe-
matical expressions. Hence, numerical methods must be used to maximize
the likelihood functions and thereby find the population estimates on a case by
case basis. Conceptually, this turns out to be easy for models to which we
can apply ML estimation. From above, the likelihood function is repre-
sentable simply as L(N,p). In all applicable cases (exclude Model M; and
models where estimation is not possible), we find there is a closed form
expression for the value of the capture probabilities which maximize the
function L(N,p) for any fixed N = M,.,. Represent this as p(N). Thus we can
write

~

max max L(N,p) = max L(p(N) |N)
P N
= max A(N),

N

where A(N) is a function (analytically expressible) only of N. The maximiza-
tion of A(N) over N must be done numerically, but this is a simple one-
dimensional search.

An algorithm by Brent (1973) (also see Fletcher 1972) that does not require
analytic derivatives is used by program CAPTURE to maximize A(N). The
algorithm searches between 2 end points. Those end points are first taken
as the number of animals captured, M,,,, for the lower bound and a linear
approximation to N plus M,,, for the upper bound. If the upper bound is
determined to be the maximum for the range specified, a new set of values
lying next to the old values is selected and the search over N continues in
this fashion until a true maximum is found. The algorithm searches along the
real line although only integer values are appropriate. Because the search
is one dimensional, the algorithm is very efficient.

The algorithm does not require the analytic first derivatives of A(N). This
means it is not necessary to evaluate the derivative of the log-gamma function
with respect to N(N! and (N — M_,,)! appear in all the likelihood functions).
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Integer N and Confidence Bounds

The domain of N includes only integer values. Therefore, the integer
that produces a maximum in the likelihood function is taken as the estimate.
The numerical search is conducted along the real number line; then the
value returned is truncated to an integer, and a check is made to see that
it is the estimate, and not N + 1. A somewhat arbitrary rounding to the
nearest whole integer is required for the jackknife estimator to maintain
consistency with the other estimators.

For all estimators, the variance is computed on the basis of the value of
N before it is rounded to an integer. We believe this procedure produces a
slightly better estimator of Var(N), and at the same time avoids numerical
problems that would occur when N equals My, (this situation does occur).

Confidence intervals of 95 percent are computed as N + 1.96 SE(N). Con-
fidence intervals (but not standard errors) are computed around the integer
value of N. The lower bound is then truncated to an integer and the upper
bound rounded upward to an integer. Those interval end points are thus
technically outside the true 95 percent confidence interval. When the lower
bound is less than the number of animals captured, the value could be reset
to M4, a realistic procedure because we know that N is not less than M,,,.
The coverage of the interval is not changed by this procedure of using M,,, for
the lower bound when the calculated lower bound is less than M,,,.

Admittedly, a confidence interval procedure that can yield a lower bound
less than the number of distinct animals captured (M,,,) is not desirable.
We investigated alternatives that avoid this problem, but we judged them
even less appropriate than the simple approach described above (see Ap-
pendix O).

Estimation of Sampling Variance

Maximum likelihood theory includes a general method for obtaining the
large sample (i.e., asymptotic) formula for the true sampling variance of N.
We have denoted this 51mply as Var(N), thus suppressing the fact that it
is an approximation to the “true” sampling variance of N. The approximation
is generally good for large samples; unfortunately, in the capture-recapture
context we have no good measure of when a sample is sufﬁ01ently large. A
further complication enters because the formula for Var(N) is almost always
a function of the unknown parameters N and p; symbolically it is generally
of the form

Var(N) = Ng(p),

with the form of the function g known. But because N and p are not known
we must estimate Var(N) by

Var(N) = Ng(p).

The properties of Var(N) can be different (sometimes quite so) from those
of Var(N), which itself is only an approximation to the appropriate finite
sampling variance of N. One particular problem that has been noted in the
literature concerns the fact that N and SE(N) = \/Var(N) = \/Ng(p) can be
substantially correlated. This is not surprising, because, of course, N and va

are highly correlated. The effect of this correlation is to cause an under-
estimate of SE(N) when N is lower than the true N (which it will be much
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of the time). This, in turn, causes the confidence intervals in such cases to
be shorter than they should be. An area suitable for further research on
capture-recapture statistics (both closed and open models) is the question
of improved estimation of sampling variances and confidence intervals.

APPENDIX B

Estimation in Model M,
In Model M,, parameterized by the parameters N and p, the relevant part
of the log-likelihood function is given by

N i) @In0) (N = n)in(1 - p),

where pe[0,1] and NeV = {M;,, Mo, + 1, My, +2,...}. Given the value
of N, the ML estimator p(N) of p is given as the solution to

InL(N,p

X) = ln(

9 InL(p|N.X) = 0,
op

which reduces to
n. _ tN — n.
p(N)  1-p(N)~

This results in the solution

Now, the ML estimator N, of N satisfies

InL(K,p(R) | X) = X [max lnL(plN,X)]

NeN | pe[0,1]
R e NX) |
_max [ N!
“New_“«ﬁﬁffiizﬁ)'+(“ﬂn“”

+&N—mhﬂN—m%ﬁMMW4

For a given data set, a search over ¥ is performed to locate the ML esti-
mate N,. This value is then used in the calculation of the ML estimate
B(Ny) =P via

~ n.
p=—F—.

N,
The asymptotic variance of N, is (cf. Darroch 1959)
Var(N,) = N[(1 — p)™t — (1 — p)~! + t — 1],
An estimate of this variance is
Var(Ny) = N,[(1 — p)t — (1 — p)~' + t — 1]°1,
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APPENDIX C

Estimation in Model M,

Model M, is parameterized by the t+ 1 parameters N, p,, ps, ..., Pi. The
relevant log-likelihood function for estimation of the parameters is given by

lnL(N,p!X) = 1 (Z—N,‘—N‘I\"/[“t‘—‘)—') 2 nlln(pj)

+ 2 (N = nyIn(1 - py),
=

Where NGN = {Mt+l, Mt+1 + 1’ Mt+1 + 27 . '}7 pP= {pl’ P2, .. ',pt}’ ij[O,l]fOr
j=1,2, ..., t. Given the value of N, the ML estimators p,(N) of p; are given
as the solutions to the system of equations

P _ C_
T)-Ej-lnL(pIN,X) =0, i=12...t

The j* one of these equations reduces to
ng _ N-n
BN) ~ 1— (N’
which results in the solution

5 =
p,(N) N°

Now, the ML estimator N, of N satisfies

A . _ max [max InL(p;, ps, . - .,pt|N,X)]
lnL(Nbpl(Nt), . ':pt(Nt)[X) Ne,/V‘ ije[O’l] 1 2
= Ny | InLB(N)p(N), ... 5(N) ]N,X)]
max | N!
= In (—————————)+ In(
NeN L \(N — My)! 2 myln(my)

+ Z(N — ny)In(N — ny)

- tNln(N)].

A search over & is performed in order to locate the ML estimator N, It 1s
then possible to calculate the ML estimates py(N,) = p, of the p; forj = 1,2,.

via
b=
TR
The asymptotic variance of N, is given by Darroch (1958) as:
1 t -1
Var(N,) = N —+t=1->(1-p)*
1@ -py =
§=1
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An estimate of this variance is

R R n t -1
Var(N,) = N,[T__l__ ft-1-Sa-p)|

[1a -5

j=1

APPENDIX D

Estimation in Model M,

Model My, is parameterized by the parameters N,p, and c. The part of the
log-likelihood necessary for estimation of the parameters is given by

N!
(N - Mt+1)!
+m.In(c) + (M. — m.)In(1 — ¢),

where NeN = {M;, My + 1, M + 2,.. .}, pe(0,1], ce[0,1]. The ML estima-
tor ¢ of ¢ is produced by the equation

InL(N,p,c

X) = 1n( ) + MyIn(p) + (EN = M. — M, )In(1 - p)

9 InL(N,p,c
oc

X) =0,

which reduces to

m. M. — m.

¢ 1-2¢

Solving this equation gives ¢ = m./M.. Thus, we see that estimation of c is
independent of the estimation of N and p. Now, the relevant part of the log-
likelihood function for purposes of estimating N and p is

InL(N,p|X) = ln<

|
s r) * Misin) + (& = M. = Mc)ln(1 - p)
Miq):

Given the value of N, the ML estimator p(N) of p is provided by the equation
Y -
i InL(p|N,X) = 0,

which reduces to

My, _tN - M. - M,

p(N) 1 - p(N)
The solution to this equation gives
. M
N) = t+1 .
PN = N M

Now, the ML estimator N, of N satisfies

oA _ max [max lnL(plN,X)
lnL(Nb>p(Nb)lx) - Ne./\f[pe[O,l] :I

= B LV N X)|
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_ max N!
= Nw[‘“<m) * MinIn(Mir)

+ (tN - M. - Mt+1)ln(tN - M. - Mt+1)
— (tN — M.)In(eN — M.)].
A search over /¥ is preformed to locate the ML estimate N,. It is then possible

to calculate the ML estimate p(N;) = p of p via

Miy,
tN, — M.
The asymptotic variance of Ny, is given by Zippin (1956) as:

)= _ NI -p)[l1-(1-p)]
Var(N,) = [1-(1-pf2-tp*(1 - pt?

An estimate of this variance is given by

p=

o Kyl = p)'1 — (1 =
Var(Ny) = = Eg — ﬁl;t)]z[_ t21(52(1 _Iz)tf]))t—l

APPENDIX E

Estimation in Model M,

The mathematical details of Model M, are covered in detail in Burnham
(unpublished dissertation) and Burnham and Overton (pers. comm.). The
following gives a few of the basic results for this model and the jackknife
estimator.

Under Model M, we assume

pi}=pl i=1""5N’

and we further assume that the p,,...,py are a random sample from some
(unknown) probability distribution F(p), pe[0,1]. For any F(p), the MSS con-
tains only the capture frequencies fi,...f, and their distribution is
multinomial:

= N N'-M.,, : fl
P{fl: . "ftlF} (N _ Mt+1g fl, .. .’ft)(ﬂﬂ) jl;]l: (771) ’

where

1 X .
e fo (: )p’“ - p)tidF(p), j=0,...t

If one assumes a parameteric form for F(p), then standard approaches are
possible (e. g-» ML). Burnham (unpublished dissertation) investigated the case
where F(p) is the class of beta distributions and found that approach basically
unacceptable.

The “jackknife” estimator used here was developed by application of the
generalized jackknife statistic (Gray and Schucany 1972) to the naive esti-
mator My,,, assuming the bias of My,; as an estimator of N is expressible
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TABLE E.1.—THE JACKKNIFE ESTIMATORS Ny« OF POPULATION SIZE, FORK = 1 TO 5

109

Nhl=Mt+1+(t_tl)fl

Nps =

Nh5_ I\

f;

2t -3\,  (t—2)?
)f‘ tt— 1)

6\, (32— 15t+ 19 (t—3)°
)f‘ ( tt— 1) )fz * tt — D(t—2) s

~ 46— 10\, _ (6t — 36t + 55 46— 420 + 148t — 175\, (t — 4)%
Meer + ( t )f‘ ( 1) )fz * ( (=1t - 2) )f“ HE— 1)t = 2)(t = 3)

_ 5t - 15 108 — 70t + 125) <10t3 — 1208 + 485t — 660) .
Mo+ ( ¢ )f‘ ( w-n Ht— )t = 2) s

_( (t—4)P-(t-5)° )f+ (t-5)°
tt— Dt —2)(t—3) /% tt- 1)(t-2)(t—3)(t— 4)

f,

in a power series in 1/t. The end result of that application is that for the kt
order jackknife the estimator is a linear function of the capture frequencies.
For example, we have

¢ t—1 t—1 L
Ny, = My, + (_T)f1 - (1 + _t) L
These point estimators of N have been determined for up to the fifth order,

and are given in Table E.1.
Because

t
My, = 2 f;,
=1

any Ny, is expressible as a linear combination of the capture frequencies,
say as

t
= E agds.

Using the fact that the f; are multinomial random variables an approximate
variance estimator of Nhk is

-

ar(Ny) = 2 (aw)™; — N,

and confidence intervals can be constructed on the basis of the asymptotic
normality of N,,,.

A procedure for selecting one of the estimators has been suggested by
Burnham and Overton (pers. comm.). It involves testing whether Ny ., is

significantly different from N, and stopping when no significant difference
is found.
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APPENDIX F

Discussion of Model My,

The most general model one might assume in the instance where both
behavioral response to capture and variability among trapping occasions are
found involves the following set of parameters:

N = population size
p; = probability of capture on trapping occasion j of an animal not pre-
viously captured, j = 1,2,...t,
c*\; = probability of capture on trapping occasion j of an animal first captured
onoccasionk,j=k+ 1,k+2,...; k=1,...t— 1.

The corresponding probability distribution of {X,} is given by

PI{X.}] = ] (1;‘ o [[To1 = ]

t— t

[ IT c*u™(1 - C*kj)"“un“’],
k=1 j=k+1

where

u; = number of animals first caught on occasion j,j = 1,2,.. .t
M; = number of marked (previously captured) animals in the population at
the time of the j™ sample, j = 2,3, .. .,t,

M., = total number of different animals captured in the experiment
t

(notice Myyy = Y uy),
=
Ry; = number of animals caught on occasion j that were first captured on
occasionk,j=k+ 1L k+2, .., t; k=1, .., t—1.
A MSS for this distribution is {u;, u,, ..., u, Ry, Ryg, - -, Ry, Ras, -, Ry o1,
Rii1.1), that has dimension t(t+ 1)/2. There are t(t+1)/2+1 parameters
involved and straightforward ML estimation of N is not possible.

If we restrict the model so that c*; = cj, i.e., the probability of recapture
on occasion j does not depend on the occasion of first capture, then Model
M,, (as previously defined) results. It is easily verified that, when c*y; = ¢;,
P[{X,}] given above reduces to the probability distribution given in the sec-
tion concerning Model My, where a discussion of the nonidentifiability of N
is presented. Thus, for purposes of estimating N, the assumption that c*y; =
¢; has no utility.

ML estimation of N is theoretically possible if one is willing to further
restrict the model so that there is some relationship between c*; and p;. There
is no unique restriction, and as an example we considerc*; = p;,j =2, 3, ..., t,
where 0<p;<1,j=1,2,...,tand 0<; 6p;<1,j=2, 3, ..., t. With this as-
sumption, the probability distribution of {X,} becomes

NI . .
PN = e i [P0 = ppe

' [fl (6py)™(1 — 0pj)M,—m,]

=2
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N!
HXJ(N Mo

) p."(1 — p)NU(6™)

t
T (1 = py)¥ ™ (1 = 6py)™~™ p;™.
=2

A sufficient statistic for this distribution is {u,u,, .. .,uym,msy, ... .m}, that has
dimension 2t — 1. Since there are t+ 2 parameters involved, the model
allows all parameters, in particular N, to be identified if t = 3. Estimation
under this model is not considered here, however, due to the questionable
assumption that recapture probabilities bear a constant relationship to initial
capture probabilities over all trapping occasions, for all animals. Thus, at
present we are not able to present an estimator of N that is appropriate
under the assumptions of Model My,.

APPENDIX G

Discussion of Model My,

In the section concerned with Model M, the random variable X;; was stated
to be distributed according to a Bernoulli distribution with parameter p;;,
that represents the probability that the i" animal is captured on the jt oc-
casion. Here, we assume that the elements of the set {Xy} constitute a
mutually independent collection of random variables, and that p;; = p;p;,
i=12,. , j=12,...t. Furthermore, we let the p;, i=12,... N be a
random sample of size N from some probability distribution function F(p;0)
deﬁned on [0, 1], and we restrict the p;,j = 1,2, ..., tso that 0 < p;p; <1 forall
i,j. Under those conditions, the probablllty dlstribution of the observed
sample {X;}, where i=1,2, ..., M;,,j=1,2, ..., t can be written as

P{X;}] = P{Xy} [ M1 ]P[M],

where

t M., 1 t
P Mol = (T o) (1T [, 07|11 - o] dFw0)),
=1 i=1 i=1
yi = the number of times the i™ animal is captured,
P[M,,,] = the probability distribution of the number of different animals
captured in the experiment. This distribution will involve the
parameters N, p;,Ds, . . .,p, and the distribution F(p;6).

Obviously, if the form of F(p;0) is left unspecified, ML estimation of N will
not be possible. If the form of F(p;0) is specified, but the vector of parameters
0 is not, likelihood estimation will be possible if the dimension of the minimal
sufficient statistic is sufficiently large to ensure identifiability of N. As
mentioned in the section on Model My, estimation of N will be possible
if F(p;0) is completely specified. In that case, a MSS of dimension t + 1
is {ny,n,,...,n,M,}, and the number of parameters to be estimated is also
t+ 1, i.e., py,P2 - . -.D,N. Therefore, unless the experimenter is willing to
make the doubtful assumption that at least the form of F(p;0) is known, we
can present no satisfactory estimation procedure appropriate under the
assumptions of Model My,.
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APPENDIX H

Estimation in Model M,,

Pollock (unpublished dissertation) considered Model M, and found the
distribution of the set of possible capture histories {X,,} under the assumption
that (p;,c;), which represents the pair of initial and recapture probabilities,
respectively, of the i animal, is the i"" member of a random sample of size
N from some bivariate distribution function G(p,c;0). Let us consider
rewriting the distribution P[{X,}|G(p,c;0)] as P[{uj,uy,...,u}|G(p,c;0)]
PI{X,} l{u,,uz, ..,uy, G(p,c;0)]. The distribution of the removals P[{u,,
U, . . .,u} | G(p,c;0)] will be multinomial, with parameter N and cell prob-
abilities that are functions of the moments of G(p,c;0). The conditional dis-
tribution P[{X,}/{u,, u,, ..., u}, G(p, c; 0)] will also depend on the moments
of G(p,c;0) but not on the parameter N. Therefore, the multinomial dis-
tribution

Pl{usus, . 0| Glp.cs0)] = o (1T e,
([Tt v = Mt 5

where 7 is a function of the moments of G(p,c;0) and

t
Ty = 1 = 2 5,
j=1

is the relevant distribution for purposes of estimating N. Pollock (unpub-
lished dissertation) showed that if G(p,c;0) = G(p;0.) - Gs(c;0,), then 7; = E[p
(1 — p)'™'] and the conditional distribution P[{X,}|{u,uy, . . .,us}, G(p,c;0)] de-
pends only upon G(c;80,). Regardless of whether p and c are independent, once
we agree to base estimation of N solely on the first capture “removal” type
of data, then the problem can be reformulated. The behavioral response is
then irrelevant and all we need to consider is the probability distribution
of first captures. That is, we assume that p,, . . .,py are a random sample from
some distribution G,(p;0).

Consider transforming the parameters m,,ms, . . .,m into the set of parameters
Pi> Ps» ..., D¢ by using the relationship 7; = (1 — p;)(1 = Dy)...(1 — Di—1)Dss
j=1,2, ..., t. Thus, p;is a conditional probability that represents the average
first capture probability of those members of the population that have not
yet been captured at the time of the j® trapping occasion. Given this inter-
pretation, it is not unreasonable to assume that p, > p, > -+ > p,. Further-
more, we assume that (p; — ps) > (P — D3) > -+ > (P=y — Dv), so that larger
differences in average first capture probability occur initially. (Note: if G,(p;0)
is the class of beta distributions both assumptions are easily shown to be true.)
The assumptions and the distribution P[{uu,, .. .u [C(p,c;O)], which we
abbreviate Pluy,u,, . ..,ud, form the basis of the generalized removal method
outlined below.

Fork=12,...t—2,

(i) Assume Px = Py+y = *-- =Py = p and that p,,p,,...,px1 differ. This
reduces the number of parameters involved in the estimation of N
tok + 1.

(ii) Estimate N by the ML method. This task is greatly simplified by
rewriting
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t
Pluj,us, .. .,ud as ] P[uj|u1,u2, ..., u_;], where P[uj’ Uy, . ..U ]

is the conditional distribution of the j® removal, given the values of
the previous removals.

Then

(iii) Choose the smallest value of k that produces a sufficient fit to the data,
and take as the estimate of N the estimate associated with this value
of k. The fit of the data u,, u,, ...., u, can be measured by the usual
size a chi-square goodness of fit test. We have used a = 0.20 because
of the seriousness of Type II errors. If significance levels of all the
tests (one for each value of k) are less than 0.20 we have chosen the
value of k corresponding to the largest achieved significance level.

For a given value of k, the asymptotic sampling variance of Ny, is

Eﬂj = 229 o
I*Zn'] Sl —p; (l—ﬁ)[ﬂ(l—ﬁj)+2ﬂ'j—l]

An estimate Var(Ny,) of Var(Ny,) is obtained by replacing N,p,p1,Ps, - - -.Px-1,
T, T, . . ., by their respective ML estimates.

Finally, we mention that, for a given value of k, it is possible that the
experiment “fails,” i.e., valid estimation of N is not possible. Recall that
Seber and Whale (1970) provided a failure criterion for the estimator
associated with Model M,. (This model corresponds to the case k = 1.)
Following their method of proof, it is easily shown that the failure criterion
for any value of k is

jt+k 2)u, < 0.

If the experiment fails for a value of k, the corresponding model is clearly
excluded from those eligible for selection as the appropriate model for
estimating N.

APPENDIX I

Discussion of Model Mg,

In Model My, it is assumed that the i** animal in the population has, on
the jt trapping occasion, both a unique probability of first capture p;; and
a unique probability of recapture c;. The model therefore requires tN
parameters concerning first capture, (t — 1)N parameters concerning re-
capture (because ¢;;=Cy;=...=cy;=0), and the parameter N for its com-
plete specification. This totals (2t —1)N + 1 parameters and obviously all
parameters are not identifiable for estimation purposes.

The assumption can be made that the 2t — 1 dimensional vectors (p,j,
P12 - - »P16C12,C13, - - C1t), (P21,Da2, « - -, P2,C22,C23, + - 5Cat), - - o, (DNLPN, - - PNGCN2,

.,cn) are a random sample of size N from some probability distribution
function F(p1,ps, . . -.P6C2,Cs, - . .,C1;0) parameterized by the vector 6 and de-
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fined on [0,1]?*"1. The probability distribution function of {X,} can then be
written as

pmmwnmﬁtmmgwm]

where 7, = a scalar random variable that is a function of the 2t — 1 dimen-
sional random variable (p,ps,...,p1,C2Cs,....cy) corresponding
to the capture history w, and

1 1
E[m,] = L e L 7, dF(py, . . .,D,C2, - - -,C50).

For instance, if t=4 and o = {1,1,0,1}, then 7, = p,cy(1 — c3)c,. If one is
willing to make certain assumptions concerning the family of distributions
to which F(-;8) belongs, the dependence structure among the variables
{P1P2 - - -,P1,C2,Cs, . . .,¢t} and the vector of parameters 0, then ML estimation
of N will theoretically be possible. However, it is not unreasonable to
suspect that the amount of numerical computation and the number of assump-
tions required will prohibit such estimates from being useful in practice.

Xa
>

APPENDIX ]
Estimation in Removal Models

For the removal experiment, it is assumed there may be heterogeneity
among the capture probabilities of the N members of the population subject
to removal. Moreover, the N capture (removal) probabilities p;i = 1,2, .. N,
are a random sample from some probability distribution function G(p;0)
defined on [0,1] and parameterized by the vector 8. Under those assump-
tions, the distribution of the vector of removals {uju,,...,uy} is given by

! t
P[ul, u2) LS} Ut] = - t N. (H Wju') 7Tt+1N—M1+1,
(1Tt [N = Mt

j=1

where
m=Emu—pwu=fpa—mﬂdem, i= 12,
mer = EL(1 - B} = [ (1 - p) dG(p30)

=1- i E[p(1 - py~'l.
=1

Notice that this distribution of {u;,us, . ..,u;} is of the form, and the param-
eters of the same nature as the distribution of {uju,,...,uy in Model My;.
Therefore, the generalized removal method developed for Model M, is also
applicable to removal experiments where estimation of N is desired. Al-
though the experimental situations associated with those 2 models are quite
different, the fact that the removals are the only statistics relevant for pur-
poses of estimating N, and the nature of the parameters m; combine to make
the generalized removal method appropriate in both cases.
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APPENDIX K

Tests of Model Assumptions

The details of the statistical tests described in the section entitled TESTS
OF MODEL ASSUMPTIONS are given here. Tests have been numerically iden-

tified and correspond to the identification numbers used in program CAP-
TURE.

Test 1
Since Model M, is a special case of Model M,;, a likelihood ratio test of
Hy: pi=p,i=1,... N versus Hy: all p; are not equal, seems plausible.

However, due to the nonidentifiability of parameters in Model M, a valid
likelihood ratio procedure is not possible.

An alternative approach is taken by examining the fit of the observed
frequencies f,,.. . f; (recall these are the elements of the MSS for M,;) to
their expected values under Model M,. The resulting test statistic is intended
to be sensitive to departures from Model M, in the direction of Model M,.
If Hy is true, we would expect the test statistic T, to be approximately
dils;tributed as a chi-square random variable with t — 2 degrees of freedom,
where

and N, and p are the ML estimates of N and p under Model M,.

Test 2

Testing the null hypothesis of Model M, versus the alternative of Model
M, is equivalent to testing the null hypothesis Hy: p = ¢ versus the alterna-
tive Ha: p #c. If it is assumed that the bivariate random variable {p ¢}
is distributed as a bivariate normal with mean vector {p ¢} and covariance
matrix

[Var(f)) 0 ],
0 Var(e)

then, under H,, the quantity T, = (p — &)¥[Var(p) + Var(e)] is distributed
as a chi-square random variable with 1 degree of freedom (cf. Theorem
4.4.5 in Graybill 1976). Here, p and ¢ are the ML estimates of p and ¢ under
Model M, (cf. Appendix D), and we use Var(p) = p2q2(1 — q')/N[q(1 — q')? —
p’t?q], where q = 1 — p (cf. Seber 1973:312). Furthermore, we approximate
Var(¢) by treating ¢ as a binomial variable with M. fixed so that Var(¢) =
¢(1 — ¢)/M.. Obviously, both Var(p) and Var(¢) will have to be estimated by
substituting the ML estimates of N, p, and ¢ under Model M,, so that the
actual test statistic becomes

oo
Var(p) + Var(¢)

It follows that T, has an approximate chi-square distribution with 1 degree
of freedom under H,.
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If H, is false, T, has an approximate noncentral chi-square distribution
with 1 degree of freedom and noncentrality parameter A = (p — ¢)¥/2[Var(p) +
Var(¢)] (cf. Theorem 4.4.5 in Graybill 1976). Thus, theoretical approximations
to the power of the above test can be found for fixed values of N, p, and c.
These approximations, obtained by the use of the noncentral chi-square
tables of Haynam et al. (1970), are given for the alternatives involved in
Table 8, Appendix N. Finally, it should be mentioned that, due to the con-
ditional nature of Var(¢), it was necessary to substitute

EM.]=NpS $q¢

k=1 ¢=0

for M. to enable evaluation of the noncentrality parameter X.

Test 3
Testing the null hypothesis of Model M, versus the alternative of Model M,
is equivalent to testing Ho: p;=p, j = 1,2,...,t, against Hs: Not all the p;

are equal. We assume that the t-varlate random variable (py,ps,....py) is
distributed as a t-variate normal distribution with mean vector (p,,p,,...,pt)
and covariance matrix

Var(p,) (1]
0 ’ Var(p,)
p; = nyN, = ML estimator of p; under Model M,, and

} , where

Var(p) = payN, a@=1-p;, j=12,...t
Now, using Theorem 4.4.5 in Graybill (1976), the random variable

t t 2 t
= 3 pivar(p) — (3 pyvarp)) /3 Var(p)
i=1 =1 =1

has a chi-square distribution with t — 1 degrees of freedom under Hy,. As in
test 2, the quantities Var(p;) will have to be estimated using the ML estimates
D; and N.. Upon making these substitutions the test statistic T;' reduces to

an/qj ( nj/qu,) / 2 ny/p;*q;

Under H,, T, has an approximate chi-square distribution with t — 1 degrees
of freedom.

An approximation to the power of this test given any alternative is provided
by the knowledge that, under H,, T, has an approximate noncentral chi-
square distribution with t — 1 degrees of freedom and noncentrality param-
eter

r= 02| 3 pj ~ (3 V) /35 )|

Utilizing the tables of Haynam et al. (1970), these approximations were
calculated for the alternatives involved in Table 9 of Appendix N, and the
results are contained therein.



STATISTICAL INFERENCE FROM CAPTURE DATA—Otis et al.

Test 4

An overall goodness of fit test of Model M,, can be thought of as equivalent
to testing Hy: py = p; versus Ha: notall py=p;,i=12,.. My, j=1,...t
Thus, the null hypothesis assumes heterogeneous individual capture prob-
abilities that do not change over time, and the alternative states that, given
heterogeneity, capture probabilities also change over time. Notice that H,
does not state how probabilities change over time, i.e., whether the change
is due to behavioral response, variation in trapping occasions, or a com-
bination of both. Thus, if H, is rejected, it is not rejected in favor of an
alternative Model; rather it is the goodness of fit of Model M, that is being
rejected.

Burnham (unpublished dissertation) has shown that under H, the test
statistic

—_ t2
n./t) -1

@e-9)

t
has an approximate chi-square distribution with t — 1 degrees of freedom
and is appropriate for testing H, vs. H,. The test is conditional on the fre-
quency of capture statistics f,f,, .. .,fi, Burnham also recommended that if
fy is large enough, a statistic appropriate for testing Hy: p;; = p; versus H,:
not all p;; = p,, for all i such that y; = k, is given by

3o
T4=;
b

where z; = number of animals caught on day j that were captured exactly
k times, and
y; = number of times the i animal was captured.

Under Hy, T,, has an approximate chi-square distribution with t — 1 degrees
of freedom, conditional on the value of f;. Notice that a test statistic of the
form of T4, can be constructed for any k = 1,2,...,t — 1 as long as f is large
enough We have used the criterion that f; must be larger than t before the
test is performed.

Test 5

An overall goodness of fit test of Model M, can be constructed by com-
bining the results of 2 independent tests. The first of these tests was intro-
duced by Zippin (1956) for testing Hy: p; = p versus H,: Not all p; = p,
ji=12,...t In the context of Model M,, p; represents the probability of
first capture on the j™ trapping occasion, and thus Zippin’s test attempts
to determine the constancy of first capture probability over time. The test
statistic, which has an approximate chi-square distribution with t — 2 degrees
of freedom when Hy is true, is given as

T,, = o (u - Nbf)qj_l)z + (N My, — qut)z
=1 Ny,pg? qu
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where N, and p are the ML estimates of N and p under Model M,, and
q = 1 - p. (Note; we have used the following “pooling” strategy for this chi-
square test. If NypG" <2 and NypG*'=2 for s =1,2,...,r — 1, then the
“cells” corresponding to r,r + 1,.. ..t are pooled into 1 cell. This will reduce
the degrees of freedom associated with Ts, to r — 2.)

A test (independent of the above procedure) for the constancy of recapture
probability over time can be constructed using the so-called variance test
for homogeneity of binomial proportions (cf. Snedecor and Cochran 1967:
240). That is, a test statistic appropriate for testing Hy: ¢; = ¢ versus Hy:
notall ¢;=c,j=2,3,...¢t is given by

t
Ty, = 2 M;(&; — &)%/e(1 - ),
i=2

where

éi = mj/Mj’
¢ = ML estimate of ¢ under M, = m./M..

The statistic T, has an approximate chi-square distribution with t — 2 degrees
of freedom when H, is true.

Because T, and T;, are independent and have chi-square distributions
when Model M, is true, an overall test statistic for the goodness of fit of
Model M, is given by Ts = Ts, + Ts,. This test statistic has an approximate
chi-square distribution with 2t — 4 degrees of freedom under Model M,.

Test 6

Testing the goodness of fit of Model M, can be interpreted as being
equivalent to testing Ho: pi; = p; versus Hy: not all p;=p;, i = 1,2,.... M,
and j= 1,2,...t. Thus, the null hypothesis assumes variation in capture
probabilities among trapping occasions while asserting that on a given oc-
casion all animals have the same probability of capture. The alternative
H, allows capture probabilities to differ among members of the population
on a given occasion, as well as allowing trapping occasions to affect capture
probabilities. Notice that H, does not specify why capture probabilities differ
among animals on a given occasion. That is, this difference may be due to
behavioral response, individual heterogeneity, or a combination of both.
Thus, when Hj, is rejected, it is not in favor of a specific alternative model;
rather it is the goodness of fit of M, that is being rejected. We have chosen
to adopt the test procedure proposed by Leslie (1958) for the purpose of
testing H, versus H,. The proper test statistic is given by

3 M-kl £ (k — 1 — f4.)2
TG:E[E fi (kt 1 ”’J)]Ij,
=1 k=1 ’lj — z sz[/u_i2

=j+1

where

£ = number of animals captured exactly k times that were first captured
on the jt occasion,
u; = number of animals first captured on the j* occasion,
R;; = number of animals recaptured on the ¢ occasion that were first
caught on the j™ occasion,
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-t

& 2 £9 (k — 1)/u;, and

I' - {]. lfllj 2
! 0 otherwise‘

Notice that we have followed Leslie’s recommendations that a “cohort” of
newly identified animals first captured on the j™ occasion not be included
in the overall test unless it consists of more than 20 individuals, i.e., u; must
be greater than 20. Furthermore, a new cohort is not included unless it is
subject to at least 3 subsequent trapping occasions, i.e., j=1,2,...t— 3.
Under the null hypothesis of “equicatchability,” T, has an approximate chi-
square distribution with
t—3

> (= DI,
i=1
degrees of freedom.

It should be mentioned that Carothers (1971) proposed an improved version
of Leslie’s test. However, practical use of the procedure requires some
arbitrary trimming of the data and therefore is difficult to use for simulation
purposes.

Test 7

Pollock (unpublished dissertation) developed a procedure designed to test
Hy: Model M, fits the data versus H,: Model M,, should be used. The test
statistic depends on the 2 vectors of statistics

* = {fi£,® . . £ .. i Pf @AY where £ is the number of ani-
mals captured exactly k times that were first captured on the j* oc-
casion,

f={f 1, ... 5}, where {; is the number of animals captured exactly j
times.

This is a chi-square goodness of fit test formed by pooling t — 1 indepen-
dent chi-square tests. The k™ of these tests is conditional on the value of f;
and has t — k degrees of freedom. The overall test statistic is given by

ST L (C 0 Y (9] )
TEE L0

Under Hy, T, has an approximate chi-square distribution with

t—1

Y (t= k) = t{t — 1)/2

k=1
degrees of freedom. (Note: for each of the t — 1 distributions we have used
the same pooling strategy described for the test involving Ts,. In this case,
the quantity checked for sufficiently large expectation is

[(t - l::j 4 1)/(19]fk
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Therefore, it may be that in a given case degrees of freedom will not be
t(t — 1)/2, but rather this quantity less the appropriate number of degrees of
freedom lost by pooling.)

A Test for Closure

An approach to a closure test suggested by Burnham and Overton (pers.
comm.) can be conceptualized by first considering the null hypothesis Hy:
Py=DPi»j=1,2, ...t for only those animals captured 2 or more times. Es-
sentially, H, merely asserts that individual capture probabilites are invariant
over time. Now consider, however, an alternative hypothesis H, that states
that for at least some i, i.e., for some animals that were captured at least
twice,piy =pPie= ' =ppr=0andlorps=--- =py=0,wherel sr<s<st
H, states that some members of the population were not present in the pop-
ulation for some initial or terminal part of the study, or both. If that alterna-
tive is true, one might expect that the time between first and last capture for
animals is, on the average, shorter than one could expect under H,. That
conjecture is the rationale for the test procedure given below. Note that
the test is designed to detect birth-death or immigration-emigration
phenomena, or both, that occur only during the initial and latter stages of
the study, not phenomena occurring toward the middle of the study. For
example, the test would not be appropriate when some animals are present
during the initial stages of the study, leave the study area for a time, and
then return prior to the termination of the study.

Given that the i animal was captured exactly y; times, and that y; = 2,
let Q; =W, — V,;, where W, is the occasion of last capture and V; is the
occasion of first capture. Thus, Q; is merely the time between first and last
capture for the i animal. Conditional upon the value of y;, the expectation
and variance of Q; are:

EQiy; =k = (k- )t + /(k + 1),
Var(Qy]y; = k) = 2(t — k)(k — 1)(t + L/(k + 2)(k + 1)2,

Under H,, the statistic
1 M,
E(Q'k) = T Z Qili
k i=1

has the conditional expectation given above

where I = 1 if the i*" animal was captured exactly k times
1™ 10 otherwise.

If £, is large, the test statistic,

_EQk) = (k= 1)(t+ ik + 1) B B
Ci= [2(t - k)(k - D+ 1)]’”2 o k=20t

(k + 2)(k + 1),

can be assumed to be approximately distributed as a standard normal. (We
have required that f, = 10.) An overall test statistic appropriate for testing
H, versus H, is given as
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t—1

> EQ[K) = (k = 1)(t + 1/(k + 1)]

C=% [t—l - Wk =Dt + 1)]1/2
2 kT o)k + VA,

The test statistic C is also approximately distributed as a standard normal
if Hy is true and the number of animals captured at least twice is large
(greater than 10). Tests of Hy versus H, calculated by using either C, or C
should be one-sided tests since the alternative specifies that the E(Q|k)
should be smaller than E(Q,|y; = k). Thus, closure is rejected only if the
test statistic is small. Finally, we emphasize that the test involving C, is
conditional on the value of f, and the test using C is conditional on the
values of fof5, .. . fi_..

APPENDIX L

Density Estimation Based on Subgrids

The density estimation procedure using nested subgrids is based on
Dice’s (1938) boundary strip idea. The fundamental aspect of this approach
was proposed by MacLulich (1951). Let the trapping grid have area A, and
a perimeter length of P. Then for any convex grid (that includes all rectangular
grids) the effective trapping area A(W) is

A(W) = A; + PW/c + W,

where ¢ is a conversion factor to express PW and W? in the units of A.
From that equation, we derive the expected population size at risk of capture
as

E(N) = DA(W),

where D is the true density of animals. Dividing through by the known
area A, we derive

EN) _ pr1 4+ aw + bw2,
Ag
where
. -7
Agle) Agle)

Note that the unknown parameters are D and W and that E(N) is estimable
from the trapping study.

Given at least 2 grids of different sizes, we can estimate the parameters
D and W. Assume there are k different grids (these may be subgrids of 1
overall study). The relevant equations can be written as

%=D[l+aiw+biW2]+ei, i=1 ...,k
By assumption, E(e) = 0. Let the variance covariance matrix of € be ¥.
We are assuming the same density (D) and strip width (W) apply to all grids.
This seems especially reasonable when the grids are nested (see section on
DENSITY ESTIMATION).
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Given estimates N;, the above equations put estimation of D and W in the
framework of generalized nonlinear regression. All we need to carry out the
estimation is a knowledge of the variance-covariance matrix i Letting Y; =

NyA,, we have
Var(Y;) = Var(N,)/A.z2,
which is estimable. Also we know that
Cov(Y;,Y;) = l'ijSE(Yi)SE(Yj),

where 1 is the correlation of N; and N;. This correlation is not known. Burn-
ham and Cushwa (pers. comm.) suggested the following way of approxi-
mating rj;.

The correlation of N; and N; will depend in large part on the overlap of
the 2 populations of size N; and N; that in turn depends on the overlap of the
areas Ay(W) and Ay(W). Thus let

A(W) N A(W)
Ai(W) U A(W)

that is, r;; is the area of the intersection of A;(W) and A(W) divided by the
area of their union.

Using this formula, we can arrive at an estimator of 3 that seems reasonable;
hence, from the live trapping data we can compute Y;,...,Yx and 3.

We are now in a position to obtain weighted nonlinear least squares
estimators of D and W as D, W satisfying

EI,II{}V (Y - f)'i“ Y-9), where

fi = D[l + aiW + biwz], i= 1, . .,k.

An approximate variance-covariance matrix for the estimators D and W is
given by the 2 x 2 matrix V'$-1V where V is the Jacobian matrix

of of
V= =1
|5 ow]

The elements of the columns of the matrix V are, respectively,
of;

Iy = corr(N 1,N,-) =

= 5 i 2
3 1+ a,W + bW,
of; .
F_i‘ = D[a; + b;2W], i=1,...t

Because § depends upon W (but not D), an iterative procedure is needed
wherein an initial value of W, is chosen, ¥ is computed based on it, and the
new D,, W, obtained. Iteration is continued until stable estimates of D and
W are obtained.
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APPENDIX M

General Simulation Methods

The various estimators and tests described in this monograph were simu-
lated to study their small sample properties and operating characteristics.
The asymptotic properties of the tests and estimators are known in most
cases, but not the finite sample properties. Monte Carlo simulations provide
a method by which our estimation procedures may be evaluated under the
exact model from which they were derived. Because we would not expect
real data to fit any model exactly, by simulating data, we can study the prop-
erties of the procedures without interference due to the data not fitting the
model.

Pseudo-random uniform (0,1) variables were generated using the Burroughs
6700 FORTRAN intrinsic function RANDOM. The mixed congruential
method is used by this function (Anonymous 1971).

Beta variables for the simulation of heterogeneous probabilities of first
capture were generated using subroutine GGBTA from the IMSL (1976)
package, with the required uniform variables furnished by RANDOM. That
routine uses a rejection method (Fishman 1973).

In the most general simulations, the trapping process is simulated for each
animal in the population for each trapping occasion. The probability of
capture for a particular animal on a particular day is compared against a
uniform (0,1) variable. If the value of the random variable is less than the
probability of capture, then the animal is assumed captured, and that ele-
ment of the X matrix is set to unity. Otherwise, the value in the X matrix
is set to zero, indicating no capture. When the X matrix is completely filled,
the necessary MSS are computed and the tests and estimation completed.

APPENDIX N

Simulation Results

Simulation Results Regarding Estimation Procedures

In developing this material, we used 6 different models to generate simu-
lated data: all capture-recapture models except My, and My,,. For each of the
data sets, various estimation procedures considered here were applied to gain
insight into the operating characteristics of such procedures. The results
of this simulation study are presented here in tabular form.

For each model there are 2 corresponding tables. Obviously, for any given
model one may choose any number of sets of parameter values needed to
completely specify the model. Thus, the first table for each model lists all
the different sets of parameter values (each of which is called a Trial) used
in the simulation study. For example, Trial 1 in Table N.l.a indicates that
there were 400 animals in the population and that every animal had a 0.30
probability of capture on each trapping occasion. That information is all that
is required to specify an example of Model M,

The second table for each model presents the simulation results for each
estimation procedure used on data generated from the Trials of that model.
Column headings in the tables are:
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Estimator—identifies the estimation procedure used; e.g., “N,” indicates
that the estimation procedure described in Appendix C for Model M, was
applied to the data.

R—the number of replications (data sets).

t—the number of trapping occasions.

Ave(N)—the average value of N taken over all replications, i.e.,

N R
Ave(N) = L E Ni.
R &
o(N)—the “sample” standard error of N taken over all replications, i.e.,
A R . N
o(N) = \/E (Nx — Ave(N))?(R — 1).
k=1
Ave,/Var(N)—the average value of \/Var(N) taken over all replications, i.e.,
= R .
AveyVar(N) = —11)\— > VVar(Ny).
k=1

Coverage—the proportion of replications in which the constructed 95%
confidence interval contained the true population size N.

Trial—identifies which population (set of parameter values) generated the
data.

Two points concerning o(N) and Ave,Var(N) should be mentioned. First
the value of o(N) estimates the true standard error of the estimator N in
any given Trial and Model so that a measure of the relative bias of the
estimator /Var(N) is given by }Ave\/%r(N) — a(N) I/(T(N ). Second, the average
confidence interval width in a given Trial and Model is given by 2-(1.96)
Ave\/%_rzﬁ).

As an example, consider the first line of Table N.1.b. We see that 200
data sets, each consisting of 5 trapping occasions were generated according
to Model M,, Trial 1 and that the estimation procedure associated with
Model M, was applied to each set. For those 200 data sets, N, was essentially
unbiased (Ave(N,) — N = —0.7), as was the estimator of the standard error
of N, (Ave\Var(N,) — a(N,) = 0.05). Moreover, 95 percent of the constructed
confidence intervals covered the true value of N. This achieved confidence
coefficient of 0.95 corresponds exactly with the stated level of the interval,
namely 0.95. Such excellent performance of the confidence interval pro-
cedure is due in large part to the fact that N, and \Var(N,) appear to be
essentially unbiased. Finally, note that the average width of the 200 con-
structed confidence intervals is given by 2(1.96)(11.96) = 46.88.

Simulation Results Regarding the Size and Power of Testing Procedures

Because the testing of assumptions plays a vital role in the analysis of
capture-recapture data, it is important to have some insight into the operating
characteristics of such tests. Simulation studies of the tests T, through T,
defined in Appendix K were carried out on data simulated from all 8 models
to provide such insight, and the results are presented in Tables N.7 through
N.13. In addition, Tables N.8 and N.9 give results of an approximation
to the power of tests T, and T; based on theoretical results in Appendix K.
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The column headings of the tables are:

a—indicates the nominal size of the test.

Data Model—indicates the Trial and Model that were used to generate the
data.

R—indicates number of replications (data sets).

t—indicates number of trapping occasions.

The reader will note that in some instances the number of replications R
appears to be strange. The explanation is that a few of the estimators and
tests simulated are subject to “failure,” i.e., a particular data set may have
characteristics that do not allow calculation of the desired statistics. In those
cases, the data sets are excluded from the reported simulation results.

Finally, in Table N.14 we give a description of the Trials of Models My, and
M;pn. Those Trials were involved in the simulation of some of the tests of
model assumptions.

TABLE N.l.a.—DESCRIPTION ON THE TRIALS OF

MODEL M,

N P Trial
400 0.30 1
400 0.10 2
400 0.05 3
200 0.25 4
100 0.20 5
100 0.15 6

TABLE N.1.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD-
ING TO MODEL M,

Estimator N Ave(N) a(N) Ave V Var(N) Coverage R t Trial
N, 400 399.30 1191 11.96 0.950 200 5 1
N, 400 456.93 219.31 160.25 0.922 500 5 3
N, 400 405.97 52.84 55.54 0.930 200 5 2
N, 100 101.70 19.43 - - 200 5 6
N, 400 397.34 46.56 - - 200 5 2
N, 400 453.82 203.75 - - 372 5 3
N, 400 405.73 52.54 - - 200 5 2
N, 200 199.60 6.58 - - 100 7 4
Ny 100 113.46 17.25 13.74 0.830 200 5 6
Nn 400 386.89 27.65 27.93 0.920 200 5 2
Ni 400 389.12 29.56 28.02 0.898 400 5 2

Np 200 226.38 10.77 10.07 0.260 100 7 4
Nb 400 319.25 204.51 - - 372 5 3
N 400 485.90 387.42 - - 198 5 2
Np 200 198.59 11.66 10.47 0.880 100 7 4
Ny 400 407.71 61.81 57.45 0.940 400 5 2
N 400 439.96 161.42 148.13 0.940 500 5 3

' 200 199.37 6.51 6.85 0.950 100 7 4
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TABLE N.2.a—DESCRIPTION OF THE TRIALS OF MODEL M,

N (P1,P2, - - DY Trial
400 (0.55, 0.55, 0.50, 0.45, 0.45) 1
400 (0.05, 0.10, 0.15, 0.15, 0.05) 2
400 (0.10, 0.10, 0.10, 0.10, 0.01) 3
400 (0.01, 0.01, 0.02, 0.03, 0.03) 4
400 (0.04, 0.05, 0.03, 0.07, 0.06) 5
400 (0.60, 0.40, 0.20, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10) 6
400 (0.50, 0.20, 0.10, 0.10, 0.10, 0.10, 0:10) 7
400 (0.60, 0.40, 0.20, 0.10, 0.10) 8
400 (0.20, 0.40, 0.30, 0.10, 0.20, 0.30, 0.20) 9
200 (0.30, 0.40, 0.10, 0.40, 0.30) 10
800 (0.02, 0.01, 0.03, 0.03, 0.01) 11
100 (0.05, 0.05, 0.10, 0.15, 0.15) 12

TABLE N.2.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD-
ING TO MODEL M,

Estimator N Ave(N) a(N) Ave\/m Coverage R t Trial
ISI. 400 399.30 202.39 348.63 0.839 155 5 4
N¢ 400 408.57 73.91 74.19 0.949 198 5 3
N. 100 108.44 37.18 35.77 0.942 989 5 12
N, 800 1,015.62 630.46 748.23 0.902 194 5 11
N, 400 400.33 54.50 56.00 0.955 200 5 2
N¢ 400 399.28 3.55 3.86 0.960 200 5 1
N; 400 442.66 187.00 151.93 0.930 200 5 5
N, 400 397.14 206.97 341.61 0.880 292 5 4
N; 400 398.59 15.64 16.45 0.940 100 7 7
N 400 398.81 8.03 7.57 0.950 100 10 6
N 200 198.70 8.98 7.98 0.880 100 5 10
N 400 399.41 10.16 9.96 0.930 100 7 9
N; 400 399.45 12.80 11.94 0.940 100 5 8
Nn 400 349.17 27.27 26.54 0.515 200 5 3
Nn 400 100.83 27.37 12.93 0.000 200 5 4
Ni 100 98.70 14.43 13.77 0.924 1,000 5 12
N 800 219.60 27.94 20.79 0.000 200 5 11
Nn 400 244 .46 24.04 22.17 0.000 200 5 5
Nh 400 98.56 30.27 12.43 0.000 400 5 4
Nn 400 506.72 27.76 22.00 0.000 100 5 8
Nn 400 516.22 31.59 26.91 0.000 100 7 7
Nn 200 456.68 50.28 15.91 0.000 100 10 6
Ny 400 235.94 15.78 12.54 0.170 100 5 10
Nh 200 459.60 18.32 15.30 0.010 100 7 9
Npn? 400 199.70 21.08 18.08 0.810 100 5 10
Npn? 400 410.30 54.16 70.10 0.860 100 7 9
Npn! 400 387.07 21.14 27.63 0.540 100 10 6
Nopn! 400 364.06 55.82 65.24 0.510 100 7 7
Nopn! 400 342.56 9.48 5.72 0.040 100 5 7

! Note, we use Ny, and Ny as equivalent notation.
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TABLE N.3.a.—DESCRIPTION OF THE TRIALS OF

MODEL M,

N P ¢ Trial
400 0.30 0.10 1
400 0.20 0.50 11
400 0.20 0.05 2
400 0.10 0.30 3
400 0.10 0.15 4
200 0.30 0.50 5
200 0.25 0.25 6
200 0.20 0.10 7
100 0.20 0.05 8
100 0.20 0.50 9
100 0.10 0.30 10
100 0.40 0.20 12
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TABLE N.3.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD-

ING TO MODEL M,

Estimator N Ave(N) o(N) Ave'VVar(N) Coverage R t Trial
ISIb 100 82.00 36.73 64.76 0.708 161 5 10
Np 200 208.09 38.53 40.27 0.930 100 5 7
Ny 200 198.36 13.32 13.13 0.900 100 5 5
Np 400 401.23 25.43 19.91 0.920 100 5 1
Np 100 109.83 48.05 - - 199 5 8
Np 400 400.22 22.38 - - 200 5 1
Ny 400 511.04 408.42 - - 193 5 3
Ny 400 403.56 58.70 - - 200 5 2
Ny 200 197.88 13.32 - - 200 5 5
Np 400 461.48 269.25 - - 196 5 4
Ny 200 206.99 37.11 - - 200 5 7
Ny 200 198.59 11.66 10.47 0.880 100 7 6
Ni 100 82.39 6.75 5.09 0.140 100 5 9
Nn 100 176.49 14.40 18.82 0.000 100 5 8
Np 400 347.67 29.55 26.16 0.495 200 5 4
N; 100 71.75 4.80 2.43 0.000 100 5 9
N; 100 299.25 193.37 115.92 0.630 100 5 8
N, 100 51.38 7.06 - - 161 5 10
N, 100 293.88 109.76 - - 199 5 8
N, 400 720.39 57.05 - - 200 5 1
N, 400 212.48 13.56 - - 193 5 3
N, 400 1,070.94 176.01 - - 200 5 2
N, 200 175.18 5.80 - - 200 5 5
N, 400 305.73 33.32 - - 196 5 4
N, 200 311.67 48.50 - - 200 5 7
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TABLE N.4.a.—DESCRIPTION OF THE TRIALS OF MODEL M,

N pni=12.. N ol
400 pi = 0.05, i = 1,200; p; = 0.15, i = 201,300; p; = 0.50, i = 301,400. 1
400 pi = 0.01, i = 1,100; p; = 0.05, i = 101,200; p; = 0.10, i = 201,300; 2
pi = 0.20, i = 301,400.

400 pi = 0.10, i = 1,100; p; = 0.20, i = 101,200; p; = 0.25, i = 201,300; 3
pi = 0.30, i = 301,400.

400 pi = 0.01, i = 1,50; p; = 0.15, i = 51,200; p; = 0.25, i = 201,300; 4
pi = 0.30, i = 301,400.

400 pi= 0.20, i = 1,100; p; = 0.30, i = 101,200; p; = 0.40, i = 201,300; 5
pi = 0.50, i = 301,400.

200 pi = 0.05, i = 1,50; p; = 0.15, i = 51,150; p; = 0.25, i = 151,200. 6

200 pi = 0.15, i = 1,50; p; = 0.20, i = 51,100; p; = 0.25, i = 101,150; 7
p: = 0.30, i = 151,200.

100 pi = 0.05, i = 1,40; p; = 0.10, i = 41,80; p, = 0.30, i = 81,100. 8

100 pi ~ B(3,22), i = 1,100.! 9

100 pi ~ B(1,22/3), i = 1,100.} 10

100 pi ~ B(3/22,1), i = 1,100.} 1

100 p;=0.10,i = 140; p; = 0.20, i = 41,80; p; = 0.30, i = 81,100. 12

400 pi = 0.05,i = 1,50; p; = 0.10, i = 51,200; p; = 0.15, i = 201,300; 13
p: = 0.25, i = 301,400.

200 p;=0.05,i=1,50; p; = 0.10, i = 51,150; p; = 0.25, i = 151,200. 14

' Indicates that the probabilities p; were a random sample of size 100 from a beta probability distribution with the indicated parameter
values. E[p] = 0.12 in those cases.

TABLE N.4.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD-
ING TO MODEL My

Estimator N Ave(N) o(N) Ave VVar(N) Coverage R t Trial
ISTh 100 35.41 9.36 4.38 0.000 200 5 11
Nn 100 79.46 15.15 10.91 0.545 200 5 10
Nn 100 84.66 14.32 11.56 0.675 200 5 8
Nn 400 331.06 23.99 22.69 0.180 200 5 1
Nn 400 298.06 24.52 24.22 0.000 200 5 2
Np 100 100.17 21.15 10.54 0.675 200 10 8
Ni 400 460.10 32.31 26.77 0.395 200 5 3
Nn 200 226.78 19.82 11.94 0.440 100 7 7
Nn 400 443.95 19.71 15.20 0.170 100 5 5
Nn 400 461.22 32.64 26.92 0.410 100 5 3
Nn 400 417.08 30.91 24.92 0.850 100 5 4
Nn 100 107.57 16.80 12.01 0.810 100 5 12
Nn 200 207.34 16.14 11.59 0.870 100 10 6
N, 100 26.83 4.79 - - 200 5 11
N, 100 62.68 12.39 - - 200 5 10
N, 100 68.90 12.43 - - 200 5 8
N, 400 227.83 10.97 - - 200 5 1
N, 400 260.29 30.93 - - 200 5 2
N, 100 73.72 7.28 - - 200 10 8
N, 400 365.12 17.15 - - 200 5 3
N; 200 193.61 9.70 7.69 0.770 100 7 7
N, 400 376.18 10.00 7.67 0.240 100 5 5
N; 400 364.31 16.44 17.01 0.460 100 5 3
N; 400 333.17 17.92 16.19 0.060 100 5 4
N, 100 87.87 12.07 10.19 0.690 100 5 12
N 200 173.64 8.68 6.83 0.120 100 10 6
N, 400 228.02 10.73 7.40 0.000 100 5 1
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TABLE N.5.a—DESCRIPTION OF THE TRIALS OF MODEL M;;. THE PROBABILITY THAT THE i ANIMAL

IS CAUGHT ON THE j™ TRAPPING OCCASION IS EQUAL TO pip;,j=1, .., tANDi=1, .., N
N pri=12,..., N pri=12,..., t Trial

400 p;=0.15,1i = 1,100; p; = 0.33, i = 101,200; p, = 0.30, p; = 0.60, p; = 0.10, p, = 0.30, 1
pi = 0.67, i = 201,300; p; = 1.00, ps = 0.60.
i = 301,400.

400 p; = 0.40, i = 1,100; p; = 0.60, i = 101,200; p, = p. = 0.25, p3 = 0.50, ps = 0.15, 2
pi = 0.80, i = 201,300; p; = 1.00, ps = 0.25.
i = 301,400.

400 p; = 0.30, i = 1,150; p; = 0.40, i = 151,250; p, = 0.15, p, = 0.25, p; = 0.05, p, = 0.10, 3
pi = 1.00, p; = 251,400. ps = 0.30.

400 p; =0.03,1i = 1,100; p; = 0.35, i = 101,200; p, = ps = ps = 0.35, p, = 0.40, p5; = 0.60. 4
pi = 0.55, i = 201,300; p; = 1.00,
i = 301,400.

200 p;=0.40, 1= 1,50; p; = 0.60, i = 51,100; p: = 0.50, p; = ps = 0.30, p, = 0.60, 5
pi = 0.80, i = 101,150; p; = 1.00, © ps = 0.20, pg = 0.40, p; = 0.30.
i=151,200.

200 p;=0.25,1i= 1,50; p; = 0.50, i = 51,150, p: = 0.15, p, = 0.25, p; = 0.05, p, = 0.10, 6
pi = 1.00, i = 151,200. ps = 0.30.

400 p;=0.45,i= 1,100; p; = 0.55, i = 101,200; p, = 0.65, p, = 0.75, ps = 0.55, p, = 0.35, 7
pi = 0.65, i = 201,300; p; = 0.75, ps = 0.60, pg = 0.50, p; = 0.80.
i = 301,400.

100 p; =0.35,i = 1,25; p; = 0.45, i = 26,50, p: = 0.65, p; = 0.75, p; = 0.55, py = 0.35, 8
pi = 0.55; i = 51,75; p; = 0.65, ps = 0.60.
i =76,100.

TABLE N.5.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES APPLIED TO DATA GENERATED
ACCORDING TO MODEL My,

Estimator N Ave(N) o(N) Ave\/V_a—r_—(N) Coverage R t Trial
ISI, 400 303.60 14.13 11.74 0.000 100 5 1
N¢ 400 369.90 21.69 19.69 0.600 100 5 2
N¢ 400 309.04 37.46 35.66 0.340 100 5 3
N 400 272.77 12.53 10.32 0.000 100 5 4
N; 200 187.93 5.68 5.29 0.360 100 7 5
N; 200 164.17 34.05 29.11 0.590 100 5 6
Nn 400 402.88 31.42 23.46 0.850 100 5 1
Nn 400 478.73 33.55 29.20 0.220 100 5 2
Nn 400 353.90 25.02 26.62 0.590 100 5 3
Ni 400 352.78 29.38 20.68 0.430 100 5 4
N 200 217.72 8.42 9.46 0.560 100 7 5
Ni 200 178.21 21.29 18.67 0.760 100 5 6
Npn 400 Failed in all 100 replications 100 5 1
Non 400 272.56 11.65 6.27 0.000 100 5 2
Non 400 Failed in all 100 replications 100 5 3
Non 400 489.06 275.72 319.02 0.840 100 5 4
Non 200 179.41 9.27 9.16 0.340 100 7 5
Nbh 200 235.91 156.90 337.63 0.793 92 5 6
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TABLE N.6.a.—DESCRIPTION OF THE TRIALS OF MODEL My,

N pre;i=1,2, .., N Trial
400 pi = 0.05, i = 1,200; p; = 0.15, i = 201,300; p; = 0.50, i = 301,400. 1!
400 pi = 0.01, i = 1,50; p, = 0.15, i = 51,200; p; = 0.25, i = 201,300; p; = 0.30, 21
i = 301,400.

400 pi = 0.10, i = 1,100; p; = 0.20, i = 101,200; p; = 0.25, i = 201,300; p; = 0.30, 3!
i = 301,400.

400 pi = 0.20, i = 1,100; p; = 0.30, i = 101,200; p; = 0.40, i = 201,300; p; = 0.50, 41
i = 301,400.

200 pi = 0.05, i = 1,50; p; = 0.15, i = 51,150; p; = 0.25, i = 151,200. 5!

200 pi = 0.15,i = 1,50; p; = 0.20, i = 51,100; p; = 0.25, i = 101,150; p; = 0.30, 6!
i =151,200.

100 p;i = 0.10, i = 1,40; p; = 0.20, i = 41,80; p; = 0.30, i = 81,100. 7!

400 pi = 0.10, i = 1,50; p; = 0.25, i = 51,200; p; = 0.35, i = 201,300; p; = 0.45, 82
i = 301,400; c; = max[(p; — ran(i)/4),0].

400 p;i = 0.05,1i = 1,50; p; = 0.10, i = 51,200; p; = 0.15, i = 201,300; p; = 0.25, 9?
i = 301,400; ¢; = min[(p; + ran(i)/4),1].

400 pi = 0.05, i = 1,50; p; = 0.10, i = 51,200; p; = 0.15, i = 201,300; p; = 0.25, 102
i = 301,400; ¢; = max[(p; — ran(i)/4),0].

100 pi ~ B(1,22/3), i = 1,100% ¢; = min[(p; + ran(i)/2,1)] 112

100 pi ~ B(1,22/3), i = 1,100%; ¢; = max[(p; — ran(i)/2),0] 122
100 pi ~ B(1,22/3), i = 1,100%; ¢; = min{max[p; + (ran(i) — 0.5)/2,0],1} 132
400 pi = 0.15,i = 1,100, p; = 0.25, i = 101,300; p; = 0.35, i = 301,400. ¢; = 0.5 p; 14
100 pi = 0.15,i = 1,33; p; = 0.25, i = 34,66; p; = 0.35, i = 67,100. ¢; = 0.5 p; 15

!Indicates the trial was used for estimation purposes only. Because the performance of the estimator associated with Model My,
depends only upon N and the probabilities of first capture p,, recapture probabilities; ¢, need not be specified.

2 The function ran(i) produces a random value of a variable distributed uniformly over the interval [0,1].

3p, ~ B(1,22/3) indicates that the random variable p, has a beta distribution with parameters 1 and 22/3.

TABLE N.6.b.—SIMULATION RESULTS OF ESTIMATION PROCEDURES USED ON DATA GENERATED ACCORD-
ING TO MODEL My,

Estimator N Ave(N) a(N) Ave V Var(N) Coverage R t Trial
Iflbh‘ 400 246.59 38.04 32.26 0.120 100 5 1
Non! 400 340.83 57.57 47.90 0.360 100 5 2
Non! 400 366.43 41.87 35.63 0.600 100 5 3
Npp! 400 383.00 21.30 15.89 0.560 100 5 4
Non' 200 175.51 16.26 13.52 0.380 100 10 5
Nopn! 200 193.72 13.90 13.72 0.780 100 7 6
Npn' 100 94.14 43.26 41.48 0.620 100 5 7

! Note, we use Ny, and Ny as equivalent notations.
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TABLE N.7.—SIMULATION RESULTS CONCERNING
THE SIZE AND POWER OF THE TEST T, OF MODEL
M, vs. MODEL M,

a

0.01 0.05 0.10 Data model R

0.0100 0.0300 0.0550 M,, Trial2 200
0.0100 0.0150 0.0450 M,, Trial6 200
0.9900 0.9900 0.9900 M,, Trial 1 200
0.0900 0.1150 0.1400 My, Trial 2 200
0.0850 0.1350 0.1900 M,, Trial 3 200
0.1350 0.1650 0.1950 M, Trial 8 200
0.3950 0.5650 0.6250 M,, Trial 8 200
0.1700 0.1750 0.2500 My, Trial 10 200
0.7450 0.7750 0.8400 M, Trial 11 200

-~
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TABLE N.8.—SIMULATED AND THEORETICAL RESULTS CONCERNING THE SIZE AND POWER OF THE TEST
T, OF MODEL M, vS. MODEL M,

a

Method 0.01 0.05 0.10 Data model R t
Simulation 0.0100 0.0550 0.0860 M,, Trial 2 198 5
Theoretical 0.0100 0.0500 0.1000 M,, Trial 2 198 5
Simulation 0.0280 0.0830 0.1240 M,, Trial 3 372 5
Theoretical 0.0100 0.0500 0.1000 M,, Trial 3 372 5
Simulation 0.0600 0.1300 0.1400 M,, Trial 4 100 7
Theoretical 0.0100 0.0500 0.1000 M,, Trial 4 100 7
Simulation 1.0000 1.0000 1.0000 M,, Trial 1 200 5
Theoretical 0.9990 0.9990 0.9940 M,, Trial 1 200 5
Simulation 0.9150 0.9700 0.9800 M,, Trial 2 200 5
Theoretical 0.9480 0.9880 0.9947 M,, Trial 2 200 5
Simulation 0.8800 0.9640 0.9790 M,, Trial 3 193 5
Theoretical 0.8480 0.9500 0.9750 M,, Trial 3 193 5
Simulation 0.0050 0.0660 0.1890 M,, Trial 4 200 5
Theoretical 0.0510 0.1550 0.2450 M,, Trial 4 200 5
Simulation 0.9700 0.9900 1.0000 M, Trial 5 200 5
Theoretical 0.9460 0.9870 0.9980 M,, Trial 5 200 5
Simulation 0.2800 0.5100 0.6350 M,, Trial 7 200 5
Theoretical 0.2610 0.4900 0.6140 M,, Trial 7 200 5
Simulation 0.4220 0.6280 0.7140 M,, Trial 8 199 5
Theoretical 0.4570 0.6940 0.7950 My, Trial 8 199 5
Simulation 0.0190 0.1990 0.3230 M,, Trial 10 161 5
Theoretical 0.2200 0.4370 0.5620 M,, Trial 10 161 5
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TABLE N.9.—SIMULATED AND THEORETICAL RESULTS CONCERNING THE SIZE AND POWER OF THE TEST
T; OF MODEL M, vs. MODEL M,

a

Method 0.01 0.05 0.10 Data model R t
Simulation 0.0150 0.0525 0.1100 M,, Trial 2 400 5
Theoretical 0.0100 0.0500 0.1000 M,, Trial 2 400 5
Simulation 0.0120 0.0500 0.1060 M,, Trial 3 500 5
Theoretical 0.0100 0.0500 0.1000 M,, Trial 3 500 5
Simulation 1.0000 1.0000 1.0000 M,, Trial 2 200 5
Theoretical 0.9998 0.9999 0.9999 M,, Trial 2 200 5
Simulation 0.3800 0.6550 0.7350 M,, Trial 5 200 5
Theoretical 0.4269 0.6635 0.7703 M,, Trial 5 200 5
Simulation 0.6138 0.8028 0.7984 M,, Trial 12 989 5
Theoretical 0.5925 0.7984 0.8751 M,, Trial 12 989 5

TABLE N.10.—SIMULATION RESULTS CONCERNING TABLE N.12.—SIMULATION RESULTS CONCERNING
THE SIZE AND POWER OF THE GOODNESS OF FIT THE SIZE AND POWER OF THE GOODNESS OF FIT
TEST T4 OF MODEL M, TEST Tg OF MODEL M,

a a

0.01 0.05 0.10 Data model R 0.01 0.05 0.10 Data model R

0.0200 0.0500 0.0900 M,, Trial 2 100 0.0000 0.0200 0.1100 M, Trial 13 100
0.0000 0.0400 0.0900 My, Trial 3 100 0.0000 0.0300 0.0600 M, Trial 14 100
0.0000 0.0500 0.1000 My, Trial 8 100 0.0000 0.0100 0.0900 M, Trial 1 100
0.0000 0.0800 0.1300 My, Trial 10 100 0.0100 0.0700 0.1200 Mg, Trial2 100
1.0000 1.0000 1.0000 My, Trial 14 100 0.0600 0.2800 0.3600 Mg, Trial 7 100
0.0900 0.2300 0.3700 My, Trial 15 100 0.0300 0.0700 0.2000 Mg, Trial 8 100
1.0000 1.0000 1.0000 Mg, Trial 7 100 0.9300 0.9800 0.9900 Mgy, Trial 1 100
0.5400 0.7900 0.8800 M, Trial 8 100 0.0200 0.0600 0.1000 Mgy, Trial 2 100
1.0000 1.0000 1.0000 Mgy, Trial 1 100
0.1600 0.3300 0.4200 My, Trial 2 100

-~
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TABLE N.13.—SIMULATION RESULTS CONCERNING

TABLE N.11.—SIMULATION RESULTS CONCERNING THE SIZE AND POWER OF THE TEST T; OF MODEL
THE SIZE AND POWER OF THE GOODNESS OF FIT M;, vs. MODEL My,

TEST Ts OF MODEL M,

« 0.01 0.05 0.10 Data model R

oot 005 010  Datamodel R 0.0100 0.0800 0.1500 M,, Trial 10 100
0.0000 0.0200 0.0200 My, Trial 11 100 0.0100 0.0300 0.0800 M, Trial 13 100
0.0000 0.0500 0.1200 M, Trial 12 100 0.0600 0.0700 0.0800 M, Trial 14 100
0.0000 0.0600 0.1000 My, Trial 14 100 0.4000 0.6700 0.7600 My, Trial 8 100
0.0000 0.1000 0.1600 My, Trial 15 100 0.1500 0.4000 0.5100 M,y Trial9 100
10000 1.0000 1.0000 Mg, Trial 1 100 0.0900 0.2300 0.3300 My Trial 10 100
0.3300 0.5700 0.7100 My, Trial2 100 0.2800 0.5000 0.6100 M,y Trial 11 100
10000 1.0000 1.0000 Mgy, Trial 1 100 0.0200 0.1400 0.1800 M,y Trial 12 100
0.0600 0.1800 0.3000 Muy, Trial2 100 0.0100 0.0500 0.1100 M,y Trial 13 100

-~
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TABLE N.14.—DESCRIPTION OF THE TRIALS OF MODELS My, AND My,

My!
N P,ji=12,...t c Trial
400 p, = 0.05, p, = 0.35, p; = 0.25, p, = 0.15, 2.5 1
ps = 0.20, pg = 0.10, p; = 0.30.
100 p, = 0.35, p, = 0.25, p3 = 0.15, p, = 0.20, 0.5 2
ps = 0.30.
hdlbh2
N P,i=12,...,N P,j=12,... t c Trial
400 p; =0.15,i = 1,100; p; = 0.25, p; = 0.65, p; = 0.75, p; = 0.55, p, = 0.45, 2.5 1
i =101,200; p; = 0.35, i = 201,300; ps = 0.60, pg = 0.50, p; = 0.70.

pi = 0.45, i = 301,400.

100 p;=0.15,i = 1,25; p; = 0.25, i = 26,50; p, = 0.65, p, = 0.75, p; = 0.55, p, = 0.45, 0.75 2
pi = 0.35,i = 51,75; p; = 0.45, ps = 0.60.
i =76,100.

' The probability of any animal being captured on the j™ occasion, j = 1,2,.. .t, is p; if the animal has not previously been caught and
cp; if the animal is being recaptured.

2 The probability of the i animal being captured on the j*" occasion is p;p; if the animal has not previously been caught and p;pjc if the
animal is being recaptured.

APPENDIX O

Interval Estimation

Use of the Central Limit Theorem (cf. Mood et al. 1974:195) in setting
so-called “normal theory” confidence intervals for parameters is widespread.
The theorem usually is cited as justification for asserting that, for “large
samples,” a 95 percent confidence interval for the parameter of interest 6 is
given by P{0 — 1.966(0) < 0 < 0 + 1.966(8)} = 0.95, where &(6) represents
an estimate of the standard deviation of § (also see Seber 1973:134 for an
example of an indirectly constructed confidence interval based on asymptotic
normality). Further impetus is given to this argument when ML estimators
are involved by the knowledge that, under certain regularity conditions,
those estimators are BAN (Best Asymptotically Normal). Furthermore, large
sample (normal theory) confidence intervals based on ML estimators are
known to have smaller expected width than intervals constructed using any
other estimator (cf. Mood et al. 1974:393).

Unfortunately, it is generally true that assertions concerning the operating
characteristics of large sample intervals cannot be made if sample sizes
are small or regularity conditions are not met or both. Even more un-
fortunate is the fact that small or moderate sample sizes are more often the
rule than the exception in capture-recapture experiments. Therefore, it was
not unexpected that initial simulation of capture-recapture experiments re-
vealed that “normal theory” confidence intervals often exhibit undesirable
properties. For example, the lower limit of a given interval for population
size N may be less than the number of different animals captured in the
experiment. Also, coverage of the confidence interval, i.e., the percentage
of simulated intervals that contain the true value N, is often significantly
less than the nominal level of 0.95. Because of such problems, 2 alternative
interval estimation procedures were investigated in the hope that a more
satisfactory procedure could be suggested for practical use.
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The first procedure is based upon the supposition that the distribution of
the estimator N~! is more symmetric (hence closer to normality) than the
distribution of N (cf. Cormack 1968). Thus, the following procedure was
proposed. First, calculate the ML estimates N and Var(N). Construct a 95
percent confidence interval for N-1 of the form P{N-! — 1.96N~2/Var(N) <
N-'< N7!' + 1.96N"%/Var(N)}. Finally, invert the interval in the obvious
manner to arrive at a confidence interval for N. Simulation results involving
Model M, showed that, although the distribution of N~! was nearly normal,
the above procedure did not represent a significant improvement over the
usual large sample interval. Coverage of the 2 procedures was roughly the
same, but the “reciprocal” procedure had, on the average, greater width
than the usual large sample procedure. Moreover, lower confidence limits
for N—! sometimes were less than zero and thus, upon inversion, the upper
limit for N was negative.

The second alternative method for interval estimation involved the use of
only the likelihood function of the sample, and is based largely upon the
likelihood principle (cf. Kendall and Stuart 1973:226). That principle asserts
that the likelihood function provides all the information necessary for
making statistical inferences concerning the data and has been subjected
to serious theoretical questioning (Stein 1962, Birnbaum 1968, Kendall and
Stuart 1973). Nevertheless, we felt that it would be beneficial to simulate
the operating characteristics of these “likelihood intervals” in capture-
recapture experiments to evaluate their practical utility.

Briefly, the mechanics of constructing a likelihood interval are as follows.
(The reader is referred to Hudson [1971] for a thorough explanation.) For
a given data set X, form the log-likelihood function InL(8|X). (Assume 0 is
a scalar for simplicity of presentation.) Under the assumption that §, the ML
estimator of 0, is unique, and that the likelihood function is unimodal, the
likelihood interval 1(6) is defined as 1(6) = {G:InL(OIX) = lnL(OIX) - 2}. I(9)
consists of all those @ for which InL(8|X) (the log-likelihood function
evaluated at ) is no more than 2 units away from the maximum value of the
likelihood function lnL(@[X). The assumption is that these values of 8 are
“plausible” values of 6, in view of the data observed. That is, these values
of # produce values of the likelihood function that are not “far” from its
maximum, and thus they cannot be discounted. The use of the value 2 may
seem arbitrary, but Hudson (1971) argued that this value leads to asymptotic
95 percent confidence intervals.

Likelihood intervals for population size N were constructed from data
simulated according to the 2-sample removal experiment treated by Seber
and Whale (1970). Varying the values of N and p (probability of removal)
did not appear to significantly affect coverage probability of the intervals,
although it is theoretically true that the coverage probability varies at least
slightly with the true values of the parameters. Moreover, lower limits of
the intervals did not extend below the number of animals seen. Average
coverage of the likelihood intervals (95.5%) was approximately the same as
that of the “normal theory” confidence intervals (92.2%) constructed from the
same data. However, average interval width for the likelihood intervals was
consistently greater than that of the normal confidence intervals; on the
average they were approximately 10 percent greater. In view of these some-
what mixed results, a second simulation study was performed on data from
Model M. That study revealed similar results, in that coverage of the 2
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procedures was on the average approximately the same (96.0% for likelihood
vs. 93.2% for “normal” intervals), and the average width for the likelihood
intervals was always greater than that of the normal confidence intervals.
In one case, the average width of the likelihood interval was more than 3
times the average width of the normal confidence interval. Finally, in
virtually every simulation involving likelihood intervals, we noted that
approximately half of those intervals that did not contain N were too low
(i.e., the upper limit of the interval was less than N) and half were too high
(i.e., the lower limit of the interval was greater than N). This is in sharp
contrast to the results of simulating normal confidence intervals, where we
have found that the large majority of intervals that do not contain N are
too low.

On the basis of the results described above, we recommend continued use
of the usual large sample confidence interval procedure rather than either
of the 2 alternative procedures discussed. All 3 procedures possess both
attractive and unattractive operating characteristics, and the choice therefore
cannot be clear-cut. The decision to continue the use of large sample con-
fidence intervals was made for 2 basic reasons. First, biologists in general
tend to be more familiar with the computation and use of that procedure.
Second, and more important, is the fact that more is known about the theoreti-
cal properties of the large sample procedure than is known about the 2 al-
ternatives, and, therefore, it may be possible to assess theoretically the small
sample behavior of the procedure in certain capture-recapture situations.
Finally, we wish to reemphasize that large sample “normal” confidence
intervals should be used with great caution in many capture-recapture
experiments, and that much more theoretical work appears necessary before
more adequate procedures are available.
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