Aerial Survey

- What is our objective?
- Gut feeling for herd condition?
- Index of abundance?

Valid, consistent, repeatable estimates of abundance and condition?

Absolute Abundance

- Total count over whole area
- Total counts on sample plots

Total counts on sample plots

- Plots can be quadrats, strip transects, or irregular shaped areas
- Critical assumption is that every animal is observed and counted once

Sample Units

Total counts on sample plots - Application

- Delineate area
- Apply survey sampling methods to design an appropriate sample
- Test assumptions and remove bias if necessary

Sample Design

Removing Bias: Correction Factor

- Use depends upon assumption of a constant factor under highly variable conditions.

Removing Bias from Sample Counts

- Correction Factor (Ratio)
- Mark Recapture
- Sightability Model

Correction Factor

- One drainage to next has different cover
- Use of cover varies from flight to flight
- Size of groups vary continuously
- Well established statistical basis
- Questionable assumptions in most aerial survey conditions
- Extremely costly in time and resources because must capture and mark animals each time
- Adaptable to a variety of conditions
- Cost efficient
- Not applicable if visibility is very low

Sightability Model

- Mark elk (deer, sheep, etc.) groups with radio-collars
- Fly aerial survey
- Determine which groups seen and which groups missed
- Depends on group size, tree \& shrub cover, snow cover, weather, observers, type of helicopter, etc.

Sightability Model

- Apply same model in other areas too if same type of helicopter and approach used and original model covered appropriate conditions in terms of veg cover, snow, animal behavior, etc.
- We've had original crews train new crews to insure that model still applies.

Sightability Model

- Keep some factors constant
- Develop a sightability model for other factors
- Use sightability model to correct for factors which we cannot control
-

Simple Application

- Suppose we determine that 1/3 of groups are detected ($p=0.33$)
- Then, if see 50, actually 150 present
- How? Correction Factor (CF)= 1/p
- CF= 1/0.33 = 3.0
- $N=N_{\text {obs }} * \mathrm{CF}=50 * 3.0=150$

Application to a Sample

 Unit- Correct each group detected for its probability of detection (visibility)
- Sum all corrected groups in a sample unit for an unbiased estimate of actual number of animals present

Application to a Herd Unit

- Calculate means, ratios, proportions, etc. according to survey design
- Calculate variances and confidence intervals

Sightability Model

- Build a sightability model using logistic regression
- $p=e^{\mu} / 1+e^{\mu}$
- where $\mu=a+b_{1} X_{1}-b_{2} X_{2}$
- e.g. $X_{1}=$ group size, $X_{2}=$ veg. cover

Sightability Model

Lochsa River - Unit 12

How good is estimate?

- Variance of Total =
- Sampling Variance +
- Sightability Variance +
- Model Variance

Sightability Model

Lochsa River - Unit 12

(,

Estimate of Total Numbers

- $m_{\mathrm{ik}}=$ number of animals in group i in land unit k
- $C F_{\text {ik }}=$ correction factor for group i in land unit k
- $M_{\mathrm{k}}=\Sigma m_{\mathrm{ik}} C F_{\mathrm{ik}}$
- Average $=\Sigma M_{\mathrm{k}} /$ No. land units sampled
- Total = Average * Total no. land units

How good is estimate?

- Sampling Variance = Variation from one geographic unit sampled to another
- = S^{2}

How good is estimate?

- Sightability Variance = Variation (or error) from not seeing all the animals
- = proportional to CF^{2}

Lochsa River - Unit 12

- Cows	2852 (269)
- Bulls	968 (166)
- Calves	857 (105)
- Bulls per	100 Cows 34 (6.4)
- Calves per 100 Cows 30 (5.4)	

Northern Yellowstone

 Ełk

How good is estimate?

- Model Variance = variance of parameters in model (betas)
- = proportional to $e^{\text {(Variance-Covariance) }}$

Sources of Variation

- 1985 Estimate of total elk = 4775
- Sampling Variance = 59733
- Sightability Variance = 16868
- Model Variance = 825
- Total Variance =77426
- 90\% Bound =458

Northern Yellowstone Elk
 - Surveyed in 1 day with 3 Super Cubs
 - Survey of whole range (all units)
 - Developed sightability model in 80's
 - $\mu=0.969+$
 - \quad - 0.0369 Group Size
 - - 0.540 Vegetation Cover
 - + 1.701 Activity
 [-
 .

AERIAL SURVEY PROGRAM

- All calculations easily performed
- Variety of sightability models
- See Unsworth et al 1994

